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Abstract

In this study, a novel reduced order prioritized algorithm is presented for optimization in radiation 

therapy treatment planning. The proposed method consists of three stages. In the first stage, the 

intensity space was sampled by solving a series of unconstrained optimization problems. The 

objective function of the first stage is expressed as a scalarized weighted sum of partial objectives 

for the target and organ at risk. Latin hypercube sampling was utilized to define the weights for 

each run of the unconstrained optimizations. In the second stage, principal component analysis is 

applied to the solutions determined in the first stage to identify the major eigen modes in the 

intensities space, significantly reducing the number of independent variables. In the third stage, 

treatment planning goals/objectives are prioritized, and the problem is solved in the reduced order 

space. After each objective is optimized, that objective function is converted into a constraint for 

the lower-priority objectives. In the current formulation, a slip factor is used to relax the hard 

constraints for planning target volume (PTV) coverage. The applicability of the proposed method 

is demonstrated for one prostate and one lung intensity-modulated radiation therapy treatment 

plan. Upon completion of the sequential prioritized optimization, the mean dose at the rectum and 

bladder was reduced by 21.3% and 22.4%, respectively. Additionally, we investigated the effect of 

the slip factor ‘s’ on PTV coverage and we found minimal degradation of the tumor dose (~4%). 

Finally, the speed up factors upon the dimensionality reduction were as high as 49.9 without 

compromising the quality of the results.
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I. Introduction

INTENSITY-modulated radiation therapy (IMRT) is an advanced mode of high-precision 

external radiotherapy that uses computer-controlled, mega-voltage x-ray accelerators to 

deliver precise doses of radiation to specific tissues. Rather than being treated with a large 

uniform beam, in IMRT, the patient is treated by a series of beam shapes that are modeled as 

a collection of pencil beams (beamlets). For many types of cancer, such as prostate cancer, 

the use of IMRT allows a highly concentrated treatment of the tumor volume, while limiting 

the radiation dose to adjacent healthy tissue [1]. IMRT treatment planning is concerned with 

selecting a beam geometry and beamlet intensities (fluence map) to produce the best dose 

distribution that can be delivered efficiently.

The concept of multiobjective optimization (MOO) for radiotherapy treatment planning has 

been an active area of research. IMRT uses inverse planning optimization to determine 

complex radiation beam configurations that will distribute the radiation dose to the patient 

[2]–[4]. The problem is inherently multiobjective, with competing clinical goals to deliver a 

high dose to the planning target volume (PTV) while minimizing the dose to organs at risk 

(OARs). These conflicting clinical objectives often require compromises when selecting a 

clinical treatment plan for a patient.

A number of increasingly sophisticated mathematical programming models have been 

proposed for inverse treatment planning (see [5] for a recent overview). One of the most 

common approaches to MOO is to optimize a single-objective function constructed from the 

weighted sum of multiple objectives, in which the weights denote different relative 

importance to different objectives [6], [7]. This is called the priori approach because the user 

is expected to provide the weights. The popularity of this method lies in its straightforward 

implementation and computational efficiency. In the past, gradient-based algorithms have 

been proposed for the optimization of single-objective problems in radiation therapy. 

However, the main disadvantage of these algorithms is that planner intervention is often 

required to conduct a multiple trial-error process, in which several parameters are varied 

until an acceptable compromise is achieved. One way to ameliorate that issue is to use the 

prioritized or lexicographic optimization method [8], [9]. Prioritized optimization (PO) is a 

form of multicriteria optimization, in which the various objectives under consideration 

cannot be quantitatively traded off between each other, at least not in a numerically tractable 

way. Instead, PO considers a finite number of objective functions that are to be optimized on 

a feasible set of solutions in a qualitatively prioritized order (i.e., lower-priority objectives 

are optimized as far as they do not interfere with the optimization of higher-priority 

objectives). The main advantage of that method is that it generates an optimal solution at 

every sequential stage and also, does not rely on interaction with the user once the 

prioritization is fixed. It should be noted that PO may be viewed as the limit of the 

minimization of a weighted combination of objectives, in which the weights are equal to 

different powers of a small parameter called “epsilon,” according to Danskin’s theorem [10]. 

