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Abstract

This paper describes an improved electrical impedance spectroscopy (EIS) stimulus paradigm, 

based on dual-energy pulses using the stochastic Gabor function (SGF) that may more sensitively 

assess deep brain tissue impedance than current single-pulse paradigms. The SGF is a uniformly 

distributed noise, modulated by a Gaussian envelope, with a wide-frequency spectrum 

representation regardless of the stimuli energy, and is least compact in the sample frequency phase 

plane. Numerical results obtained using a realistic human head model confirm that two sequential 

SGF pulses at different energies can improve EIS depth sensitivity when used in a dual-energy 

subtraction scheme. Specifically, although the two SGF pulses exhibit different tissue current 

distributions, they maintain the broadband sensing pulse characteristics needed to generate all the 

frequencies of interest. Moreover, finite-difference time domain simulations show that this dual-

energy excitation scheme is capable of reducing the amplitude of weighted current densities 

surface directly underneath the electrodes by approximately 3 million times versus single 

stimulation pulses, while maintaining an acceptable tissue conductivity distribution at depth. This 

increased sensitivity for the detection of small, deep impedance changes might be of value in 

potential future EIS applications, such as the portable, point-of-care detection of deep brain 

hemorrhage or infarction.

Index Terms

Electrical impedance measurement; pulse generation; spectral analysis; stochastic systems

I. Introduction

IN this paper, we show that a new type of pulse excitation, the dual-energy pulse based on 

the stochastic Gabor function (SGF) [1], is optimal for electrical impedance spectroscopy 
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(EIS) of deep brain parenchymal structures. Results from our group and others have shown 

that EIS has potential applications in point-of-care testing for rapid, affordable, and portable 

detection, assessment, and monitoring of patients with intracranial hemorrhage (ICH), stroke 

[2]–[5], and other forms of acute brain injury [6]–[8]. Cerebrospinal fluid (CSF) and in situ 
blood composed mainly of salt water and accounting for much of the brain’s volume have 

baseline low resistance to current flow. The edema associated with acute (nonhemorrhagic) 

tissue injury, and the clot associated with acute ICH, cause complex—but distinguishable 

and localizable—frequency-dependent impedance changes, proportional to the size and 

composition of the intracranial lesion [9].

Currently, there is no portable, noninvasive monitoring device capable of detecting ischemic 

stroke, bleeding or rebleeding for ICH patients. Computed tomography (CT) and magnetic 

resonance imaging (MRI) are currently the first-line modalities for the diagnosis of acute 

brain injury—including both hemorrhagic and nonhemorrhagic lesions—but are limited in 

their battlefield and sport field availability. Moreover, even when portable CT scanners are 

available at forward unit hospitals, they remain a limited resource with undependable 

technical support and few contingency options for equipment breakdown, and cannot be 

deployed by corpsmen in the field for emergent triage of individuals with (otherwise 

unapparent) subdural and epidural hematomas.

Unfortunately, EIS is maximally sensitive to impedance changes at the electrode–skin 

interface [9], and is relatively insensitive to brain parenchymal changes due to the limited 

penetration of the probe current. Tissues in the human head are dispersive, and the EIS 

current density distribution depends on the sensing stimulation frequency. Tissues such as 

bone and CSF tend to divert currents entering the brain because their conductivities are very 

different compared to brain parenchyma. In order to measure the EIS signal, different 

approaches have been proposed. Because a sinusoidal sensing pulse at a single, individual 

frequency, however, might not fully characterize small differences in the dielectric constant 

between different tissues, alternative pulse generation schemes have been developed, mainly 

using multitone or frequency-sweep methods [9]. Indeed, our group is currently using a 0–

50 kHz “white noise” stimulation pulse for preliminary human studies of patients with 

hemorrhagic and nonhemorrhagic stroke [7], [8], [10].

Because frequency difference imaging has the potential to further improve sensitivity for the 

detection of deep intracranial lesions, we propose an ideal probe current design based on the 

concept of dual energy. In CT scanning, dual energy is a relatively recent imaging technique 

that uses two different X-ray energies (typically 140 and 80 kV) in a single CT exposure. 

