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Unconstrained Video Monitoring of Breathing
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Abstract—This paper presents a new real-time automated in-
frared video monitoring technique for detection of breathing
anomalies, and its application in the diagnosis of obstructive sleep
apnea. We introduce a novel motion model to detect subtle, cyclical
breathing signals from video, a new 3-D unsupervised self-adaptive
breathing template to learn individuals’ normal breathing patterns
online, and a robust action classification method to recognize ab-
normal breathing activities and limb movements. This technique
avoids imposing positional constraints on the patient, allowing pa-
tients to sleep on their back or side, with or without facing the
camera, fully or partially occluded by the bed clothes. Moreover,
shallow and abdominal breathing patterns do not adversely affect
the performance of the method, and it is insensitive to environ-
mental settings such as infrared lighting levels and camera view
angles. The experimental results show that the technique achieves
high accuracy (94% for the clinical data) in recognizing apnea
episodes and body movements and is robust to various occlusion
levels, body poses, body movements (i.e., minor head movement,
limb movement, body rotation, and slight torso movement), and
breathing behavior (e.g., shallow versus heavy breathing, mouth
breathing, chest breathing, and abdominal breathing).

Index Terms—Action recognition, behavior analysis, breathing
monitoring, obstructive sleep apnea (OSA).

I. INTRODUCTION

OBSTRUCTIVE Sleep Apnea (OSA) [1] is a condition
with severe complications including: reduction in cog-

nitive function, cardiovascular disease, stroke, fatigue, and ex-
cessive day time sleepiness. OSA is characterized by repetitive
obstruction of the upper airways during sleep, resulting in oxy-
gen desaturation and frequent arousal events, characterized by
violent awakening. Although OSA affects around 4% of men
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and 2% of women [1], [2] the majority of affected individuals,
perhaps 80–90% [3], [4], remain undiagnosed.

The gold standard diagnostic tool for OSA is Polysomnog-
raphy (PSG), which measures a wide range of parameters, in-
cluding brain waves (EEG), eye movements, skeletal muscle
activation, electrocardiogram (ECG)/heart rate, airflow, respira-
tory effort, and blood oxygen saturation using a range of sensors.
However, PSG is costly, labor-intensive (not least in analyzing
the data), and invasive, which may disturb sleep and compromise
the findings.

A popular cost-effective, less invasive alternative combines
pulse oximetry (to measure blood oxygen saturation levels
[SpO2] and heart rate) with infrared (IR) video monitoring.
The clinician identifies suspicious areas on the pulse oximetry
trace (defined by a dip of more than 4% in the oxygen saturation
level) and reviews the corresponding video data to reach a diag-
nosis. However, the pulse oximetry traces of some OSA patients
do not show all the abnormalities, forcing the clinician to review
a significant amount of the video data. To reduce the workload,
some existing video systems [5] try to detect patient movement,
utilizing patterned sheets and IR light to detect gross degrees
of motion, which at least identifies periods of activity, even if
it does not identify what the activities are. However, if the pat-
terned cover is removed by the patient, the system fails. There
is thus a growing interest in alternative, more robust, automated
approaches to the diagnostic assessment of OSA.

The contact-type approaches include thoracic–abdominal
bands [7], which track changes in the body circumference dur-
ing the respiratory cycle, stick-on electrodes such as the ECG
method [8], the nasal temperature probe [9], and contact-type
microphone for audio analysis to monitor tidal volumes from the
human breathing activity [10]. The main disadvantages of these
approaches are consequent on their invasiveness: they may be
uncomfortable, which disturbs sleep and compromises results;
and patient movement may dislodge sensors or compromise
readings.

The noninvasive techniques include noncontact audio analy-
sis [11], [12], vibration sensors [13], thermal imaging [14]–[16],
and Doppler radar sensors [17], [18] designed to identify breath-
ing. A major challenge for noncontact type audio analysis is the
extraction of the breathing sounds from the sensor signals con-
taminated by the environmental noise [11] [12]. The vibration
sensors require an expensive specialized hardware and impose
positional and postural constraints. The thermal imaging tech-
niques have been used to capture a breathing signal, by detecting
the breath as it is expelled [14]–[16], and the radar sensors have
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Fig. 1. Unstable signals appear in the depth images using a low-cost-3-D
camera (Kinect).

been proposed for monitoring of the cardiac and respiratory mo-
tion [17], [18]. However, in both the methods, there are strict
positional constraints (the mouth/nose region must be targeted),
and the region of interest must not be occluded. These require-
ments are not easily fulfilled when monitoring humans during
sleep.

