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Predicting and Evaluating the Effect of Bivalirudin
in Cardiac Surgical Patients

Qi Zhao, Thomas Edrich, Member, IEEE, and Ioannis Ch. Paschalidis∗, Senior Member, IEEE

Abstract—Bivalirudin, used in patients with heparin-induced
thrombocytopenia, is a direct thrombin inhibitor. Since it is a rarely
used drug, clinical experience with its dosing is sparse. We develop
two approaches to predict the Partial Thromboplastin Time (PTT)
based on bivalirudin infusion rates. The first approach is model
free and utilizes regularized regression. It is flexible enough to
be used as predictors bivalirudin infusion rates measured over
several time instances before the time at which a PTT prediction
is sought. The second approach is model based and proposes a
specific model for obtaining PTT which uses a shorter history of the
past measurements. We learn population-wide model parameters
by solving a nonlinear optimization problem. We also devise an
adaptive algorithm based on the extended Kalman filter that can
adapt model parameters to individual patients. The latter adaptive
model emerges as the most promising as it yields reduced mean
error compared to the model-free approach. The model accuracy
we demonstrate on actual patient measurements is sufficient to be
useful in guiding the optimal therapy.

Index Terms—Bivalirudin, extended Kalman filter (EKF), non-
linear optimization, pharmacokinetics, regression.

I. INTRODUCTION

B IVALIRUDIN antagonizes the effect of thrombin in the
blood clotting cascade, thereby preventing complications

from blood clotting. It is currently FDA approved for short-term
anticoagulation of patients undergoing cardiac catheterization
to prevent complications due to undesired blood clots [1]–[3].
Bivalirudin is infused as a “blood thinner” in patients who have
or are suspected of having blood clots or risk of blood clot-
ting and who have a contraindication to heparin. It is infused
continuously, and is eliminated via the kidneys and by plasma
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protease-metabolism. It affects the coagulation parameters Par-
tial Thromboplastin Time (PTT) and the International Normal-
ized Ratio (INR) in a dose-dependent fashion. Both measure the
ability of the blood to clot but while PTT is measured in seconds,
INR is a dimensionless number. PTT, in particular, is measured
in the lab by exposing the blood to a thrombogenic substance
and then counting the seconds until a blood clot is formed.

As a rarely used drug, bivalirudin is used more frequently in
the Intensive Care Unit (ICU) but the residents adjusting the
infusion rate may have little experience, resulting in overdos-
ing or underdosing. Adequate anticoagulation is necessary to
avoid the risk of clot formation, but overshooting increases the
risk of bleeding. There is considerable inter- and intraindividual
variability in the response to bivalirudin; it is challenging to
titrate the drug. Currently, only empirical titration of bivalirudin
based on clinical experience or a simple nomogram is used to
achieve desired anticoagulation [4]. For this reason, a mathemat-
ical model that predicts the PTT based on the past infusion rates
of bivalirudin following dose adjustment would be extremely
useful in guiding the optimal therapy.

In earlier works [5] and [6], we have built a simple one-
state linear system model to describe the effect of bivalirudin in
patients. The models were designed using MATLAB/simulink
(MathWorks, Natick, MA, USA) and default parameter identifi-
cation procedures. Motivated by this work, in this paper, we de-
velop two new methods to predict the PTT values based not only
on past bivalirudin infusion rates but also on a host of patient-
specific physiological variables that characterize coagulation,
renal, and liver function. The results we obtain substantially
improve accuracy compared with our earlier work.

Our first method is model free, in the sense that a specific
model does not need to be constructed in advance, and lever-
ages regularized and kernelized regression. With uniform sam-
pled data, standard time-series analysis methods (e.g., ARX,
ARMAX models [7]) could have been a viable alternative. In
our problem, however, we encounter highly nonuniform sam-
pled data which challenge the standard methods, hence, our use
of regularized regression. Our method is purely data driven and
requires no explicit model to explain how bivalirudin affects
PTT. It is flexible enough to use several samples of bivalirudin
infusion rates from the immediate past in order to predict the
current PTT values. Since we use a rich set of predictors, we
devise a regularization approach that can eliminate unnecessary
predictors and regress on a reduced predictor set so as to avoid
overfitting.

