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Abstract
We present novel graph-based visualizations of self-organizing maps for unsupervised functional
magnetic resonance imaging (fMRI) analysis. A self-organizing map is an artificial neural network
model that transforms high-dimensional data into a low-dimensional (often a 2-D) map using
unsupervised learning. However, a postprocessing scheme is necessary to correctly interpret
similarity between neighboring node prototypes (feature vectors) on the output map and delineate
clusters and features of interest in the data. In this paper, we used graph-based visualizations to
capture fMRI data features based upon 1) the distribution of data across the receptive fields of the
prototypes (density-based connectivity); and 2) temporal similarities (correlations) between the
prototypes (correlation-based connectivity). We applied this approach to identify task-related brain
areas in an fMRI reaction time experiment involving a visuo-manual response task, and we
correlated the time-to-peak of the fMRI responses in these areas with reaction time. Visualization
of self-organizing maps outperformed independent component analysis and voxelwise univariate
linear regression analysis in identifying and classifying relevant brain regions. We conclude that
the graph-based visualizations of self-organizing maps help in advanced visualization of cluster
boundaries in fMRI data enabling the separation of regions with small differences in the timings of
their brain responses.
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I. Introduction
Functional magnetic resonance imaging (fMRI) is a noninvasive imaging technique that has
emerged as a powerful tool to identify brain regions involved in cognitive processes. FMRI
offers spatial and temporal resolutions adequate to measure the location, amplitude, and
timing of brain activity. However, the low contrast to noise and generally poor resolutions of
fMRI data present challenges in accurately mapping task-related brain regions.

The analysis of fMRI data aims to correctly identify the regions in brain that are activated
during the course of a cognitive task. Several methods for analyzing fMRI data have been
reported in the literature. These methods can be broadly classified into two categories:
hypothesis-driven and data-driven methods. Statistical parametric mapping (SPM) based on
the general linear model (GLM) is a commonly used hypothesis-driven method that assumes
a simple parametric linear model for signals with a specific noise structure and uses voxel-
based linear regression analysis [1]. The success of SPM for fMRI analysis is due mainly to
the simplicity of the approach in principle and application. More complex parametric models
based on Markov random field models [2], [3] and hidden Markov models [4] have also
been used in fMRI analysis. These methods require information about stimulus timings and
assumption about the shape and timing of the hemodynamic response and are more suitable
for simple task paradigms. A typical SPM analysis performs linear convolution of an
assumed hemodynamic response function (HRF) with the deterministic stimulus timing
function to construct reference functions. These modeling assumptions and the deterministic
character assigned to the stimulus timing function may be too restrictive to capture the broad
range of possible brain activation patterns in space and time and across subjects. SPM
performs voxel-by-voxel analysis which is massively univariate. Due to spatial coherence
and temporal autocorrelation between brain voxels [5], a multivariate approach may be more
appropriate than the voxel-by-voxel approach for fMRI analysis.

Data-driven methods follow multivariate approach for exploratory fMRI analysis. The most
commonly used data-driven techniques for fMRI analysis include principal component
analysis (PCA) [6], [7], independent component analysis (ICA) [8], [9], and data clustering
[11]–[23]. Several data clustering algorithms have been used including K-means clustering
[11], fuzzy clustering [12]–[14], hierarchical clustering [15], [16], and self-organizing maps
(SOMs) [17]–[23]. The data-driven methods make few or no assumptions about HRF shape
and do not require a priori knowledge about stimulus timings. However, each of these
methods has its own shortcomings. PCA assumes that each component is mutually
orthogonal and considers only second order statistics (variance). However, second order
statistics is not sufficient to characterize noisy fMRI datasets, and mutual orthogonality
between components may not be applicable to fMRI data [7]. ICA works with higher order
statistics (entropy or non-Gaussianity) to separate maximally independent sources from
fMRI data. However, it makes strong assumptions about independence between spatial or
temporal components that may result in biased decomposition [9], [10]. Additionally, the
components are unranked and sometimes difficult to interpret. The K-means algorithm is
constrained by the assumption that the clusters are spherically symmetric which is not
applicable in the context of fMRI. K-means clustering results depend largely on the initial
cluster assignment and the number of clusters, which must be defined a priori [11]. The
results from fuzzy clustering also depend on the initial cluster assignment and fuzzy factor
[20]. Hierarchical clustering overcomes the limitations of K-means and fuzzy clustering but
suffers from computational complexity and inability to adjust once a merge or split decision
has been made [11].

An SOM overcomes these limitations by topology-preserving unsupervised mapping of the
high-dimensional data onto a low-dimensional (often a 2-D) lattice of nodes (neurons).
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Kohonen’s SOM is an artificial neural network model that uses unsupervised learning to
reveal underlying structures of the data [24], [25]. The SOM has been successfully used as a
data-driven technique in fMRI for detecting brain activity and functional connectivity in an
unsupervised way [21], [22].