Bone or iodinated contrast material can be segmented based on their spectral properties, and 

can be subtracted to create an angiographic image [11].

In this paper, we describe—both in theory and with numerical examples—the design of a 

dual-energy pulse for EIS, specifically based on the SGF [12]. The SGF is a uniformly 

distributed noise modulated by a Gaussian envelope. Its behavior and propagation have been 

studied with an electromagnetic wave solver or finite-difference time domain (FDTD) [12]. 

The Gabor transform has also been proposed as a probe signal in impedance estimation for 

applications such as fault detection, due to the fact that it has an optimal localization 
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property in both the time and frequency domains [13]. The SGF was chosen as the basis for 

our dual-energy pulse stimulus because it reaps the benefits of a very wide-frequency 

bandwidth, while retaining a nonnarrow pulsed envelope in time.

The proposed method consists of probing using two sequential SGF pulses with two 

different principal energies (see Fig. 1). The Fourier transforms of each of the weighted SGF 

current stimulation pulses are subtracted, and the Fourier transforms of each of the weighted 

synchronous voltage responses are also subtracted. The resulting Fourier-transformed 

subtracted input and output values are then deconvolved to estimate the complex impedance 

as a function of frequency.

Our results show that the depth of penetration of two different SGF pulses, with two 

different principal energies, will vary in the lossy media [14] of the human head. Although 

these two different SGF pulses exhibit different tissue current distributions, they each 

maintain the broadband sensing pulse characteristics needed to stimulate all the frequencies 

of interest. In this paper, we present images of pulse penetration model using the SGF dual-

energy subtraction scheme in a realistic human head simulation. By applying the weighted 

SGF dual-energy subtraction methodology, EIS sensitivity decreases relatively in regions 

that would otherwise receive the highest current density (e.g., skin, subcutaneous fat), but 

increases relatively in what would otherwise be low-current density regions, such as the 

brain parenchyma.

II. Theory

The SGF (see Fig. 2) is defined as [15]

(1)

where n ∈ [1 : N], ξn is a random Gaussian white noise process uniformly distributed in [−1; 

1], and  is the Gaussian function. The ξn set is valid only if the resulting SGF 

is zero mean (i.e., 〈λn〉 = 0). The power spectral density [16] of the SGF is

(2)

where k ∈ [1 : N] is the frequency variable and  is the discrete Fourier transform, or FFT, 

of the autocorrelation function of the white noise process ξn;  is the FFT of . The 

whitening of the Gaussian in (1) flattens the frequency response. The short-time Fourier 

transform is used to determine the sinusoidal frequency and phase content of a signal inside 

a time window, following the spectral changes of the signal over time. The short-time 

Fourier transform of the SGF is
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(3)

where m ∈ [1 : N] specifies the position of the time window and wn is the time window 

function such that . By selecting a Gaussian, , as the window function,

(4)

and the short-time power spectral density becomes

(5)

The SGF has a Gaussian envelope in the time domain; its frequency representation (see Fig. 

2, bottom) is very uniform. One of the main advantages of the Gabor functions is their time-

frequency localization. This allows for the SGF excitation signal in broad bandwidth and 

fast impedance measurement. In this section, the SGF was studied in terms of localization in 

the time domain, which can be measured by estimating the time-frequency resolution to 

select the value for s, or pulse width of the SGF [15]. A more uniform sampling in frequency 

corresponds to a source excitation with lower concentration in the sample frequency phase 

plane [17]:

(6)

where ε is an arbitrarily small constant introduced for regularization. Equation (7) has a 

form similar to the entropy function, E (pi) = −pi log (pi); however, the resulting quantity is 

an estimate of frequency concentration when the Hermitian vector Γn is transformed into a 

real vector using the square norm.