Our second method develops a more complex explicit dy-
namic state-space system model than the one developed in [5]
and [6]. This new model takes into account the elimination of
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bivalirudin by the kidney and liver. We identify the model pa-
rameters by formulating a nonlinear optimization problem that
minimizes the �2 norm of prediction error over a training set of
measurements. As we mentioned before, we only have highly
nonuniform sampled real data. Furthermore, the dosage of Bi-
valirudin given to patients should be carefully titrated to ensure
patient safety. As a result, we cannot observe PTT values in
response to arbitrary dosage. This suggests that canonical state-
space system identification techniques (e.g., adaptive system
identification [8], subspace state-space system identification [9])
are not applicable.

The nonlinear optimization problem we formulate is solved
by leveraging quasi-Newton methods. The dynamic system
model we obtain performs only somewhat worse than the model
free approach, even though it uses a shorter history of past mea-
surements. Building on this model, we develop an adaptive on-
line algorithm based on the extended Kalman filter (EKF) that
can adapt the model parameters to individual patients. The al-
gorithm starts from population-wide optimal parameters and,
as it observes the inputs and outputs, modifies the model pa-
rameter values to better fit an individual patient. This adaptive
model outperforms the model-free method in terms of average
prediction error, despite using a shorter history of the past mea-
surements. This confirms the empirically known considerable
individual variability in the response to bivalirudin. Further, with
the adaptive model, the per-patient error variability is substan-
tially reduced compared to the population-wide dynamic system
model and it is on par with the corresponding error variance of
the model-free method.

The approaches we put forth in this paper are general and can
be applicable to a host of related problems. As ICUs and hospital
wards accelerate the digitization of patient records, tremendous
opportunities arise for automated and mathematically rigorous
patient monitoring and medication dosing. It is in such a frame-
work that the methods we develop can become useful.

The remainder of this paper is organized as follows.
Section II presents the model-free regularized regression
method. Section III presents the dynamic system model.
Section IV develops the EKF to achieve model parameter
adaptation. Finally, the concluding remarks appear in Section V.

Notation: We use bold letters to denote vectors and matrices;
typically, vectors are denoted by lower case letters and matrices
by upper case letters. The vectors are assumed to be column
vectors unless explicitly stated otherwise. For economy of space,
we write x = (x1 , . . . , xn ) for the n-dimensional column vector
x ∈ Rn . Prime denotes transpose, ‖ · ‖ denotes the Euclidean
norm, 0 denotes a vector or matrix with all components set to
zero, and I is the identity matrix.

II. REGULARIZED REGRESSION

In this section, we present our first—“black box”—approach.
The idea is to use regression with appropriate function regular-
izers that can help avoid overfitting. We start with some prelim-
inary material on regularization and then describe the features
we use and the results we obtained.

A. Preliminaries

For completeness and to establish our notation, we review the
standard material on regularized regression from [10] and [11].
Let x ∈ Rp denote the vector of features or predictors and y ∈ R
the output or response. Suppose we are given a training set
(xi , yi), i = 1, . . . , N , and we are interested in selecting a func-
tion f : Rp → R from some space H so that it approximately
holds yi ≈ f(xi) over the training set. To that end, we can adopt
a loss function L(y, f(x)) that quantifies the quality of the fitting
and solve the optimization problem

min
f∈H

{
N∑

i=1

L(yi, f(xi)) + λG(f)

}
(1)

where G(f) is a regularization term that penalizes functions
from H which are not smooth enough, and λ is a parameter
that determines the contribution of the penalty term. The purpose
of the regularization term is to induce smoother functions, and
thus help avoid overfitting. The parameter λ can be selected by
cross validation as we will explain later.

An important special case concerns functions that live in a so
called reproducing kernel Hilbert space HK . For some (positive
semidefinite) kernel function K(x, z),x, z ∈ Rp , written as

K(x, z) =
∞∑

j=1

γjφj (x)φj (z)

where φj (·) are basis functions (e.g., polynomial, Gaussian,
cosine, etc.) and the scalars γj ≥ 0 satisfy

∑∞
j=1 γ2

j < ∞, the
functions f ∈ HK can be written as

f(x) =
∞∑

j=1

cjφj (x).