The SOM transforms data through an adaptive vector quantization that ensures an orderly
arrangement (map) of the prototypes (feature vectors) in the output space [25]. This helps in
visualization of natural clusters in the data. However, a post-processing scheme is required
to capture cluster boundaries in the map. The learned map has several components that may
represent neighborhood relations and connectivity between prototypes in the data space.
These include sizes of the receptive fields, local density distribution or distance (or
similarity) across node prototypes. These components have been exploited for visualization
of data clusters via several visualization schemes such as U-matrix [27] or its variants [28],
[29], visualization-induced SOM [30], or double SOM [31]. A more comprehensive review
on various visualization schemes of the SOM can be found in [26], [32], and [33].

FMRI data typically comprise a large noisy dataset where the magnitude of detectable
signals could be very low and signals of interest may be confined to a few voxels in the
high-dimensional image space. This makes the task of delineating important features and
fine structures of data in fMRI data more difficult. In some previous fMRI studies, a two-
stage clustering approach has been employed where the SOM is accompanied by a second-
stage of clustering for effective delineation of fMRI signal patterns. The first stage
constitutes the SOM with sufficient number of output nodes to ensure flexibility and good
quality of mapping of the data. In the second stage, similar and redundant SOM output
nodes are merged. To this end, fuzzy c-means [20], hierarchical clustering [22] or special
node merging criteria employing least square distance [21] or reproducibility of the fMRI
data across epochs [23] have been used to merge similar SOM nodes in fMRI analysis.

The two-stage clustering techniques have made use of temporal and spatial relationships
between node prototypes in the SOM for cluster delineation. However, a critical measure of
data topology provided by the distribution of data across the SOM nodes has been
overlooked. The local density distribution is indicative of how the data are distributed within
the receptive fields of node prototypes with respect to their neighbors. The inclusion of data
topology in the visualization of the SOM provides important clues for delineation of fine
cluster structures especially in high-dimensional, large and noisy datasets [26]. The data
topology can be visualized by rendering of a topology-representing graph over SOM lattice.

In this study, we use a combination of two graph-based visualization techniques that
incorporate 1) local density distribution across SOM prototypes; and 2) local similarities
(correlations) between the prototypes. The combined visualization effectively captures
cluster boundaries and delineates detailed connectivity structures of the meaningful data
[34], [35]. We show that this approach improves detection of signals in fMRI data, including
effective separation of regions that have small differences in the timings of their responses.
We use this approach on a simulated dataset to identify and classify activated regions based
on timings of the signals they constitute. We also use this approach to study the relationship
between fMRI signal timing and reaction time (RT) during a visuo-motor task. We extract
average fMRI signals from the regions identified via the SOM and compute time-to-peak
using an inverse logit (IL) model of the hemodynamic response. We compare the SOM
visualization method with ICA, another data-driven technique, and GLM-based multiple
regression analysis using SPM. We fit a linear mixed-effects model on the time-to-peak
measures and compare the slopes and intercepts of the fits to compare the timing accuracy of
measurements obtained via the SOM, ICA, and GLM.
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II. Related Theory
A. SOM

Kohonen’s SOM is a two-layer feed forward artificial neural network model that maps high-
dimensional input data into a set of nodes arranged in a low-dimensional (often a 2-D) rigid
lattice using unsupervised learning [24], [25]. A weight vector of the same dimension as the
input vector is associated with each SOM node. The SOM algorithm consists of a series of
training steps that tune the weight vectors of the nodes to the input vectors. At the end of
training, this process generates a learned SOM with each node having an associated weight
vector or prototype. Each prototype is associated with a different set of input vectors. This
transformation helps in effective visualization and abstraction of high-dimensional data for
exploratory data analysis.

B. The SOM Algorithm
The SOM algorithm consists of two major steps: 1) determining the winner node; and 2)
updating the weight vectors associated with the winner node and some of its neighboring
nodes. Prior to training, the weight vectors associated with each node of the map are suitably
initialized. Random initialization often suffices. For a profitable initialization, the vectors
are sampled evenly from the subspace spanned by the two largest principal component
eigenvectors [25].

The training expands over several iterations and is based on competitive learning. In each
iteration, a vector x = [x1, x2, …, xn]T ∈ ℝn (where n is the length of fMRI data) from the
input space is compared with the weight vectors of the nodes mi = [mi1, mi2, …, min]T ∈ ℝn

(where i = 1, 2, …, N; N being the total number of nodes) to determine the winner node,
often referred to as the best matching unit (BMU). The BMU refers to the node whose
weight vector is the closest match of the input vector based upon a similarity metric. The
most commonly used metric is the Euclidean metric:

(1)

where ‖‖ represents the Euclidean norm, x is the vector under consideration, mi denotes the
weight of the ith node on the map, and mc represents the weight of the BMU. Once the BMU
is determined, the weight vectors associated with the BMU and some of its neighbors in the
map are updated to make them more similar to the input vector

(2)

where t is the current iteration number; hci(t) is defined as the neighborhood kernel that
controls the number of neighboring nodes to be updated and the rate of update in each
iteration. The magnitude of this update decreases with time (iteration) and for nodes farther
away from the BMU with a suitable kernel. In general, the neighborhood kernel takes the
form of a Gaussian function:

(3)

where ri and rc are spatial coordinates of the ith node and the winner node, respectively, in
the output space; σ is the full-width at half-maximum (FWHM) of the Gaussian kernel that
determines the neighboring nodes to be updated. α denotes the learning rate that controls
how fast the weights get updated. Both σ and α decrease monotonically with the increase in
the learning iteration t.
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C. Graph-Based Visualizations of the SOM
We delineated clusters in the output map using a combination of two graph-based
visualization techniques that incorporated 1) local density distribution across SOM
prototypes (density-based connectivity); and 2) local similarities (correlations) between the
prototypes (correlation-based connectivity) [34].