However, numerical minimization of such a composite objective function with different 

orders of magnitude can lead to poorly conditioned problems. Therefore, the choice of 

weighting factors of the scalarized multicriteria objective function is a sensitive problem in 

itself.
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For IMRT problems with planning goals that exhibit distinctive levels of importance or 

priority, previous studies have demonstrated that PO may provide an intuitive way of 

generating a solution [11]–[13]. However, PO has been criticized for not allowing a large 

gain on a low-priority goal in trading off a small loss on a high-priority goal [14]. Wilkens et 

al. [12] addressed that issue by introducing a slip factor, which allows small degradations of 

higher-priority goals to the benefit of lower-priority goals. In other words, the achievements 

of the algorithm for higher-priority objectives were relaxed by a certain amount, offering 

more flexibility in the algorithm for lower-order priorities. Additionally, constraint 

optimization for a large-scale problem, such as that in radiation therapy with several 

hundreds of variables (beamlet intensities), might become computationally intensive. In the 

past, dimensionality reduction techniques have proven to be a solution for decreasing the 

complexity and time of constraint optimization of the PTV for several anatomical sites [15]–

[18] as well as generation of pareto frontiers with memetic algorithms [19]. The reduced-

order Constraint optimization (ROCO) method offers a key advantage in that it involves a 

computational efficient constrained optimization step in which hard constraints are directly 

imposed on the optimization structures by reducing the dimensionality of the intensity space. 

The main drawback of ROCO is that the final constraint optimization in the reduced 

dimensionality search space is performed only on a single-objective quadratic function for 

the PTV.

This paper presents the first report, to the best of our knowledge, of a method of reduced-

order PO for IMRT. In the next section, we describe our method in further detail and include 

a mathematical description of each step of the optimization. Section 3 shows the results with 

a prostate and a lung case, the effect of varying the slip parameter, and the number of 

principal components (p.c.) used during the dimensionality reduction procedure. We further 

discuss these results and some key issues in the final section of the paper.

II. Multiobjective Optimization for IMRT

A. Description of the Problem

An IMRT treatment plan has to specify a fluence map (a set of beamlet intensities that can 

be controlled individually). Typically, a small number of equispaced coplanar beam angles 

are used. The planned structures are modeled as discretized cubes (called voxels) and the 

dose to each voxel per intensity of each beamlet is calculated [20], [21]. A radiation 

oncologist specifies a set of requirements that have to be satisfied in the treatment plan. 

These requirements are in the form of the prescription dose to the PTV and the maximum 

dose at the OARs.

B. Hierarchical Optimization in Reduced Space

Hierarchical optimization is a strategy of multivariable optimization derived from priority-

driven sequential steps of single-objective optimization problems. Without loss of 

generality, we consider the minimization of a multiobjective problem. Suppose a complex 

goal g = {g1, g2, …, gn} contains n objectives. The subscript in this goal also describes the 

relative importance of each objective, where g1 is the most important one and gi−1 is always 

more important than gi. The solution  is better than the solution 
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, if, and only if,  and  hold for certain 

k ≤ n and all i < k. In other words, before priority k, all objectives are equally satisfied in 

both g(1) and g(2), but on priority k, g(1) dominates g(2). Thus, the formulation of the 

prioritized minimization problem can be written as follows:

(1)

Accordingly, PO would be defined as the algorithmic process of a prioritized minimum 

solution for a multiobjective problem. In the current study, we employed a prioritized 

approach combined with a dimensionality reduction of the search space in order to reduce 

the computational complexity of the numerical optimization method for solving the 

sequential constrained optimization problems. An outline of our method can be written in 

generic form, as in Fig. 1.

Initially using a computed tomography scan as a guide, the number and orientation of beams 

to be used in the treatment were selected by the planner. Afterwards, a series of 

unconstrained optimizations were performed to sample the optimal intensity space. Upon 

completion of the unconstrained optimizations, a principal component analysis (PCA) was 

employed in order to reduce the dimensionality reduction of the solution space. Finally, 

sequential PO steps were performed with constraints in the reduced-order space. In the 

following subsections, we describe each stage of our method.

C. Sampling the Unconstrained Optimal Intensity Space

The inverse radiotherapy problem is to determine a vector of beamlet intensities that 

minimizes the objective function. In the first step of our method, our goal is to “probe” the 

intensity space for a given patient. To that end, we initially constructed a single-objective 

function expressed as a weighted sum of partial terms:

(2a)

(2b)

where NT is the number of voxels in the target structure, DT is the prescribed dose to the 

PTV, < Dj > is the mean dose of the OAR j, and the variables wT and wj are the relative 

weights for the PTV and OARs, respectively. The Latin hypercube sampling method was 

employed to define the weights variables of (1) in the interval [0, 1]. The dose to voxel i is 

given by:
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(3)

where Ak is the dose deposition matrix (DDM), which describes the dose contribution to all 

relevant voxels of the structure under consideration for the unit fluence; k is the index of the 

beam number; Ik,j is the intensity of the beamlet j for the beam k;M is the total number of 

beams; and N is the number of beamlets for beam k. Parameter-based unconstrained 

optimization was used to construct an intensity space that contains possible solutions. We 

then applied PCA to reduce the dimensionality of the search space and make the constrained 

optimization computationally feasible.