The regression problem (1) can now be written as

min
f∈HK

{
N∑

i=1

L(yi, f(xi)) + λ‖f‖2
HK

}
(2)

where the regularizer is the norm in HK defined as ‖f‖2
HK

=∑∞
j=1 c2

j /γj . It can actually be shown that the solution to this
problem has the form [11]

f(x) =
N∑

i=1

αiK(x,xi) (3)

and, in light of this form, finding the parameters αi amounts
to solving a finite-dimensional optimization problem. If in fact
one assumes a nice structure for the loss function, e.g., squared
loss L(y, f(x)) = (y − f(x))2 , then there are very efficient al-
gorithms for finding the αi . In the case of squared loss, all we
need to do is solve a simple convex unconstrained quadratic
optimization problem which admits a closed-form solution.

The choice of the kernel is important but very much de-
pendent on the particular application one has to tackle. In our
problem, a polynomial kernel performed better than alternatives.
A polynomial kernel is of the form K(x, z) = (x′z + 1)d , for
x,y ∈ Rp and some integer d, which is the sum of all monomials
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Fig. 1. Inputs (predictors) and the output (response) of the regression engine.

∏p
i=1 x

dx
i

i z
dz

i
i with dx

i , dz
i = 0, 1, . . . , d such that

∑p
i=1 dx

i ≤ d
and

∑p
i=1 dz

i ≤ d.

B. Predictors

In our problem, we have clinical data from 233 patients.
The key quantity (response) we would like to predict is the
PTT yi(t) of each patient i at each time t. As predictors, we
include 11 key physiological variables sampled over M consec-
utive time instants t > t − τ1 > · · · > t − τM −1 where τm for
m = 1, . . . ,M − 1 denote the time lags between the consecu-
tive measurements. These time lags (given in days) are included
as the 12th predictor.

The 11 physiological variables are:
1) Bival rate (mg/kg/h): the weight-based bivalirudin injec-

tion rate.
2) GFR (mL/min): the glomerular filtration rate, reflecting

the ability of the kidneys to eliminate bivalirudin. De-
creased GFR would increase the serum level of bivalirudin
and the PTT in an approximately linear fashion [12].

3) PTT (s): last measured PTT value.
4) INR (unit-less): the last measured INR value—a coagula-

tion time that is distinct, but associated with the PTT. It
increases as the serum level of bivalirudin increases.

5) SGOT (units/L): the serum glutamic oxaloacetic transam-
inase, and

6) SGPT (units/L): the serum glutamic pyruvic transaminase.
Increased SGOT and SGPT suggest liver dysfunction and
decreased production of clotting factors, thus, increasing
the value of PTT. Since the liver produces clotting factors,
liver dysfunction will increase the PTT.

7) TBILI (mg/dL): total bilirubin, a “waste product” nor-
mally eliminated by the liver. In liver dysfunction, this is
positively associated with a rising PTT.

8) ALB (g/L): Albumin, which is reduced in the case of liver
failure and is therefore associated with a rising PTT.

9) PLT (K/mcL): Platelet count. Platelets help form blood
clots with clotting factors from the liver. They are utilized
when a clot is formed. A decreasing platelet count can

indicate ongoing clotting with consumption of clotting
factors, thus, elevating the PTT and INR.

10) HCT (%): Hematocrit. HCT is the volume percentage of
red blood cells in the blood. When patients loose blood
during operations and other nonoperative bleeding, then
fluids such as normal saline are provided to make up for
the blood volume lost. This, however, lowers the HCT.
At the same time, the added volume dilutes the clotting
factors in the blood and causes PTT and INR to increase.

11) FIB (mg/dL): Fibrinogen. This protein helps produce clots
and its decreased concentration may indicate that clotting
is occurring. It follows that clotting factors are being de-
pleted which will cause elevated PTT and INR.

Let now xph
i (t) ∈ R11 denote the vector containing the 11

physiological variables presented previously for patient i at time
t. Note that xph

i (t) contains PTT and INR values at time t − τ1 .
To predict yi(t), we will use the predictor vector

xi(t) = (xph
i (t), τ1 ,x

ph
i (t − τ1), . . . , τM −1 ,x

ph
i (t − τM −1))

(4)
that is, M consecutive measurements of xph

i (t) and the cor-
responding time lags which form a (12M − 1)-dimensional
vector (see Fig. 1).