The propagation of currents inside the human head can be expressed by the following set of 

quasi-static approximation [18]:

(7)

with the assumptions that the induced electric field is curl free, or equivalently that skin 

effect and wave propagation effects can be ignored. Assuming a time-harmonic electric 
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field, it is well known that in a lossy dispersive medium, the electric energy density in a 

point P ∈ (x0, y0, z0) in the medium [19] becomes

(8)

After discretizing and introducing the SGF with an external current applied along a direction 

v with power spectral densities Je,k = v℘k in (6) discretized, the local conductivity is

(9)

When applying two SGF pulses at different times and subtracting the effect of the two 

different local energies  and electric fields :

(10)

σP,k is not zero since the two SGF probing functions have different power spectral densities: 

, with different energies or variances (  and ) and two 

different states of the white noise ergodic process (ξn).

III. Numerical Simulations

The geometry from a previously developed [20] 1 × 1 × 1 mm3 resolution head model was 

adopted in the electromagnetic FDTD simulations with parameters presented in Table I. The 

overall simulated geometry dimensions were 170 mm in width, 217 mm in depth, and 238 

mm in height. Each tissue of the head model was modeled under the common assumption of 

linearity of the -field, nondispersive, isotropic medium, and heterogeneous space using a 

one-pole Debye–Drude model based on its histological properties [21]. The Debye–Drude 

dispersion model was defined as follows [22]:

(11)

where σ1 is the static ionic conductivity, ε∞ is the permittivity at field frequencies ωτ ≫ 1, 

ε0 is the permittivity of free space, Δε = εs − ε∞ is the magnitude of the dispersion, and εs is 

the permittivity at field frequencies ωτ ≪ 1.
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In the model, two standard EEG electrodes with 10-mm diameter were modeled with perfect 

electrical conductors (PEC) and were connected through PEC wires to a current source that 

generated the two SGF pulses: the lower energy SGF was defined with s = 12.8 and the 

higher energy with s = 128 both with Ns = 105. The weighted current density was defined as

(12)

where ,  are the current densities of the low- and high-energy SGF, respectively, with 

peak amplitude normalized to 1 A/m2. All components are shown at 500 kHz, and were 

computed using the chirp transform (e.g., the “czt” command in MATLAB) of the electric 

fields and of the current densities distribution. All electrical components were computed 

using commercially available software (XFDTD v. 7, Remcom Inc., State College, PA) 

based on the FDTD algorithm [23], [24]. The geometrical grid consisted of 1-mm3 uniform 

Yee cells [25]. The volume of the FDTD grid including the head model and the EIS 

electrodes was 4,642,730 Yee cells. The total size of the geometry, including the free space 

around the head model, was 323 × 373 × 323 mm3. Seven perfectly matching layers were 

used for boundary conditions in all simulations [26]. The timestep used to ensure FDTD 

Courant–Friedrich–Levy stability was 1.92 ps [23]. The computation times for both SGF 

stimuli were 5 min for Ns = 105, respectively, using an eight-core Dell Precision T7500 

desktop computer with 48 gigabyte of RAM on a C2070 graphics processing unit (Nvidia, 

Santa Clara, CA, USA) with 6-GB graphics memory.

IV. Results

FDTD simulations were performed to study the sensitivity or the current density of the 

proposed SGF dual-energy pulse in deep brain structures. Fig. 3 illustrates the distribution of 

the electric field magnitude  in the logarithmic scale (dB relative to 1 V/m) generated by 

the two different SGFs in a realistic head model [20] when used as a probe current pulse 

through the two EIS electrodes. The results are shown at 500 kHz in and around the head 

using two different values of the energy or variance s2 for the SGFs (top and bottom). The 

higher energy SGF was defined with s = 128 and the lower energy with s = 12.8 both with 

Ns = 105. The higher energy SGF pulse had a  peak located in the occipital electrode of 

580 V/m (∠3.5 10−6 deg). The lower energy SGF pulse had a twofold decrease in the 

peak of 207 V/m (∠3.1 10−6 deg) also located in the occipital electrode. Both the higher and 

lower energy SGF pulses had null of  located in the central spinal canal.