In this paper, we investigate the use of IR video in detect-
ing apnea events. This has the advantages of using standard,
low-cost hardware, and being noninvasive. However, there are
several major technical issues: the breathing motion is barely
perceptible (due to obscuration by bed clothing and the subtlety
of the breathing movements), and being cyclical the movements
are prone to self-occlusion. Consequently, the standard motion
detection and activity recognition methods do not function well.
An interesting alternative exists in modern low-cost 3-D cameras
(e.g., Kinect, Xtion Pro, CamBoard nano, or Gesture Camera),
which have been suggested for the respiratory motion detec-
tion [19], [20]. However, our preliminary analysis indicates that
the image signal from Kinect is much more unstable than the
IR image (see Fig. 1), making filtering of noise and detection of
subtle breathing patterns more difficult. The use of a standard
IR camera alone, which may already be available in sleep labs,
is also helpful in reducing the complexity of the technology.

The standard motion detection methods include difference
of frames (DOF) and optic flow. DOF can be formulated as
follows:

D(t) = |I(t) − I(t − k)| (1)

where I(t) is the intensity image at frame/time t, k is the selected
time interval, and D(t) is the frame difference. If k = 1,D(t) is
the difference of consecutive frames. The difference is thresh-
olded to produce a binary difference map

B(x, y, t) =
{

1, if D(x, y, t) > α

0, otherwise
(2)

where α is a selected threshold.
As breathing movement is so subtle, the value of α in (2) must

be set to such a small value (e.g., α = 1) to detect differences
that noise problems become excessive, particularly as IR sensors
suffer from high noise levels [22].

The optic flow tends to fail in regions with a largely ho-
mogeneous appearance [23], which is typical of bed clothing.
Furthermore, objects that move in a straight line but oscillate

forward and backward tend to have low salience [21]. These
issues make optic flow unsuitable for our problem domain.

Activity recognition extracts a compact representation of spa-
tiotemporal features and uses this to classify activities. A popular
recent approach treats the video sequence as a 3-D space-time
volume (of intensities, gradients, optical flow, or other local fea-
tures). Efros et al. [24] perform action recognition by correlating
optical flow measurements from low-resolution videos. Bobick
and Davis [25] proposed a static vector image as a temporal
template to represent human movement, where the vector value
at each point is a function of the motion properties at the cor-
responding spatial location; they introduced the motion history
image (MHI) and motion energy image (MEI), spatiotemporal
models that can be matched to stored models of known actions.
However, the technique is view sensitive, requiring the “shapes”
of actions in the same category to be similar and the shapes of
actions in different categories to be dissimilar. In our domain,
there is little constraint on the subject’s sleeping posture and the
shape of breathing varies. MEI and MHI are derived from DOF,
and indeed Bobick and Davis [25] suggest that a more robust
motion detection mechanism is required in situations where the
test subject moves slowly. In addition, the MHI is vulnerable to
spatial motion self-occlusion occurring within a temporal win-
dow due to overwriting. The extensions to the MHI have been
designed to handle self-occlusion [26], [27], but as these are
based on DOF techniques, they remain unsuitable for our do-
main. Gorelick et al. [28] also use spatiotemporal volumes for
action recognition, modeling human actions as silhouettes of a
moving torso and protruding limbs undergoing articulated mo-
tion. These space-time shapes may be used to classify actions.

Another popular technique is to track space-time interest
points [29] to generate spatial-temporal “words” [30] (using
the bag of words representation), and to classify these using
probabilistic techniques [31], [32]. However, the lack of dis-
tinctive patterns on the bed cover makes this unsuitable for our
domain.