1) Density-Based Connectivity Visualization, CONNDDvis—The density
distribution refers to the number of input vectors (BOLD signals in fMRI) included in the
receptive fields of the SOM prototypes. The local density distribution within the receptive
fields represents the distribution of data with respect to neighboring prototypes and can be
visualized with a topology representing weighted Delaunay graph. It is realized by rendering
of the connectivity matrix, CONNDD, over the SOM lattice [26]. The existence of an edge
between two prototypes mi and mj on the graph indicates that they are neighbors in the input
data space and the weight of the connection between them gives its connectivity strength:

(4)

where |RFij| denotes the number of input vectors in the receptive field of prototype mi for
which mj is the second BMU (mi being the first BMU). CONNDD provides finer density
distribution by showing the connection between adjacent prototypes in terms of the number
of data points for which these prototypes are the top two BMUs. The connectivity strengths
can be normalized to 1 by dividing each value with the mean of the strongest connection of
each prototype [26]. Any stronger connections will be assigned a value of 1. Outliers can be
excluded by discarding connectivity strength smaller than a threshold. One heuristic for the
threshold is the mean connectivity strength of the fourth strongest connection (rank 4) of
each prototype when the mean strength falls sharply [26]. The normalized connectivity
strengths can be effectively visualized in grayscale and binned widths where darker and
thicker edges represent stronger connections. The binarized CONNDD is equivalent to the
induced Delaunay graph and when rendered over the SOM lattice, it intersects Delaunay
triangulation with the data manifold. This captures cluster boundaries and makes the
discontinuities with the dataset visible. We refer to the visualization of CONNDD on the
SOM lattice by CONNDDvis, analogous to CONNvis in [26]. Previous works have
demonstrated that CONNDDvis helps in the extraction of details in the data structure when
the data vectors outnumber the SOM prototypes [26].

2) Correlation-Based Connectivity Visualization, CONNCCvis—The correlation
coefficient matrix, CONNCC, which includes temporal similarities (correlation coefficients)
of neighboring prototypes, can be visualized graphically to display local similarities in the
prototypes. The weight on the edges between two prototypes gives the measure of their
similarity. The visualization of CONNCC on the SOM lattice is termed as CONNCCvis,
similar to DISTvis in [26] where local Euclidean distances or dissimilarities were visualized.
We used correlation coefficients between prototypes as measures of their local similarities.
CONNCCvis highlights prototypes from the output map that have high temporal similarities
in their neighborhood. This helps to distinguish signals from noise in fMRI data
visualization.

3) Combined Connectivity Visualization, CONNDDCCvis—The visualization
obtained from CONNDDvis and CONNCCvis can be merged to obtain a combined
connectivity visualization that emphasizes delineation of connectivity structures of
prototypes representing task-related signals. We refer to this visualization as
CONNDDCCvis, which combines CONNDDvis and CONNCCvis by multiplying (element-
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by-element) the normalized density-based connectivity matrix, CONNDD, with the
normalized correlation-based connectivity matrix, CONNCC

(5)

CONNDDCC denotes overall connectivity strength between mi and mj and includes both
density-based connectivity and correlation-based connectivity between prototypes. The
resulting visualization suppresses the visualization of noise and delineates detailed
connectivity structures of correlated signals [34].

III. Materials and Methods
A. Simulated Data

To illustrate the application of the method, we created synthetic fMRI dataset with timing
variability. Synthetic BOLD signals simulating an event-related acquisition were created
with a stimulus time series comprising a 2-s box car-shaped stimulus followed by a 16 s rest
repeated over 17 trials with a total runtime of 306 s. The stimulus time series was convolved
with a canonical hemodynamic response based on a gamma variate function with a 100 Hz
sampling frequency. It was downsampled to create the synthetic BOLD signal with a 250 ms
repetition time (TR). Gaussian noise was added to the resulting signal such that the signal-
to-noise ratio (SNR) was 6. The SNR was calculated as the ratio of the amplitude of the
signal to the standard deviation of the noise.

Three sets of simulated stimuli, shifted in time to introduce known delays between the
simulated BOLD signals, were used. The first set led the second by 100 ms and the third by
200 ms. A synthetic brain slice (128 × 128) was created to simulate the spatial distribution
of activated regions on brain [see Fig. 1(a)]. The first set of simulated BOLD signals was
assigned to the red regions (A and D). Regions B and C (green) constituted signals from the
second set, and blue pixels were assigned the signals from the third set. Region F
represented the gray or white matter in brain and consisted of noise only. BOLD responses
from these regions are shown in Fig. 1(b) after averaging across trials.