Fig. 4 shows the estimated conductivity (dB relative to 1 Ω) of all the tissues in the head at 

500 kHz, which was approximately the same when computed using all three pulsing 

schemes: higher, lower, and dual-energy SGF. Conductivity had an unbounded upper limit 

(i.e., Inf in MATLAB) in correspondence with the PEC material, where the electric field was 

null. Conductivity had null of σ located in the central spinal canal. The skin conductivity 
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was 0.4 S/m and white and gray matter σ was 0.1 S/m. Muscle had a conductivity of 2 S/m, 

cerebral spinal fluid 13 S/m, and bone 0.06 S/m.

The top of Fig. 5 shows how the profile of the weighted current density magnitude in (12) 

(center slice in dB relative to 1 A/m2) as the weighting between the two SGF functions 

varies between w = 0 and w = 1. For the case w = 1 (high energy), the current density in the 

skin peaks, whereas for the case w = 0 (low energy), the current density in the center of the 

brain parenchyma peaks. The optimal weighting of w = 0.2 is shown at the bottom of Fig. 5, 

where at this value the amplitude of the current density on the skin is minimum compared to 

any other values of w.

In Fig. 6 are shown the estimated magnitudes of the current density for cases of 1) high 

energy (left), 2) low energy (right), and 3) when w = 0.2 (center, optimal value). In the case 

of w = 0.2, there is maximal sensitivity to CSF and blood compared to the cases of high or 

low energy alone. The current density in low-energy SGF peaked at 2.4 104 A/m2 and high-

energy SGF peaked at 4.7 103 A/m2 located both in the occipital electrode. All current 

density magnitudes were null around the head model. Finally, the w = 0.2 case had a current 

density amplitude near the electrode of 3.1 10−6A/m2 or a reduction of approximately 3 

million times compared to a single SGF stimulation pulse after normalization. The CSF is 

clearly the tissue that has the highest current density magnitude that peaks at 0.02 A/m2.

V. Discussion

Using both the head model [20] and FDTD simulations [23], [24], we have shown that the 

proposed SGF dual-energy scheme results in improved sensitivity of EIS measurements of 

deep brain parenchymal impedance, compared to single stimulus methods, as the sensitivity 

is determined by the weighted current density [27].

This SGF dual-energy pulse scheme might provide a more accurate alternative to current 

“absolute frequency difference” and simple “linear frequency difference” EIS pulse stimulus 

paradigms, which subtract two single sinusoidal sensing pulses at two different individual 

frequencies to calculate impedance [28]. Unlike these frequency difference imaging 

methods, SGF dual-energy subtraction makes no assumptions regarding the shape of the 

impedance distribution as a function of frequency, i.e., in the dual-energy method, all 

subtractions are performed in frequency without requiring any interpolation.

The proposed dual-energy scheme might also be utilized to capture EIS measurements of 

events that occur in short time intervals, such as cardiac or respiratory monitoring 

applications. Given the properties of broadband and compactness, the SGF-based spectral 

impedance estimations are expected to be optimal for nonstationary measurements [12]. The 

use of broadband excitation also has precedent, and may provide faster and broader EIS 

estimation [9]. White noise EIS has been used to measure the dielectric properties of the cell 

membrane, and has achieved 1-ms measurements at 512 discrete frequencies, evenly 

distributed from 976.56 Hz to 500 kHz [29].

With regard to sampling strategies, sampling can be performed at the Nyquist rate. However, 

this method does not optimize the number of samples, which can be obtained by following 
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Landau’s approach of signal demodulation followed by a lower sampling rate [30], where 

the demodulation is specifically implemented for the case of noise amplitude modulation 

[31]. An alternative sampling approach that does not require demodulation can be achieved 

by periodically nonuniform sampling [32], [33] that results in an optimal average sampling 

period equal to the SGF’s bandwidth.