Our regression engine uses a polynomial kernel K(x, z) =
(x′z + 1)d which can be written in terms of its (orthonornal)
eigenfunctions, say as K(x, z) =

∑J
j=1 φj (x)φj (z), where J

is the number of eigenfunctions. For our polynomial kernel, it
holds J =

(12M −1+d
d

)
. The response function takes the form

f(x) =
∑J

j=1 cjφj (x). We write φ(x) = (φ1(x), . . . , φJ (x)).
We formulate a slightly different problem than (2) in that we
use the so-called elastic net penalty [13]. More specifically, we
minimize over the coefficients c = (c1 , . . . , cJ ) the expression

N∑
i=1

∑
ti

[yi(t) − c′φ(xi(t))]2 + λ1

J∑
j=1

c2
j + λ2

J∑
j=1

|cj | (5)

where N henceforth represents the number of patients in the
training set and the summation over ti is over the time instances
in which we have measurements for those patients. The differ-
ence with (2) is the addition of a penalty term equal to the �1
norm of c. This is done to induce sparsity and eliminate features
that are “redundant” and not helpful in predicting yi(t). In our
experiments, we found that it was important to include such a
sparsity-inducing penalty especially because we use multiple
time instances from the past to predict the current PTT value.
Notice that the objective function in (5) is convex, thus, this
problem can be easily solved using the standard optimization
techniques. The parameters λ1 and λ2 can be tuned using cross
validation as we will describe next. We also note that before
solving (5), we standardized the predictors to have zero mean
and unit variance.

C. Results

We randomly split the data into three sets of equal size. The
first two sets are used for training and the third set for testing.
To select the optimal values for the parameters λ1 and λ2 in
(5), we use leave-one-out sixfold cross validation applied to the
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Fig. 2. Performance of the regularized polynomial regression for d = 1 and d = 2 for different numbers M of time series inputs in the test set.

training set. More specifically, we subdivide the training set into
six equal parts. For a discretized collection of (λ1 , λ2), we train
[i.e., solve (5)] on the first five parts and use the sixth part to
compute the prediction error [i.e., the first term in (5)]. This is
done for each one-sixth of the data left out of the training set and
used only for validation and we then compute the average of the
corresponding six prediction errors. We use this average value
to select the best (λ1 , λ2). With values of (λ1 , λ2) now fixed,
we resolve (5) on the whole training set and determine which
cj ’s are (close to) zero. We eliminate the corresponding features
and then solve once more a simple regression problem [i.e., a
problem with just the first term in (5)] on the whole training set
using only the features that were not eliminated. This yields a
final vector c and a prediction

ŷi(t) = c′φ(xi(t)) (6)

for each patient i and time t. The reason for performing a simple
regression with the noneliminated features is that (5) naturally
biases coefficients cj toward smaller values.

For performance evaluation, we use two performance metrics.
The first is the root mean square error (RMSE), which for patient
i is defined as

RMSEi =
√

1
Ti

∑t
T i
i

t=t1
i
(ŷi(t) − yi(t))2 (7)

where t1i , . . . , t
Ti
i are the time instants at which we make a

PTT prediction for patient i.1 We define RMSE for the whole
population of patients as the average per patient RMSE, i.e.,
RMSE = 1

Nt

∑Nt

i=1 RMSEi , where Nt is the number of patients
in the test set. We also define σRMSE to be the standard deviation
of the RMSEi values, which captures the variability of RMSEi

from RMSE.
To capture a notion of “relative” error, we also compute the

normalized root mean square error (NRMSE) defined for each

1We note that since we use a history of M − 1 measurements for the pre-
diction at time t, we only make predictions starting from the M th available
measurement for each patient.

TABLE I
PERFORMANCE OF THE REGULARIZED POLYNOMIAL REGRESSION (TEST SET)

d = 1 d = 2
RMSE 11.54 18.69
σRMSE 4.04 5.37
NRMSE 21.44% 36.58%
σNRMSE 6.33% 9.82%

patient i as

NRMSEi =
√

1
Ti

∑t
T i
i

t=t1
i
[(ŷi(t) − yi(t))/yi(t)]2 . (8)

As with the RMSE, we define the population-wide NRMSE as
the average of NRMSEi over the patients and σNRMSE as the
standard deviation of the NRMSEi values.