This paper presents a new real-time IR video monitoring
technique for detecting abnormal breathing activities. It extends
our previous work published in short form in [6]. Here, we
introduce improved models for both the motion detection and
activity recognition that are less sensitive to noise than our
earlier approach. Our evaluation demonstrates that these achieve
high accuracy in recognizing the abnormal breathing events and
the body movement. The organization of the paper is as follows.
The proposed algorithm is introduced in Section II. Section III
shows the experimental results on 15 video sequences featuring
simulated apnea episodes and four clinical clips featuring actual
episodes. Section IV concludes the paper.

II. BREATHING DETECTION

This section presents a new IR video monitoring approach
for anomalous breathing behavior detection. No positional con-
straint on the patient is imposed (other than by the orientation
and position of the bed), allowing patients to sleep on their back
or side, with or without facing the camera. The technique works
with subjects either fully or partially obscured by a bed cover.
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Fig. 2. Sample activity map generated using PLIM, illustrated across a breathing cycle. The subject’s breathing is detected around the edge of the subject and
folds in the bed clothes. The activity level grows and falls in a cyclical manner through the breathing cycle.

Fig. 3. Activity level, et , may be used to detect events, with normal breathing
(b,d), apnea events (e), and body movements (a,c) giving rise to significantly
different levels of et .

The system monitors the degree of motion; while this remains
below a threshold, the subject is undergoing normal breathing;
when it exceeds the threshold, a motion event has occurred.
The system learns a template to characterize normal breathing
motion patterns online, and uses this to classify motion events
as body movements, normal breathing episodes, deep breathing
episodes, or apnea episodes.

A. Motion Detection for Breathing Analysis

To address the limitations of DOF methods with respect to
the detection of breathing, we have developed a persistent lu-
minous impression model (PLIM). PLIM is derived from the
concept of background modeling, which updates a model of the
background to discount transitory noise sources while allow-
ing adaptation to long-term changes [33], [34]; however, the
PLIM is tuned to detect subtle motion rather than to segment
foreground objects. In background differencing, the background
model is updated over time to avoid accumulated errors. In con-
trast, the PLIM is designed to accumulate errors to enhance
the breathing signals and to differentiate between the breathing
activity and the body movement. The PLIM incorporates slow
adaptation, allowing pose changes to be accommodated while
allowing cyclical movements to be detected; see Fig. 2. A sim-
ple measure of activity level can be extracted from the PLIM,
and used to identify motion events; see Fig. 3.

Given an M × N image, and frame rate of F frames/s, the
PLIM is initialized using the image values

P (x, y, 0) = I(x, y, 0). (3)

At time t, the PLIM is updated using

Δ(x, y, t) = I(x, y, t) − P (x, y, t − 1) (4)

P (x, y, t) = P (x, y, t − 1) +

⎧⎪⎨
⎪⎩

1, Δ(x, y, t) > 0

0, Δ(x, y, t) = 0

−1, Δ(x, y, t) < 0

. (5)

The PLIM activity map A(x, y, t) is defined as

A(x, y, t) =
{

1, if I(x, y, t) − P (x, y, t) > α

0, otherwise
(6)

where α is the detection threshold, a parameter of the model.
During normal sleep, breathing causes subtle movements away
from and back toward any arbitrarily chosen starting point.
These are observable as a cyclical growth and decline of regions
in the PLIM activity map; see Fig. 2. We define the activity
level, et , as the number of detected pixels in the activity map,
A(x, y, t), computed using (6) at time t

et =
∑
(x,y )

A(x, y, t). (7)

B. State Algorithm for Action Segmentation

Normal breathing is (barely) perceptible in the et level; how-
ever, motion events manifest as significant perturbations; see
Fig. 3. We segment motion events by identifying the start and
end time, ts and te , where et rises above and subsequently falls
below thresholds, described below. The sequences between mo-
tion events, where the activity level is very low, correspond to
periods of normal breathing. We, therefore, use a two-state al-
gorithm, which switches between the normal breathing state
and the motion event state. It is possible to classify motion
events using only the duration and peak values from the cor-
responding section of the et time series, but this is insufficient
to distinguish some movements (e.g., slight head movements)
from apnea episodes. A more sophisticated approach using on-
line breathing templates is introduced in the next section.