B. Real FMRI Data
1) Experimental Design—We used the fMRI dataset originally collected for a study of
the unified attentional bottleneck [36]. The original experiment was composed of trials that
comprised either an auditory-vocal (AV) task, a visual-manual (VM) task, or both tasks
simultaneously (dual tasks, DT). Nine functional runs with six VM trials, six AV, and six
DT trials, presented randomly, were acquired. For this work, we extracted only the VM
trials while excluding other tasks from our analysis. The VM face discrimination task used
one of three male faces (6.4° of visual angle). Each trial comprised 12 s of a black fixation
marker (0.1° of visual angle) followed by the stimuli presentation for 200 ms. The last 2 s of
the fixation included an enlargement of the fixation point to alert the subjects about the
following stimulus presentation (see Fig. 2). With the stimulus presentation, a 4 s response
interval was initiated, which was followed by a 200 ms postresponse period before the start
of the next trial. Responses were made with right index, middle, and ring fingers for the
respective faces.

2) Data Acquisition—The data were collected after approval from the institutional review
board at Vanderbilt University [36]. Twelve healthy volunteers (five female; aged 21–33)
participated. Functional (T2∗) images (TR = 1200 ms, TE = 35 ms, flip angle = 70°, FOV =
220 mm; 64 × 64 matrix) consisting of 20 slices (4.5 mm thick, 0.5 mm skip) were acquired
parallel to the anterior commissure–posterior commissure line on a Philips Achieva 3T
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Intera MR scanner. Stimuli were presented on a liquid crystal display panel and back-
projected onto a screen in front of the scanner. Manual responses were collected with five-
key keypads (Rowland Institute of Science). RT was recorded for each trial. Stimulus
presentation was synchronized with fMRI volume acquisition with the interleaved design
such that the intervening trials began 600 ms (1/2 TR) after the scanner pulse. There were in
total nine runs. One subject completed only seven runs due to discomfort.

3) Data Preprocessing—Before analyzing the data for voxel selection, we ran them
through a preprocessing pipeline that included motion correction and slice-time correction.
We then extracted VM trials (a total of 54) from all runs for a given subject, and using the
K-means algorithm, divided the trials based on RTs into two groups (clusters): slow RT and
fast RT. If one cluster ended up having just a few trials, we discarded it as outliers and
divided the remaining trials into two groups. We concatenated fast and slow RT trials to
choose voxels from the combined signals. The concatenated time series was temporally
filtered with a 120 s (0.0083 Hz) high-pass filter including detrending to remove low-
frequency drifts and linear trends in the data.

C. Voxel Selection
1) SOM—The preprocessed signals were used as inputs to the SOM algorithm to detect
voxels responding to the task. The total number of nodes N, initial learning rate α, and
number of iterations for the SOM algorithm were chosen from the test for convergence
procedure used in [21]. This would optimize the parameters to achieve the best possible
results with minimum iteration and time. An initial learning rate of 0.1 produced the least
total squared error between the input data vectors and the representative node prototype
vectors for the total number of nodes of 100 (arranged in a 10 × 10, 2-D lattice grid format)
and 100 iterations.

We initialized the weight vectors associated with the nodes with the first two principal
components of the input data from the brain region. The winner node (BMU) was selected
using the lagged correlation coefficient metric:

(6)

where lagcorr(x, mi) denotes the lagged correlation coefficient between the input x and the
weight vector of the ith node, mi. We used lag-1 correlation in the simulation so it would
improve the sensitivity to timing differences between signals. Lag-0 versus lag-1 did not
make a difference in the real fMRI data so we used lag-0. The initial value of the FWHM of
the Gaussian kernel (σ) in the neighborhood function was set to be equal to the radius of the
lattice, equal to seven nodes for the 10 × 10 lattice [21], [22]. The learning rate α was set to
an initial value of 0.1. Both learning rate (α) and FWHM of the Gaussian kernel (σ) were
decreased exponentially with the increase in the learning iteration. The training resulted in a
10 × 10 map of output nodes with a prototype and a voxel map for each node. Using our
visualization scheme, we delineated clusters on the map. For the fMRI experiment, the
clusters whose voxels mapped to the visual and motor regions were chosen for further
analysis.

2) ICA—We used GIFT (Medical Image Analysis Lab), which implements spatial ICA, to
extract task-related signals from the fMRI dataset. We ran the ICA for each individual
subject using the FastICA algorithm incorporated in GIFT. The number of components was
determined by the minimum description length principle. We examined the spatial map for
each component and selected the one whose voxel map included the visual and motor
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regions. Brain signals from the regions were extracted using a suitable threshold to match
the number of voxels obtained from the SOM.

3) GLM—We performed GLM-based multiple regression analysis using statistical
parametric mapping (SPM8—http://www.fil.ion.ucl.ac.uk/spm/software). The regressor was
constructed by convolving the event related stimulus time series with a canonical
hemodynamic response based on gamma variate functions. GLM was fitted to the response
using SPM8 and regression parameter was estimated. A suitable threshold for the t statistic
was chosen so the number of voxels from visual and the motor regions matched with other
methods.

D. Measuring Timing Differences Using an IL Model
Inverse logit functions were used to model the hemodynamic response. We fitted the model
on average BOLD responses from visual and left motor regions for two RT groups and
estimated their timing parameters.