Starting with the prediction in (6), we explored several in-
stances of polynomial kernels corresponding to various degrees
d (= 1, . . . , 4) and also varied the length M which determines
how far back in time we go to define the feature vector. We
used again sixfold cross validation over the training set and plot
the results in Fig. 2 for kernel parameters d = 1 and d = 2, re-
spectively, as these were the ones that yielded the best results.
From the plots, it follows that for each case there is an optimal
value for M , which is M = 5 for d = 1 and M = 4 for d = 2.
This makes intuitive sense. As we increase M , the performance
initially improves since the predictors provide more information
but after some value of M , the performance deteriorates due to
overfitting.

Finally, and for these two kernels and corresponding optimal
M values, we evaluate the performance of the prediction given
by (6) on the test set, i.e., the one-third of the data isolated from
the training set in the beginning. Table I reports the results. It
follows that the linear kernel performs better. We should note
that the quadratic kernel achieves slightly less RMSE than the
linear kernel on the training set (cf., Fig. 2) but apparently it
overfits and the performance is not as good in the test set.

In summary, a key advantage of the regression method
we presented in this section is that it does not require any
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Fig. 3. Single-state linear model includes a gain, 1/β3 , representing the elim-
ination time constant of bivalirudin from the body. The constant β2 provides
for the translation from serum concentration to the site-effect (PTT).

understanding of the mechanism by which bivalirudin affects
PTT values for patients. The next section explores whether a
specific model can provide better performance.

III. EXPLICIT DYNAMIC SYSTEM MODEL

This section introduces a multiple input single output dynamic
system model that attempts to explicitly account for the way
bivalirudin affects PTT values in patients.

A. Model

The dynamic system model is shown in Fig. 3. It seeks to
represent how bivalirudin acts in a single generic patient and
uses as inputs the exact same physiological variables used as
predictors in Section II. In the absence of established quantita-
tive models to relate most of the input variables to PTT, a simple
linear model was assumed. Moreover, most of these variables
change slowly over time and were measured infrequently (e.g.,
once per day) in the data we analyzed. As a result, they were
modeled without a dynamic component.

To make things more precise, in this dynamic system, there
are 11 inputs which are denoted by ui(t), i = 1, . . . , 11, and
correspond to the physiological variables of Section II. We note
that for ease of notation, we will suppress the patient identifier
in our generic model description. The input u1(t), in partic-
ular, denotes the bivalirudin infusion rate, and the remaining
inputs correspond to the physiological variables 2–11 detailed
earlier. These inputs capture the patient’s indicators of the renal

and liver function. There is only one output—the PTT value—
which is denoted by y(t). There is also a single-state variable
denoted by x(t). The model has 14 unknown parameters: 13
of which correspond to the various gains and are denoted by
βi, i = 1, . . . , 13. The initial condition of the system is the 14th
unknown parameter and is denoted by x(0). We will refer to
z = (β1 , . . . , β13 , x(0)) as the parameter vector. In order to be
consistent with medical intuition and to avoid overfitting, upper
and lower bounds will be introduced for some of the parameters.

Let u(t) = (u1(t), . . . , u11(t)). The system dynamics can be
expressed as follows:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (9)

where A = −β3 ,B = [β1 0 · · · 0],C = β2 , and D =
[0 β4 · · · β13 ]. Clearly, this is a linear time invariant (LTI) dy-
namic system. The challenge is that we only have the sampled
input, u(t), and observation values, y(t), at certain times t for
each patient. It is therefore needed to translate the continuous-
time system dynamics to discrete-time dynamics.