C. Templates for Normal Breathing Activity

The sleeping subject undergoes protracted periods of nor-
mal breathing, where there is only slight movement in partic-
ular areas (e.g., around the rib cage, shoulder, throat, mouth,
or abdomen, depending on the posture and individual breath-
ing behavior). By identifying where this movement occurs, it
is possible to distinguish even quite subtle body movements
from breathing, and to classify breathing actions as apnea, mod-
erate deep breathing, or normal breathing episodes. We use a
template-based method to capture the regions of movement cor-
responding to normal breathing. However, as the subject tends
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Fig. 4. Sample sequence illustrating adaptive online breathing template con-
struction and activity recognition. (1) Initially, a normal breathing template is
constructed, (2) an apnea episode occurs and is identified using the template-
matching model, (3) adaption of the existing breathing template continues,
(4) a body movement is detected based on the template matching result - tem-
plate mismatch, (5) a normal breathing template is reconstructed by the pro-
posed adaptive online breathing template construction model, and (6) another
apnea episode is detected using the template matching model with the newly
constructed template.

to change body pose periodically during sleep, the breathing
motion region changes over time too; the template model is
therefore reconstructed after body pose changes.

The method is related to MHI, described previously, but given
the partial, noisy, and occasional signals, we use a simple bi-
nary template augmented with an online construction algorithm
to produce a self-adapting normal breathing template based on
an individual breathing behavior. A blank template is initially
created, and when the state switches to normal breathing, the
adaptive construction proceeds, until the algorithm switches to
the motion event state. If the motion event is classified as a
breathing event, which implies that the body pose remains the
same, the previous template is retained and used when the state
changes back to normal breathing. On the other hand, if the
motion event is a body movement, a new template is created to
capture breathing activity in the new pose. Fig. 4 illustrates the
new adaptive online template construction process and recogni-
tion of events in a particular scenario.

The template construction algorithm needs to capture inter-
mittent and limited breathing motion signals while discarding
noise. To suppress noise, the signals are included in the template
only if they appear at least twice within a certain period, and are
retained if they repeat reasonably often. The signals that stop

Fig. 5. Switching algorithm state. Assuming the algorithm has switched to
normal breathing state at t1s , the rise of et above the threshold ee at time te ,
for n/2 steps to tm atch switches state to a motion event and triggers template
matching at tm atch . The fall of et below the threshold es for n steps triggers
the switch to normal breathing at t2s .

repeating are usually discarded, except when the number of sig-
nals on the template is low, in which case they are retained, as it
is then more important to accumulate data than to avoid noise.

The binary template Tt is updated at each time step t, using
an auxiliary integer-valued cumulative image T g

t with values
in the range [0, 255]. Defining the template quality level, qt =∑

x,y (Tt) as the number of set pixels in the template, each pixel
of Tt is updated as follows:

T g
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

255, if At = 1 and T g
t−1 > 0

δ, if At = 1 and T g
t−1 = 0

T g
t−1 − ε, if At = 0 and qt−1 > λ and T g

t−1 > 0

0 otherwise

(8)

Tt(x, y) =
{

1, if T g
t (x, y) > δ

0, otherwise
(9)

where δ = 100, ε = 4, and λ = 0.0012 WH are empirically-
determined parameters of the algorithm, and we have omitted
the pixel indices (x, y) for brevity. The template quality thresh-
old λ, is also ultimately used to determine whether the tem-
plate contains sufficient information to be used for motion event
classification.

D. State Transition Rules

The start point ts of a normal breathing cycle is triggered
when the activity level, et , drops below the selection threshold
λ for n = 10 time steps. The end te point of the normal breath-
ing cycles is triggered when the activity level rises above the
adaptive threshold, ee , given by

ee = max(q(t∗)ν, λ) (10)

where ν = 1.3 is determined empirically and t∗ is a periodic
time sample taken on every mth frame (m = 40 for 15 frames/s
video clips). Hence, the activity level must rise by 130% within
a short period ≤ m to indicate the end of a normal breathing
episode.