D. Reduction of Search-Space Dimensionality

Upon sampling optimal intensities {I1, I2, …, IN} (see (2)), the dimensionality of the 

intensity space can be reduced by linear or nonlinear feature extraction methods. PCA 

constructs a low-dimensional representation of the data (in our case, the intensities of the 

beamlets), which describes as much of the variance in the data as possible. This is 

accomplished by finding a linear basis of reduced dimensionality for the beamlet intensities, 

in which the amount of variance is maximal. It can be shown that this linear mapping is 

formed by the d-principal eigenvectors (i.e., p.c.) of the covariance matrix of the zeromean 

data. The corresponding eigenvectors form the columns of linear transformation matrix T. 

Low-dimensional data representations y of datapoints x are computed, mapping them onto 

linear basis T, i.e., Y = (X−Xmean).T. In our case, the dose of structure S in the reduced 

dimensionality space is given by:

(4)

where ξj are the coefficients of the p.c., which are the independent variables of the 

optimization. Similarly, as A is the DDM previously, j is the index of the Nmodes p.c., and μ 

is the dose corresponding to the mean of {Ii}. The intensities of these modes were 

determined during the PCA and the linear transformation is simply:

(5)

where L is a vector containing the eigenvectors and ξj are essentially the coordinates of the 

transformed intensities {Ii}. Given the p.c. variances (that is, the eigenvalues of the 

covariance matrix), we find the Λ eigenvectors that capture a desired percentage (v%) of the 

total variance:

(6)
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E. Reduced-Order Prioritized Optimization

The mathematical formulation of the PO is similar to the one proposed by Wilkens et al. 

[12] and can be described as follows:

Step 1: Find the vector y in the eigenspace so as to:

(7a)

(7b)

(7c)

where Dj (y) is the dose voxel j of the target T and is given from (4), and y is the 

beamlet intensities in the eigenspace; Dpresc is the prescription dose; VT and VOAR1 is 

the volume of the target and the OAR1, respectively; and  is the constraint for the 

maximum dose at the OAR1. Equation (7c) requires the inversely transformed data y 

from the eigenspace to the real intensity values to be positive numbers.

Step 2: In the second step, we minimize the mean dose at the first OAR:

(8a)

(8b)

(8c)

(8d)

(8e)

where  and VOAR1 are the maximum dose allowed at and the volume of the 

OAR1, respectively, and y1 is the solution obtained in Step 1. We observe that we have 

two additional constraints for the optimization problem. First, the dose at the target 

should be greater than or equal to the minimum dose and greater than the maximum 

dose or 115% of the prescription dose, as they were obtained from Step 1 (8c). Second, 

the hard constraint for the quadratic function OF1 that was achieved in Step 1 is relaxed 

by slip factors (8d). Similarly as in the previous step, we require the beamlets intensities 

to be positive numbers (8e).

Step 3: As before, Step 3 reads as follows: Find y in order to:
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(9a)

(9b)

(9c)

(9c)

(9d)

(9e)

(9f)

The hard constraints in Step 3 are similar to those in Step 2, with the exception of (9e), 

which requests that the mean dose at the OAR1 not exceed the mean dose for the same OAR 

that was obtained in Step 2. Additionally, the relaxation of constraints in OF1 is increased by 

the square of (1+s).

F. Treatment Planning Optimization Parameters

In this paper, two treatment plans were used to evaluate our method. The first one was a 

prostate case with two OARs: the rectum and the bladder. The plan consisted of five 

coplanar beams (nominal energy, 6 MV) and a total number of 235 beamlets each of which 

were 1.0 cm2 in size. The prescription dose to the PTV was 72 Gy, and the maximum dose 

at the bladder and the rectum was 105% of the prescribed dose. The second treatment plan 

was a lung case, with the lung and the heart considered OARs. The PTV was irradiated with 

three coplanar beams (nominal energy, 6 MV), and the number of beamlets was 272. For 

each case, we used 100 samples during the unconstrained optimization stage. For the 

numerical solver, the SQP algorithm was used [22], while the maximum number of 

iterations was set to 200 and the code was implemented in MATLAB (The MathWorks, Inc., 