Using a standard conversion from continuous to discrete time
dynamics in LTI systems (see, e.g., [14]) we can write

x(t + τ) = eAτ x(t) +
∫ t+τ

t

eA(t+τ−s)Bu(s)ds (10)

where in our case eτ A = e−β3 τ . Assuming u(s) = u(t) for
s ∈ [t, t + τ ] and after some algebra, we arrive at the following
discrete-time dynamics:

x(t + τ) = e−β3 τ x(t) +
β1

β3
(1 − e−β3 τ )u1(t)

y(t) = β2x(t) +
∑13

i=4 βiui−2(t). (11)

These equations characterize a discrete-time LTI system for
which we have a history of the sampled input and output values.
Next, we describe how the training set can be used to identify
the unknown parameters, namely, the initial condition x(0) and
the parameters βi, i = 1, . . . , 13.

B. Parameter Identification

As we did in Section II, we randomly split our dataset of 233
postcardiac surgical ICU patients into a training set correspond-
ing to 2/3 of the total (155 patients) and a test set corresponding
to one-third of the total (78 patients). We will use the former
to identify the unknown system parameters and the latter to
evaluate the performance of the resulting model.

Let us use a subscript j to denote the model primitives, i.e.,
the state xj (t), output yj (t), and inputs uj (t) for each patient
j = 1, . . . , N , where N denotes the number of patients in the
training set. To distinguish between measurements of yj (t) and
predictions based on the system dynamics [cf. (11)], we use
yj (t) for the former and ŷj (t) for the latter. Suppose for each

patient j, we have Tj measurements at times t1j , . . . , t
Tj

j , where
we adopt the convention t0j = 0 for all j. Using the discrete-
time system dynamics from (11), we formulate the following
nonlinear optimization problem in order to identify the unknown
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Fig. 4. Illustrating the performance of the dynamic system model of Section III for a particular patient. The blue “o” represent predicted PTT values from our
model and the red “∗” represent actual measured values.

system parameters:

min
N∑

j=1

t
T j
j∑

t=t1
j

(ŷj (t) − yj (t))2

s.t. xj (tnj ) = e−β3 (tn
j −tn −1

j )xj (tn−1
j )

+
β1

β3
(1 − e−β3 (tn

j −tn −1
j ))uj,1(tn−1

j )

∀j = 1, . . . , N ; n = 1, . . . , Tj

ŷj (tnj ) = β2xj (tnj ) +
13∑

i=4

βiuj,(i−2)(tnj )

∀j = 1, . . . , N ; n = 1, . . . , Tj

βm ≤ 0, m = 1, 2, 3, 5, 7, 8, 9,

βn ≥ 0, n = 4, 6, 10, 11, 12, 13 (12)

where the decision variables are x(0)(= x(t0j ) for all j and
the parameters βi, i = 1, . . . , 13. One can easily substitute the
equality constraints into the objective function and obtain a
simpler nonlinear optimization problem with the only remaining
constraints being bounds on some decision variables. Using
counterexamples, it can be shown that the objective function
obtained in this manner is not convex in the decision variables.

Although a lot of methods exist for nonlinear optimization
problems, we used the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method [15], which is considered the most effective gen-
eral purpose quasi-Newton method. The quasi-Newton methods
are gradient methods of the form

zk+1 = zk + αkdk , dk = −Dk∇f(zk )

where f(·) denotes the objective function, zk the decision vari-
ables at the kth iteration of the method, αk is the stepsize at the
kth iteration, and Dk is a positive definite scaling matrix that
scales the gradient at the kth iteration. Rather than determining

TABLE II
OPTIMAL PARAMETERS VALUES

index name value
1 k dist 57.39
2 k coag 59.74
3 1/T 60.00
4 kGFR −2.65 × 10−7

5 kINR 0.77
6 kPTT 3.13
7 kSGOT 4.66 × 10−7

8 kSGPT 2.70 × 10−4

9 kTBILI 0.21
10 kALB −4.23 × 10−6

11 kPLT −7.59 × 10−8

12 kHCT −4.36 × 10−7

13 kFIB −4.16 × 10−8

14 x(0) 0.61

TABLE III
PERFORMANCE OF THE DYNAMIC SYSTEM MODEL

RMSE 14.65
σRMSE 6.2
NRMSE 26.42%
σNRMSE 11.04%

Dk by computing a Hessian and inverting it, which is com-
putationally expensive, the quasi-Newton methods recursively
estimate the inverse of the Hessian by using successive iterates
of zk and ∇f(zk ).