The template is compared with the activity map at time tmatch ,
after te , where the activity level has risen above the adaptive
threshold, ee , for n/2 time steps; see Fig. 5. At frame 0, when no
template has been built, ee is temporarily set as ee = λν2 , which
is defined empirically and soon replaced by the values generated
based on the individual breathing pattern. Obtaining ee , es , the
end time te to terminate the current template construction, the
template matching time tmatch , and the starting time tnew

s to



400 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 61, NO. 2, FEBRUARY 2014

TABLE I
EFFECTIVE VALUES OF MODEL PARAMETERS

build the next normal breathing template are defined below with
a stabilizing factor n for the switching status, which is defined
empirically (n = 10)

te = arg min
t∈T1

t (11)

where T1 = {t : et ≥ ee and t > told
s } and told

s is set to 0 in the
beginning

tmatch = arg min
t∈T2

|n
2
−

t∑
l=te

1| (12)

where T2 = {t : et ≥ ee and t > te}

tnew
s = arg min

t∈T3
|n −

t∑
l=tm a t ch

1| (13)

where T3 = {t : et ≤ es and t > tmatch}.

E. Action Recognition by Template Matching

The motion events are classified using one of the two tech-
niques, based on the breathing template if it is usable (i.e.,
qt ≥ λ), or the activity level otherwise. The activity map is
compared with the template using a normalized matching score,
s = w2/w1 , where w1 is the proportion of the template inter-
secting the activity map, and w2 the proportion of the activity
map not intersecting the template

w1 =
∑

(T
⋂

A)∑
T

(14)

w2 =
∑

(∼ T
⋂

A)∑
A

(15)

s = w2/w1 . (16)

The action is classified using two empirically defined thresh-
olds, γ1 = 0.03 and γ2 = 0.004

action =

{ o1 , if s ≥ γ1

o2 , if γ2 ≤ s < γ1

o3 , if s < γ2

(17)

where o1 is a body movement event, o2 an apnea event, and o3
a deep breathing event.

The matching score is a measure of the degree of novelty of
the action with respect to the template, normalized for both the
activity map and the template size; the time complexity is O(p)
where p ≥ q.

F. Simple Action Recognition Model

When the breathing template is insufficient to support match-
ing (e.g., due to shallow breathing), qt < λ, we instead classify
the motion events using the duration d and the activity level
value etm

d = te − ts (18)

action =

⎧⎪⎨
⎪⎩

o1 , if etm
≥ θm or d ≥ θd

o2 , if d ≥ θd/2

o3 , otherwise

(19)

where thresholds θm = κ WH and θd = βF , where κ =
0.26, β = 4.6 are defined empirically.

G. Adjustable Parameters

The algorithm has a number of adjustable parameters. An
initial set of effective parameter values was heuristically de-
termined; then, each parameter was experimentally varied in
turn. The operating values for these were determined using
three video clips from the simulated datasets, which contains
various events including overbreathing and body movement
events. Where parameters produced effective performance over
a range of values, the most effective value was chosen for each
parameter.

Table I illustrates the range of effective parameter values.
The reported results utilize the values (α = 10, λ = 0.0012 WH,
γ1 = 0.03, γ2 = 0.004, ν = 1.3, n = 10, κ = 0.26, β = 4.6).
The algorithm is not very sensitive to the settings of most of
these parameters provided they are within the effective range;
we discuss the more sensitive parameters below.

The front end motion detector parameter α influences the
motion detection results. When α is small (e.g., α = 6), more
motion is captured, as is noise; when α is too high, all motion
is filtered out. As a result, the selection of α is important and
can influence the settings of other parameters such as λ. An
effective range of (8 ∼ 10) was identified, and a large value
(α = 10) chosen to filter out high IR noise.

Another important and relatively sensitive parameter, λ, de-
termines whether to use the template-matching method or the
simple action recognition model. A range of λ values were tested
(0.00105 ∼ 0.00165), and a low value (λ = 0.00117) was se-
lected in order to utilize the template as often as possible. Other
parameters (γ1 , γ2 , ν, n, κ, β) are set using the mean of the ef-
fective range.
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The same parameter values were used successfully on two
separate datasets, which have significantly different environ-
mental settings—-including the illumination, camera viewpoint
and angle, camera distance to the subject, and bed and cloth-
ing configuration—which indicate that the proposed method is
robust.