To model the HRF, a superposition of three IL (sigmoid) functions, L(x) = (1 + e−x)−1, was
used. The first function modeled the rise after activation, the second modeled the subsequent
fall and undershoot, and the third function modeled the stabilization or return to baseline
[37]. The model of the HRF was given by:

(7)

Each function had three variable parameters representing the amplitude, position, and slope
of the response. The αi parameter controlled the amplitude and direction of the curve, Ti
controlled the position, and Di controlled the angle of the slope of the curve. We constrained
the values of α2 and α3 (so that the fitted response begins at zero at the time point t = 0 and
ends at magnitude 0) and used a four parameter model where the position of each function
and the total amplitude were allowed to vary. We used following constraints for the
amplitude:

(8)

And

(9)

We used a gradient descent solution to fit the model and used the parameter estimation
procedure described in [37] to calculate the height H, time-to-peak T, and FWHM W from
fitted HRF estimates. The difference in time-to-peak (TTPD) between average motor and
visual responses was used to measure RTs.

IV. Results
A. Simulated Data Analysis

Signals from synthetic brain regions, denoted by the inner gray area comprising five
activated regions (A–E) in Fig. 1(a), were fed as input to the SOM algorithm. There were
5498 total brain pixels with 341 (~6%) that constituted synthetic BOLD signals and rest
noise. Fig. 3 shows the 10 × 10 SOM output map showing traces of prototypes (average
across trials) of the nodes. The prototypes corresponding to task are on the top right-hand
corner of the map. We then applied the graphical visualization scheme to delineate clusters
on the output map. Fig. 4(a) shows CONNDDvis obtained by draping the local density
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distribution matrix CONNDD over the SOM lattice. The strength of the connection between
prototypes is indicated in grayscale and binned width of the lines where darker and wider
lines represent stronger connections. Outliers and connections involving noise were removed
by discarding connectivity strength smaller than the mean connectivity strength of the fifth
strongest connection of each prototype when the mean strength fell sharply. A number of
connections appeared between the nodes including three distinct clusters at the top right-
hand corner of the map. Fig. 4(b) shows CONNCCvis obtained by draping the CONNCC
matrix over the SOM lattice. The prototypes at the top right-hand corner, possibly including
task-related signals, showed high correlations. Fig. 4(c) shows CONNDDCCvis obtained by
draping the density and correlation combined matrix CONNDDCC over the lattice. The
three distinct clusters at the top right-hand corner of the map became dominant while other
connections including noise were suppressed. The same clusters are shown with the node
prototypes in Fig. 4(d) and are mapped to the image space in Fig. 5(a).

The pixels included in the prototypes indicated in blue in Fig. 4(c) are shown in Fig. 5(a),
left. These represented blue pixels in the image space. Similarly, the prototypes shown in red
in Fig. 4(c) included red pixels [see Fig. 5(a), middle] and green prototypes included green
pixels as shown in Fig. 5(a), right. This shows the ability of the graph-based visualization
schemes of the SOM in 1) detecting voxels responding to the task; and 2) distinguishing
voxels on the basis of timings of the signals they constituted.

We compared the performance of the SOM with ICA and GLM. The ICA produced two
independent task-related components from the simulated dataset but could not distinguish
the three timing groups [see Fig. 5(b)]. The results did not change even when the number of
components to be determined was set to more than 3. GLM with uncorrected or FWE
corrected p values also detected the activated voxels but could not distinguish the delays in
them [see Fig. 5(c)]. In summary, the SOM with graph-based visualizations provided highest
sensitivity in detecting voxels responding to tasks and distinguishing them based on timings
of the corresponding signals in the simulated data.

We compared the performance of the visualization technique with the two-stage clustering
approach where SOM prototypes from the first stage were clustered using hierarchical
clustering in the second stage [22]. The quality of the partition was assessed by the within-
class inertia measure [11]. We clustered the SOM prototypes (in Fig. 3) with the hierarchical
clustering approach using optimal partitions that resulted in 2, 9, 13, and 16 optimal
numbers of clusters (see Fig. 6). None of these partitions were able to distinguish the delay
groups in the signals. The prototypes related to signals belonged to one cluster in all
partitions. We increased the cluster number further, but the signal-related prototypes always
remained in one cluster.

Although the learning parameters and size of the SOM were optimized using the test for
convergence procedure described in [21], we tweaked these parameters to see their effects
on the result. Fig. 7 shows the effect of map size. For the same set of delays (0, 100, and 200
ms) and SNR level 6, a smaller map size (8 × 8) delineated only two groups of delays in the
signals [see Fig. 7(a)]. Map size 9 × 9 (not shown here) could still delineate the three delay
groups. A larger map size (11 × 11) could distinguish the delays resulting in three clusters as
shown in Fig. 7(b), however, took longer to converge due to increase in the number of
output nodes. We also tested the effect of the learning rate (see Fig. 8). For slower initial
learning rate (α = 0.05, half the original), the three delay groups were still clearly delineated.
These clusters became apparent for faster learning rate (α = 0.5) as well. However, there
were more false positives in the results than those at α = 0.1 [see Fig. 5(a)]. The initial
learning rate did not have much impact on the results when varied from 0.05 to 0.5.
However, it should be remembered that if the learning rate is too slow or too fast than the
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optimum, the results may not converge or in this study, it may fail to clearly delineate the
clusters.