We solved (12) on the training set using BFGS and obtained
the optimal solution shown in Table II. To avoid getting stuck at
shallow local minima, which is possible in the absence of con-
vexity, we used a multistart approach, namely, we started BFGS
from multiple randomly selected initial points and selected the
best local minimum we obtained. Using the optimal parameters
from Table II, we evaluated the performance of the prediction
on the test set and obtained the results shown in Table III. It
can be seen that the performance is somewhat worse than the
one obtained with polynomial regression. This suggests that the
simple model we devised in this section does a decent job of
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Fig. 5. Illustrating the performance of the EKF algorithm for a particular patient. The blue “o” represent predicted PTT values from our model and the red “∗”
represent actual measured values. The top figure plots estimated and measured PTT and the bottom figure plots the running RMSE at each step. Additionally, the
blue-dot line marks the (time) average RMSE of the EKF for this patient while the green-dot line marks the (time) average RMSE of the population-wide dynamic
system model applied to this patient.

capturing the key effect of bivalirudin. It uses just a single state
and, as it can be inferred from (11), the prediction at time t de-
pends on the inputs u(t) at t, and the state-input pair, x(t − τ)
and u(t − τ) at the previous time instant t − τ . In contrast, the
best result with polynomial regression was obtained with a lin-
ear kernel but using a history of inputs going back 4 consecutive
time instants. One can of course devise a more complicated
model that uses more memory, but, we elected not to pursue this
direction in the interest of simplicity and taking into account
that the potential difference in performance that is to be gained
would not be big.

To further illustrate how well the predictor matches the mea-
sured values, we plot in Fig. 4 the predicted and actual PTT
values over time for a particular randomly selected patient.

We note that the solution shown in Table II is obtained from
a training set containing data from many patients and thus cor-
responds to optimal “population-wide” parameters. The signs
of these parameters are consistent with medical intuition. It can
be seen that some parameter values are quite small, yet, their
presence improves the dynamic model performance; eliminating
them will lead to worse performance.

In addition to providing a simple model that explicitly models
the effect of bivalirudin, the work in this section has additional
benefits. As we will see next, having an explicit model allows us
to adapt model parameters to better fit each individual patient.

IV. ADAPTIVE MODEL: EKF

In this section, we focus on an arbitrary individual patient and
seek a method to adapt the parameters of the model we proposed

1) Initialization:
a) Set ẑ0|0 = (β1, . . . , β13, x(0)) using the values
obtained by solving the population-wide problem
(12), and

b) set P0|0 = I.
2) Predict:

a) ẑk+1|k = ẑk|k;
b) Pk+1|k = APk|kA .

3) Update:
a) Kk+1 = Pk+1|kC (CPk+1|kC + σ2)−1;
b) ẑk+1|k+1 = ẑk+1|k + Kk+1(yk+1 − h(ẑk+1|k));
c) Pk+1|k+1 = (I − Kk+1C)Pk+1|k.

Fig. 6. EKF algorithm for recursively estimating model parameters for an
individual patient.

in Section III in order to better fit this particular patient. To
that end, we view the model parameters as the “states” of a
system and the output y(t) as a nonlinear function of that state.
We devise a recursive method to estimate the state. Due to the
nonlinearity of y(t), we use the EKF (see e.g., [16]).

Let us denote the state of the system by z =
(β1 , . . . , β13 , x(0)), which are exactly the model parameters
we want to estimate. We assume we have measurements of the
inputs u(t) and the PTT values y(t) over many time instants. We
will index these time instants by k, with k = 0 corresponding
to t = 0 and k = 1, 2, . . . , T corresponding to the time instants
t1 , . . . , tT at which we have measurements. (Notice we use the
same notation as in Section III but suppress the index j used
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Fig. 7. Illustrating the evolution of model parameter values z = (β1 , . . . , β13 , x(0)) during the course of EKF algorithm.

there to identify a patient.) We view the state z has been invariant
over time and not affected by noise, while the output y depends
on z but is subject to noise due to both the measurement noise
and model error. We can therefore write the (discrete) system
dynamics as

zk = zk−1

yk = h(zk ) + νk . (13)

In the above, h(·) is a known nonlinear function that expresses yk

as function of the parameter vector zk and uk ,uk−1 , . . . ,u0 , x0
as specified by the dynamics in (11). The random variable νk

represents the noise and we assume it is i.i.d. over time, zero
mean Gaussian, with variance σ2 , that is νk ∼ N(0, σ2) for
all k.