Energy, and hence power deposition, of our proposed multi-frequency method is larger than 

that of corresponding single- or dual-frequency methods, and is directly proportional to the 

excitation bandwidth, given that the SGF frequency spectrum is flat. Although heating of 

tissues is a theoretical possibility at very large bandwidths (and of course should be avoided 

as it may cause irreversible tissue damage), this is not a clinical concern at the lower, 0–50 

kHz frequencies (and which are currently implemented using a continuous “white noise” 

stimulus in existing prototype EIS devices approved for clinical trials). As to whether very 

high SGF bandwidths (>1 MHz) might generate heating, the answer is clearly strongly 

dependent on the total power deposition and the current density (inversely proportional to 

electrode area) or the specific absorption rate of the multifrequency pulse [34]. Furthermore, 

the NRPB standard [35] limits the current density as follows: (0–100 Hz) 100 mA/m2, (100–

101 Hz) 100/f mA/m2, (101–103 Hz) 10 mA/m2, (103–107 Hz) f/100 mA/m2, where f is the 

frequency in Hz. Therefore, Figs. 3 and 6 can be used to estimate the maximum  and |J| 

by adding +14 dB since the current density of the simulations @50 kHz was normalized to 

five times smaller than the NRPB limit (or adding +26 dB if following a recent and closely 

related Food and Drug Administration safety guidelines draft [36]).

The modeling of each tissue was carefully performed based on the very accurate 

morphometry of our head model and known tissue dielectric constants. Most tissues in the 

human head have complex but well-characterized anatomical features that were accurately 

reflected in our model (for example, cortical bone has a flat frequency response, but skull 

impedance varies due to other tissues present, such as fatty marrow) [37]. Despite this, there 

is clearly considerable intersubject variability in the shape and composition of head 

structures, which represents a limitation of our current model. It may be possible, however, 

to control these patient-specific variables in future models by incorporating concurrent CT 

or MRI morphometric measurements. Impedance imaging methods such as magnetic 

resonance electric properties tomography are also being developed [38] which could further 

help refine future models.

EIS has been used on a research basis for a wide variety of applications, such as 

measurement of osmotically induced cellular volume changes in a perfused rat model [39], 

and monitoring of intracellular resistance, membrane capacitance, and extracellular 

resistance [40]–[45].

Optimization of depth sensitivity in EIS measurement using the dual-energy SGF excitation 

pulses also has the potential to help develop proposed future point-of-care clinical 

applications, such as ICH and stroke detection [7], [8], [10], [46], [47] as well as 

noninvasive assessment of brain tumors [48], arteriovenous malformations, and radiation 

injury [49], cervical intraepithelial neoplasia [50], perinatal hypoxia [51] and asphyxia [52], 
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[53], thyroid nodules classification [54], and functional electrical stimulation efficacy [55], 

epilepsy [56], [57], and general brain function [58].

VI. Conclusion

We have shown that the use of an SGF dual-energy pulse generation paradigm can improve 

the sensitivity of EIS measurements of deep parenchymal tissues, compared to single 

stimulus methods. Indeed, simulations with FDTD have shown that the proposed SGF dual-

energy excitation scheme is capable of reducing the amplitude of weighted current densities 

on the skin surface by approximately 3 million times compared to a single SGF stimulation 

pulse, while maintaining an acceptable tissue conductivity distribution in the brain 

parenchyma that could enhance the detection assessment of deep brain impedance values. 

This increased sensitivity for the detection of small, deep impedance changes might be of 

value in potential future EIS applications, such as the portable, point-of-care detection of 

deep brain hemorrhage or infarction [7], [8], [10].
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Fig. 1. 
Dual-energy SGF pulses used in the FDTD simulations. A delay of 19.2 ns separates the 

high-energy pulse (s = 128) and the following low-energy SGF (s = 12.8).
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Fig. 2. 
Low-energy pulse (s = 12.8) SGF in time (see top and Fig. 1) and its spectrogram (bottom) 

[12].
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Fig. 3. 

FDTD estimate of  at 500 kHz in a logarithmic scale (dB relative to 1 V/m) in the 

midline sagittal head model simulation, with: (top) SGF (s = 128) and (bottom) SGF (s = 

12.8).
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Fig. 4. 
FDTD estimate at 500 kHz of conductivities in the log scale (dB relative to 1 Ω) for all 

stimuli, in the midline sagittal head model.
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Fig. 5. 
Current density magnitude (dB relative to 1 A/m2) changes as a function of posterior-to-

anterior distance along the midline at the level of the body of the corpus callosum in the 

head model simulation shown in Fig. 6 (top, with color coded w-values). The current density 

magnitude is minimized at a w-value of approximately 0.2 (bottom) in the model, which 

corresponds to a minimal current density on the skin surface.