We tested the robustness of the method by changing the delays and SNR of the signals. For
the same SNR level 6 but shorter delays (0, 50, and 100 ms), the SOM visualization could
not distinguish the delays (not shown here) while longer delays (0, 200, and 400 ms)
resulted in distinct clusters as expected (see Fig. 9). However, ICA still resulted in only two
components, and GLM could not distinguish these longer delays in the signals [see Fig. 9].
For lower SNR of level 4, SOM visualization gave only two clusters for delays: 0, 100, and
200 ms [see Fig. 10]. However, longer delays (0, 200, and 400 ms) were clearly separable
even at SNR level 4. When SNR increased beyond 6, even shorter delays started to become
distinct. Fig. 11 shows results for delays 0, 50, and 100 ms between signals at SNR level 7.
While SOM visualization could delineate two clusters, ICA and GLM could not distinguish
the delays at all. In summary, our results showed that longer delays and higher SNR were
favorable for clear delineation of timing differences in signals. Visualization of the SOM
was the most sensitive and capable of delineating small timing differences compared to ICA
or GLM.

B. FMRI Data Analysis: RT Study
The extracted functional time series data from brain regions was fed as input to the SOM
algorithm. The density-based connectivity (CONNDDvis) showed a number of clusters at
different regions of the map [see Fig. 12(a)] for a subject. The correlation-based connectivity
showed strong and weak connections on the map as well [see Fig. 12(b)]. The combined
connectivity delineated clusters that could be relevant to our analysis [see Fig. 12(c)]. A
number of (about 12) clusters became apparent on the map. The clusters indicated in blue
and red included prototypes whose voxels mapped to visual and left motor regions,
respectively, in Fig. 13(a). Average signals from these regions were extracted and split into
fast and slow RT groups/trials. The IL hemodynamic model was fit on the average signals
for both groups. Fig. 14 shows average signals from (a) visual and (b) motor regions for the
subject and their corresponding model fits. The RT difference is quite evident from the
motor signals [see Fig. 14(b)]. The estimated HRFs for the two regions and RT groups for
the same subject are shown in Fig. 15. Timing differences between visual and motor
functions and slow and fast RT functions are evident. We estimated time-to-peak parameters
of each signal. The TTPDs between visual and motor signals for the two RT groups were
compared with the mean of the recorded RTs. The TTPDs increased (from 1.52 to 1.8 s)
with the increase in RT (from 0.8 to 1.19 s). This is indicative of the ability of average
signals from visual and left motor cortices to reflect the RT differences.

We also chose voxels using ICA [see Fig. 13(b)] and GLM [see Fig. 13(c)] and computed
the time-to-peak measures from average responses for slow and fast timing groups. The
TTPD between motor and visual cortices for both timing groups were compared with the
corresponding RTs. Fig. 16 shows relationships between the computed TTPD measures and
the mean RTs for 12 subjects for all three voxel selection techniques. The linear
relationships between TTPD and RT were strongest for the SOM [see Fig. 16(c)] as
indicated by the linear mixed-effects model (dark line, p = 0.007). For voxels selected by
ICA, the TTPD increased with RT in some subjects while decreased for others [see Fig.
16(b)]. The mixed effects model indicated weaker linear relationship (dark line, p = 0.06).
For GLM [see Fig. 16(a)], the linear relationship was not apparent (dark line, p = 0.82).

C. Performance Comparison
We fit a linear mixed-effects model on the TTPD measures and computed slope and
intercept of the fit for each voxel selection method. The t statistic for the slope of the model
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was calculated to compare the precision of each method in terms of the standardized effect
size. The precision compares the strength of the linear relationship between TTPD and RT
against the amount of variability in the data. Similarly, the t statistic for the intercept was
measured to compare the bias of the fits. Fig. 17 shows (a) precision and (b) bias of the fits
on the measures from the SOM, ICA, and GLM. The error bars indicate 95% confidence
intervals from 2000 bootstrap samples using the case-resampling bootstrap. Signals
identified by the SOM produced the highest precision of all. No bias was evident statistically
for any of the methods [see Fig. 17(b)].

V. Discussion and Conclusion
In this paper, we proposed a data-driven method for fMRI analysis using a novel graph-
based visualization scheme for self-organizing maps (SOMs). The visualization scheme was
formulated using two metrics of SOM node connectivity based on 1) density distribution
across nodes; and 2) correlation between the node prototypes of the SOM output. The
correlation-based connectivity (CONNCC) considered relationships between the
neighboring prototypes in terms of their correlation. This helped to segregate signal from
noise, because prototypes containing noise were less likely to be correlated. If the signals
were highly correlated and had small timing differences, CONCC might not reveal the
differences because the within-cluster similarity and between-cluster similarity among these
signals would be comparable. Hence, all signals would seem to fall in one cluster. The
density-based connectivity (CONNDD) on the other hand did not directly use correlation
between prototypes. It considered relationships between the neighboring prototypes in terms
of data distribution across the prototypes. The number of data vectors (fMRI time series) for
which the prototypes were the best two matching prototypes accounted for connectivity
between the neighboring prototypes in CONNDD. Separation between clusters could be
seen when the neighboring prototypes did not have data distribution. This finer density
distribution visualization helped to distinguish small timing differences within the signals.
This visualization scheme was applied on simulated and fMRI datasets in this study to
identify activated voxels and classify them based on differences in timings of their
corresponding signals. The SOM applied in conjunction with the graph-based visualization
scheme outperformed ICA and GLM by providing highest sensitivity in classifying regions
based on the timing of their responses. On the real fMRI dataset, we fit the average signals
using IL functions to model the hemodynamic response and measured TTPD measures to
compare to RTs. Signals identified by the SOM suggested a statistically strong linear
relationship between RTs and TTPDs.