Let A = I, and C = ∇h′(zk ). The EKF algorithm is given in
Fig. 6, where “hat” denotes the estimate, P the error covariance,
and K the Kalman gain.

To demonstrate the effect of this algorithm, we randomly se-
lected a patient who has adequate sample data and applied the
EKF algorithm of Fig. 6 (using σ2 = 0.006). The results are
shown in Fig. 5. It is evident that after some initial steps, the
algorithm “learns” better values for the model parameters than
the ones in the population-wide model and produces better pre-
dictions for this particular patient. The model parameter values
for the same patient during the course of the EKF algorithm are
shown in Fig. 7. It can be seen that they do “adapt” over time
from the initial population-wide values to values that are more
appropriate for this patient.

To test the performance of the algorithm on a larger set of pa-
tients, we selected patients with enough samples; in particular,

TABLE IV
PERFORMANCE OF THE EKF ALGORITHM

RMSE 8.61
σRMSE 3.28
NRMSE 16.55%
σNRMSE 6.90%

more than 60 data points. There are 19 out of 78 patients in our
test data set with more than 60 data points. We applied the EKF
(using again σ2 = 0.006) with the optimal population-wide pa-
rameter values as our initial point. By doing so, the “warming
process” of the EKF algorithm can be reduced significantly and
we have a decent model even at the early steps; the latter being
important for patient safety. In contrast, if we use an arbitrary
initial point, the EKF takes at least 25 steps for the parameter
values to stabilize. Moreover, the model error in these early
steps becomes quite large which is unacceptable in an eventual
use of our system in clinical practice.

Table IV reports average results from the EKF algorithm
applied to the patients in the reduced test set of 19 patients de-
scribed in the previous paragraph. The RMSE and NRMSE are
computed on a per-patient basis and then averaged over these
patients. By comparing Tables III and IV, it follows that the EKF
algorithm significantly improves the performance. The NRMSE
improves by 37% (9.87% in 26.42%) while the variance is re-
duced by 38%, which is significant. This confirms the significant
individual patient variability in response to bivalirudin which
has been only empirically observed.

Furthermore, the EKF algorithm leads to improved per-
formance even in comparison to the model-free method of
Section II which, as we have discussed, uses a longer history
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of past measurements. In particular, NRMSE improves by 23%
while the variance stays about the same.

V. CONCLUSION

We have developed two main approaches to predict the effect
of bivalirudin in cardiac surgical patients. The first approach is
model free and leverages regularized regression. We find that
a linear kernel performs best and that the corresponding set of
predictors uses a collection of physiological variables charac-
terizing bivalirudin infusion rate, several coagulation indicators,
and indicators of the renal and liver function sampled over a set
of four time instances before the time at which a PTT prediction
is sought. Namely, this model-free method uses a history of four
prior feature vectors to make a PTT prediction.

Our second approach is model based and constructs a spe-
cific model that captures how bivalirudin affects PTT values.
The model uses a shorter history of prior feature vectors than
the model-free approach in order to arrive at a prediction. The
model parameter identification is done by solving a nonlinear
optimization problem over a training set. The model-based ap-
proach produces a somewhat worse performance than the model
free one, which is understandable given the shorter history used.

The model-based approach, however, enables the develop-
ment of an adaptive EKF algorithm that can adapt the model
parameters to individual patients. This approach produces the
best average performance and a variance which is almost identi-
cal to the model-free method. Compared to the population-wide
optimal dynamic model, the NRMSE is reduced by 37% and
the standard deviation of the per-patient NRMSE is reduced by
38%. This shows that patient-specific models have significant
advantages over population-wide models.

The mathematical models and prediction approaches de-
scribed in this paper may provide a better reference to guide
the optimal therapy in cardiac patients in need of bivalirudin. In
addition, such mathematical ideas and methods may be useful
to test medication dosing strategies and may provide a mathe-
matical mechanism for development and testing of nomograms.
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