Bonmassar and Lev Page 17

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
FDTD estimate at 500 kHz of the amplitude of the current densities (dB relative to 1 A/m2 at 

the sagittal midline head, for s = 128 (left), s = 12.8 (right), and weighted (dual energy) with 

w = 0.2 (center).
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TABLE I

List of Segmented Head Anatomical Structural Entities and Their Physical Properties Including Densities and 

Electrical Properties as Proposed in [21] or if Labeled:

σ0 (S/m) ε∞ Δε τ (ms)

3rd Ventricle 2 4 0.00E+00 15.915

4th Ventricle 2 4 0.00E+00 15.915

Adipose(a) 0.035 2.5 1.00E+07 15.915

Air (Resp./Diges./Sinus)(b) 0 1 0.00E+00 1

Aqueous Humor(a,c) 1.5 4 0.00E+00 15.915

Bone (Facial)(b) 0.02 2.5 1.00E+05 15.915

Brain Stem(a) 0.02 4 4.50E+07 5.305

Cavum vergi 2 4 0.00E+00 15.915

Cerebro Spinal Fluid 2 4 0.00E+00 15.915

Connective Tissue 0.128 3.5 2.50E+07 11.368

Cornea(c) 0.4 4 0.00E+00 15.915

CSF_Subarachnoid(a) 2 4 0.00E+00 15.915

Diploe(b) 0.07 2.5 2.00E+07 15.915

Dura(a) 0.5 4 1.00E+06 15.915

Ear/Pinna(a) 0.15 4 4.00E+07 15.915

Epidermis/Dermis(a) 0 4 0.00E+00 15.915

Inner Table(b) 0.02 2.5 1.00E+05 15.915

L/R Accumbens area 0.02 4 4.50E+07 5.305

L/R Amygdala 0.02 4 4.50E+07 5.305

L/R Amygdala Anterior 0.02 4 4.50E+07 5.305

L/R Caudate 0.02 4 4.50E+07 5.305

L/R Cerebellum Cortex 0.04 4 4.50E+07 5.305

L/R Cerebellum White Matter(a) 0.04 4 4.50E+07 5.305

L/R Cerebral Cortex(a) 0.02 4 4.50E+07 5.305
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σ0 (S/m) ε∞ Δε τ (ms)

L/R Cerebral White Matter 0.02 4 4.50E+07 7.958

L/R Hippocampus 0.02 4 4.50E+07 5.305

L/R Inferior Lateral Ventricle(a) 2 4 0.00E+00 15.915

L/R Lateral Ventricle 2 4 0.00E+00 15.915

L/R Putamen 0.02 4 4.50E+07 5.305

L/R Thalamus Proper 0.02 4 4.50E+07 5.305

L/R Ventral DC 0.02 4 4.50E+07 5.305

L/RPallidum 0.02 4 4.50E+07 5.305

Lens(c) 0.3 4 4.00E+07 15.915

Mastoid/Air Cells 0 1 0.00E+00 1

Muscle(d) 0.2 4 2.50E+07 2.274

Nasal-Structures 0.15 4 4.00E+07 15.915

Nerve(a) 0.0006 4 4.00E+07 15.915

Optic Chiasm(a) 0.02 4 4.50E+07 7.958

Orbital Fat 0.035 2.5 1.00E+07 15.915

Outer Table(b) 0.02 2.5 1.00E+05 15.915

Retina/Choroid/Sclera(a) 0.5 4 5.00E+07 15.915

SC-Fat/Muscle 0.105 3.25 1.75E+07 5.116

Soft Tissue 0.128 3.5 2.50E+07 11.368

Spinal Cord 0.0006 4 4.00E+07 15.915

Subcutaneous Tissue 0.128 3.5 2.50E+07 11.368

Teeth 0.02 2.5 1.00E+05 15.915

Tongue 0.25 4 4.00E+07 15.915

Vitreous Humor 1.5 4 0.00E+00 15.915

(a)
[59];

(b)
[60];

(c)
[61]

(d)
[62]
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