A. Significance of Graph-Based Visualizations of SOMs in FMRI-Based Timing Studies
We used three methods for voxel selection in this study: GLM, ICA, and SOM. GLM was a
univariate method that followed a hypothesis-driven approach whereas ICA and SOM were
multivariate methods that followed a data-driven approach.

GLM followed voxel-based linear regression analysis based on the GLM using SPM. The
modeling assumptions and deterministic characteristics of the reference function in GLM
analysis may have been too restrictive to capture the full range of stimulus-driven BOLD
transitions [22]. Additionally, the voxel-by-voxel hypothesis testing approach in SPM was
massively univariate, not making full use of the neighborhood relationships or intervoxel
dependencies that could improve sensitivity. This may have resulted in lower sensitivity of
GLM in identifying and classifying task-evoked voxel responses based on their timings.

For ICA, we used spatial ICA that determined maximally independent components from the
data by maximizing non-Gaussianity. This ensured segregation of task-related signals from
other nonrelevant signals and noise. Although data driven, ICA made a strong assumption of
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independence between components which may have resulted in biased decomposition and
decreased ability to detect task-related signals [10], [38]. This may have resulted in lower
sensitivity of ICA as shown by the results (see Fig. 16). Our implementation of SOM used
neighborhood correlation to group data based on similarities in their temporal patterns. The
neighborhood function essentially made use of intervoxel relationships that increased its
sensitivity. The graph-based visualization scheme delineated small structures of clusters in
the data that could distinguish early BOLD signals from late signals. This was demonstrated
by our results from simulation. This may have helped in reducing interference from late
signals coming through draining veins in the real fMRI experiment.

A weakness of the graph-based visualizations of the SOM is that connections between
nonneighboring SOM prototypes can obscure the visualization, especially when the dataset
is noisy like a typical fMRI dataset. Using a suitable threshold to discard noise and outliers
is important for clear distinction and visualization of meaningful clusters.

B. Time-to-Peak From IL Fits for Timing Studies
A comparative study of the hemodynamic response models conducted in [37] suggested that
the IL model was immune to a large degree of model misspecification providing the least
amount of bias and confusion between the response parameters than other models such as
canonical gamma and finite impulse response. In [39], hemodynamic response timing
parameters were investigated concluding that the time-to-peak estimate was stable across
separate datasets for the same region within a subject and was a reliable measure of the
hemodynamic response.

Our estimates of TTPDs parameters obtained from IL fits did not match the corresponding
mean RTs in absolute terms [see Fig. 15] although their linear relationship was evident [see
Fig. 16(c)]. This was understandable as the HRF is a complex, nonlinear function of the
neuronal or vascular changes. The HRF model is limited in terms of its statistical accuracy
for accurate recovery of the true response parameters (time-to-peak, width and height) [37].

We observed large variation in TTPD measurements in some subjects across methods [see
Fig. 16]. This could be due to small difference between slow and fast mean RTs for these
subjects. In this case, even a slight difference in the voxels selected by the methods could
result in large difference in timing measurements. Also, inclusion of voxels contributing to
late signals from sources such as draining veins can introduce bias to timing measurements.
Our approach of voxel selection using graph-based visualizations of the SOM was more
sensitive to timing differences than other methods. It might have been able to avoid voxels
contributing to late signals thereby reducing their interference on these timing
measurements.

A major source of bias may arise in fMRI-based timing studies in the form of hemodynamic
variability. The hemodynamic shape may vary across brain regions and subjects [40], [41]
which could give misleading inferences on the actual delay. In this case, modulation of the
delay (in our case RT differences) by experimental demands and cognitive context can be
employed to rule out hemodynamics as the cause of the results and validate the measured
timing differences. The linear relationship between TTPD measures and RTs, especially
with signals identified by the SOM in our study, is compelling evidence that these
measurements are not source of hemodynamic artifacts.