III. EXPERIMENTS

We have evaluated the new technique in identification of nor-
mal breathing, apnea events, and body movement events. The
apnea events are identified as the overbreathing event that oc-
curs at the end of every apnea episode. The body movement is
also used as an indicator of waking up by clinicians: if a body
movement directly follows an overbreathing event, it supplies
additional evidence of an apnea episode. Consequently, the eval-
uation of the proposed technique is based on detection of the
overbreathing events and body movement events.

Two datasets are used in our evaluation: the simulation dataset
and the clinical dataset, which use different models of camera,
and in different settings with different camera positions with
respect to the subject.

The simulation dataset (15 video clips) features actors simu-
lating a wide variety of motion and body movement events. This
allows us to evaluate a range of scenario with various occlusion
levels, body poses, body movements (i.e., minor head move-
ment, limb movement, body rotation, and slight torso move-
ment), breathing behavior (e.g., shallow versus heavy breath-
ing, mouth breathing, chest breathing, and abdominal breathing)
and sequences of linking events (i.e., apnea–body movement
and body movement–apnea). Two Sony IR camcorders (DCR-
HC-30E) were utilized, with three different shooting angles, at
15 frames/s and a resolution of 320 × 240. In order to simulate
the sleep-lab environment, there was no visible lighting in the
filming room and the subjects were partially covered by a sheet.
The experimental data were collected from two subjects with
three main postures (i.e., lying on the back, lying on one side
facing the camera, and lying on the other side with their back
to the camera). The data were collected on different days, from
multiple camera positions, with the subjects wearing different
clothing. The activities, such as normal breathing, obstructive
apnea, and body movement, were simulated by the subjects.
Furthermore, one of the subjects has shallow breathing patterns.
To produce a reference standard, the experimental video con-
tents were manually marked by a human observer who defined
all motion events except for deep breathing events, including
the frame numbers of the beginning and end of each event. The
deep breathing activity is marked as normal breathing.

The clinical evaluation system is installed in the sleep lab
of the Lincoln County Hospital. The video system contains
three IR cameras: two wall-mounted cameras on each side of
the bed targeting on the upper body of the patient from dif-
ferent angles, and one on the ceiling capturing the full body
view. In these experiments, the wall-mounted cameras were
used. Three symptomatic subjects (one severe and two moder-
ate) and six nonsymptomatic subjects were recruited to spend
one night sleeping in the sleep lab for 8 h video recording. For the

Fig. 6. Experimental results of the simulated data: action classification out-
come and reference standard.

symptomatic data, five video clips are randomly sampled from
the 8 h recordings of the severe OSA patient; four video clips
are randomly sampled from the moderate OSA sufferers (two
from each). Each clip lasting 15 min, containing 22500 frames.
Six video clips are randomly sampled, one from each of the
nonsymptomatic subjects. To produce a reference standard, the
data were manually marked by the author, who is trained by the
medical experts from the Lincoln County Hospital to identify
apnea episodes.

The output of the algorithm is a list of apnea and body move-
ment episodes, each with the associated beginning and end frame
numbers. These episodes are compared to the reference stan-
dard. We define an event to be correctly recognized if the ma-
jority of frames (> 85%) covered by the estimated event have
the correct labeling. Fig. 6 illustrates the classification process
on the simulation dataset.

Fig. 7 shows the quantitative classification results in the form
of a confusion matrices [24], [35], for both datasets. The rows
represent the reference standard, the columns the algorithm’s re-
sults. On the simulation dataset, the diagonal average of the con-
fusion matrix is 95.5%, demonstrating that the method achieves
high accuracy in recognizing apnea episodes and body move-
ments. We observe that the method misses apnea episodes oc-
curring directly after a body movement episode, as shown in
video clip 8, as it segments temporally contiguous episodes as
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Fig. 7. Confusion matrix of action classification on (a) Simulated data.
(b) Clinical data.