In summary, with careful consideration of experimental design, graph-based visualizations
of SOMs can be used to identify spatiotemporal patterns of activated brain regions and
measure relative timings of brain activities using fMRI.
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Fig. 1.
(a) Synthetic brain slice (128 × 128) comprising five activated clusters (A–E). The clusters
were divided into three groups (indicated in different colors) based on delay between the
signals (SNR = 6, TR = 250 ms) they constituted. The signals from red clusters led the
signals from green clusters by 100 ms and from blue by 200 ms. F represents gray or white
matter constituting noise. (b) Average simulated BOLD responses from red (A and D), green
(B and C), and blue (E) clusters in the respective colors after averaging across trials.
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Fig. 2.
Experimental design of the face discrimination task comprising visual stimulus-manual
response trial (adapted from [36]).
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Fig. 3.
10 × 10 matrix of SOM output node prototypes (averaged across trials) from the simulated
dataset. The prototypes corresponding to task are on the right-hand corner of the map.
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Fig. 4.
(a) Density-based connectivity visualization (CONNDDvis): Visualization of node
connectivity based on local density distribution on the 10 × 10 SOM lattice. Connectivity is
interpreted in grayscale where darker and wider lines mean strong connections. (b)
Correlation-based connectivity visualization (CONNCCvis): Visualization of connectivity
based on local correlation (correlation coefficient between the neighboring prototypes) on
the SOM lattice. (c) Combined connectivity visualization (CONNDDCCvis): Visualization
of connectivity based on local density distribution and local correlation on the SOM lattice.
Three clusters of nodes were identified as indicated in red, green, and blue. (d) The output
map showing traces of prototypes in different colors for three different clusters.
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Fig. 5.
(a) The graph-based visualizations of the SOM successfully detected three clusters based on
the delay groups: 0, 100, and 200 ms. (a) The blue cluster in Fig. 4(d) included voxels
shown in left (Cluster 1), red cluster included voxels shown in middle (Cluster 2), and green
cluster included voxels shown in right (Cluster 3). (b) ICA detected two components that
could not distinguish the delay groups separately, and (c) GLM analysis with uncorrected
and FWE corrected p values (p < 0.001 and p < 0.05) could not distinguish the delay groups
either.
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Fig. 6.
Clustering of SOM prototypes using hierarchical clustering with different “optimal”
partitions (Np). The colors represent clusters. The prototypes corresponding to signals at the
top right-hand corner all belonged to one cluster irrespective of the number of partitions.
This indicates the inability of the two-stage clustering approach using hierarchical clustering
of the SOM to distinguish delays in the signals. (a) Np =2. (b) Np =9. (c) Np =13. (d) Np
=16.
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Fig. 7.
Effect of map size (a) 8 × 8 map size could not distinguish the three delay groups: 0, 100,
and 200 ms separately. (b) 11 × 11 size successfully delineated the three delay groups in
three distinct clusters.
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Fig. 8.
Effect of initial learning rate. (a) Slower initial learning rate, α = 0.05, which was half the
original, could still classify the three delay groups: 0, 100, and 200 ms. (b) Faster learning
rate, α = 0.5, could also delineate the three delay groups. However, there were more false
positives in the results.
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Fig. 9.
Effect of delays. Larger delays between the signals (0, 200, and 400 ms) at the same SNR= 6
improved the clustering by resulting in fewer false positives than at shorter delays [0, 100,
and 200 ms—Fig 5(a)]. However, the results from ICA and GLM were not much different.
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Fig. 10.
Effect of SNR. (a) At a lower SNR = 4, the resulting clusters could not distinguish 0, 100,
and 200 ms from each other. (b) For larger delays (0, 200, and 400 ms), three distinct
clusters resulted for the delay groups.
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Fig. 11.
Effect of SNR. (a) At a higher SNR = 7, two clusters resulted for delay groups: 0, 50, and
100 ms. (b) ICA and (c) GLM could not distinguish the delays at all.
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Fig. 12.
(a) CONNDDvis: Density-based connectivity visualization from a subject performing the
visual stimulus-manual response (VM) task. (b) CONNCCvis: Correlation-based
connectivity visualization: (c) CONNDDCCvis: Combined connectivity visualization. A
number of node clusters were identified including those shown in red and blue. (d) The same
clusters shown on the output map with traces of prototypes. The prototypes indicated in blue
and red contained voxels in visual and motor regions, respectively [see Fig. 13(a)].
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Fig. 13.
Voxels identified by (a) SOM (Voxel count: Visual—21, Motor—16), (b) ICA (Voxel
count: Visual—18, Motor—12), and (c) GLM (Voxel count: Visual—22, Motor –14) for the
subject. The same voxels are shown with the colormap (based on correlation with the
reference function) on the right.
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Fig. 14.
Average signals from (a) visual and (b) motor regions (chosen via SOM) for the subject for
fast and slow RT groups. The broken lines are average fits from the IL model. The timing
difference between fast and slow RT groups is evident from the motor signals.
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Fig. 15.
Estimated HRFs from visual (blue) and motor (red) regions (chosen via SOM) for two RT
groups for the subject. Motor–Visual (solid curves) time-to-peak difference: TTPD1 = 1.52
s. Motor–Visual (broken curves) time-to-peak difference: TTPD2 = 1.8 s. Actual mean RTs
were: RT1 = 0.80 s and RT2 = 1.19 s.
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Fig. 16.
TTPD between average motor and average visual cortex signals obtained via (a) GLM, (b)
ICA, and (c) SOM versus mean RTs from 12 subjects. TTPD increased linearly with RT in
most of the subjects for voxels selected by the SOM as indicated by the linear mixed-effects
model (dark line, p = 0.007). For voxels selected by ICA, the TTPD increased with RT in
some subjects while decreased for others (dark line, p = 0.06). For GLM, a linear
relationship was not apparent (dark line, p = 0.82).
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Fig. 17.
Performance comparison of the voxel selection methods using results from linear mixed-
effects modeling. (a) Precision was measured with the t statistic for the slope (linear term of
the fit) describing the relationship to RT. (b) Bias was measured with the t statistic for the
intercept of the fit. The error bars indicate 95% confidence intervals from 2000 bootstrap
samples generated by case-resampling bootstrap.
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