Fig. 8. Template matching examples. Each row contains the raw image I ,
activity map A, online constructed action template T , matching result at a given
time step (yellow: ∼ T ∧ A; blue: T∧ ∼ A; white: T ∧ A). The upper three
rows are apnea episodes, showing relatively low matching levels; the lower three
rows are body movement episodes.

one. In practice, this scenario is implausible as apnea does not
occur when the patient is awake, and body movement indicates
waking up. On the other hand, if minor body movements hap-
pens right after an apnea episode (e.g., in video clip 11, and
frequently in the clinical data), the method classifies the entire
event as an apnea episode. In such cases, the human observer
also defines the entire session as an apnea episode.

For the clinical dataset, the diagonal average is 94%, demon-
strating high accuracy in recognizing apnea and body move-
ments episodes for the real clinical data. It is worth noting
that the nonsymptomatic patients may experience some apnea
episodes (a normal occurrence), and some such episodes were
identified.

Some template matching outputs for the clinical dataset are
shown in Fig. 8.

a) Classification of symptomatic and nonsymptomatic sub-
jects: The apnea–hypopnea index is generally used for evalu-
ation of the severity of OSA in PSG studies, and is calculated

TABLE II
VAHI VALUES

as the average number of apneas (airflow during breath reduced
by >90%) plus hypopneas (airflow during breath reduced by
between 50% and 90%), per hour of sleep. It is normal for the
nonsymptomatic subjects to have a few apnea episodes during
sleep, and generally the pulse oximetry traces of the nonsymp-
tomatic subjects also show a small number of oxygen desat-
uration episodes (ODI<5 h−1). The distinction between the
symptomatic subjects and nonsymptomatic subjects is that the
number of apnea episodes is considerably higher for the former
(the greater the number is, the more severe the OSA patients
suffer).

Apart from experiments on classification accuracy of indi-
vidual event-based recognition, we further tested subject-based
classification performance. We report the number of abnormal
episodes detected in individual clinical video clips, to show that
the proposed algorithm is able to calculate an index v (VAHI)
which reflects the severity of the subject OSA: see Table II. We
treat detected deep breathing episodes as potential hypopnea
events, and sum the number of apnea episodes, a, and 0.5×the
number of deep breathing episodes, d, and divide the total by
the ratio of the length of the video clip to an hour, l

v =
a + 0.5d

l
. (20)

Table II shows that the VAHI values of the symptomatic video
clips are distinct from the nonsymptomatic ones. Using Spear-
man’s rho statistical analysis, the VAHI values are significantly
correlated to the OSA diagnosis generated by pulse oximetry
device (p = 0.002). In the binary classification of the symp-
tomatic and nonsymptomatic video, the VAHI values are highly
correlated to the OSA diagnosis (p < 0.001) based on Spear-
man’s rho statistical analysis. In one clip, a nonsymptomatic
subject had a disturbed sleep and showed a number of body
movement episodes and nine apnea episodes (of which five are
minor body movements but misclassified as apnea episodes, and
the other four are overbreathing episodes; this is normal as noted
previously).
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IV. CONCLUSION AND DISCUSSION

We have presented a novel approach to detect breathing sig-
nals and to recognize abnormal breathing activity from IR video,
and have analyzed the method in identification of episodes of
OSA . The technique runs in real time, is robust to occlusion
by a standard hospital bed cover or sheet, variances in patterns
of breathing and subject appearance, and substantial changes
of camera view relative to the subject. This preliminary study
indicates that it has good performance on both the simulated and
clinical data. The algorithm uses a novel persistence luminance
model that helps to reinforce subtle breathing movements, an
activity level to segment the video, and a novel activity template
to classify motion events.

One limitation of the presented method is the number of
heuristically determined parameters of the algorithm. For future
work, we will investigate automated methods to determine sen-
sitive parameters values and adapt them to individual scenarios,
and potentially subjects. We also plan to augment video analysis
of human breath activity by adding audio analysis. In addition,
we would like to further investigate human sleep behavior by
combining the computer vision approach with a (contact-type)
EEG technique and exploring methods for using depth data ac-
quired from Kinect. A more extensive analysis with a wider
range of cameras and cross validation of clinical diagnosis is re-
quired to justify clinical trials and interventions. Furthermore, it
would also be interesting to apply the newly developed methods
to other breathing monitoring problems.
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