Natick, MA, USA). Finally, the treatment planning was performed using the software 

environment CERR (Computational Environment for Radiotherapy Research) [23], and the 

DDM was calculated with the ORART (Operations Research Applied to Radiation Therapy) 

toolbox, which is an extension of CERR that is based on Ahnesjo’s pencil beam algorithm 

[21], [24]. For all beams, the DDM was precalculated and stored in memory as a sparse 

matrix.
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III. Results for a Prostate Case

A. Number of Samples and Eigenvalues

A critical aspect of our method is the choice of the number of p.c.. A small number of p.c. 

will not reliably capture the major modes of the intensity space. The screen plot in Fig. 2 (a) 

and (b) illustrates for the prostate and lung case, respectively, the eigenvalues and the 

percentage of variance explained for the first fifty p.c. From our data, we found that 42 p.c. 

were sufficient to capture 98% of the total variance for the prostate case, whereas it was 24 

p.c. for the lung plan. Those p.c. were the independent variables of the PO procedure.

B. Prostate IMRT Case

For qualitatively demonstration of our method’s results, we employed as a metric the dose-

volume histograms (DVHs) which is commonly used in radiation therapy for evaluation of a 

treatment plan. The DVHs for the prostate IMRT case are shown in Fig. 3 for each structure 

and step separately. The x-axis represents the dose at the structure while the y-axis 

represents the fractional volume which have received a dose D. A slip factor s equal to 2 

was used in this example. The goals of each individual step of the sequential optimization 

method are reflected by the DVHs. In Step 1, good coverage of the PTV is achieved, while 

the dose at the rectum and bladder do not exceed the maximum allowed dose. In Step 2, the 

dose at the rectum is substantially reduced and the homogeneity of the PTV is not affected 

significantly, but the mean dose to the bladder is slightly increased. Finally, in Step 3, the 

mean dose of the bladder is considerably decreased without compromising the mean dose at 

the rectum. For demonstration purposes, Fig. 4 illustrates traversal and sagittal views of the 

dose distributions for each step. The overlapping of the rectum and the bladder with the PTV 

was 6% and 17%, respectively. By visual inspection, one can notice dose sparing at the 

rectum in Step 2 [see Fig. 4 (b) and (e)].

Table I reports the numerical results of our simulations. We should stress that the reported 

results were not normalized to deliver the prescription dose to the ICRU-50 [25] prescription 

point (isocenter). Such normalization would simply linearly escalate the dose of each 

structure for each step, so we therefore considered that the difference in the dose at each step 

would be more profound without normalization. In Table I, one can notice that the reduction 

of the PTV coverage (D95~Dose received the 95% of the PTV volume) is equal to ~2%, 

while the mean dose at the rectum and the bladder was decreased by ~17% and ~18%, 

respectively, upon completion of the final step of the optimization, when a slip factor (s = 2) 

was used.

C. Lung IMRT Case

A lung IMRT case with a prescription dose to the PTV of 60 Gy was considered. Fig. 5 (a) 

illustrates the three steps of the PO. As before, two OARs were considered: the lung and the 

heart. Figs. 5 (b), (c), and (d) shows the DVHs for the PTV, lung, and heart, respectively, 

when a slip factor of 3 was used.
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Fig. 6 shows the sagittal and traversal dose distributions of the treatment plan for each 

optimization step. As in the prostate case, we note the sparing of the lung and the heart 

during the second and third step, respectively, of the optimization.

In Table II, we see that the D95 was reduced by ~2%, while the mean dose at the lung and 

the heart were reduced by ~16% and ~55%, respectively. We speculate that the main reason 

for the dramatic decrease in the mean dose at the heart is that there is no actual overlap of 

this structure with the PTV. Therefore, the optimizer can more easily reduce the dose at the 

heart, without affecting the dose coverage of the PTV.

D. Effect of Slip Factor “s” and Eigenmodes

We carried out a set of simulations to investigate the effect of the slip factor s and the 

dimensionality reduction on our method.

A set of POs was repeated without dimensionality reduction of the intensity space and 

compared with the results obtained from our method. Table III reports the speed up factors 

obtained with our method compared to the nonreduced order POs for the two treatment 

planning cases. An average speedup of 36.3 and 43.5 was achieved for the prostate and lung 

case respectively. It is worth noting that a higher speedup factor was achieved for the lung 

case. That was expected since the number of eigen modes used for that plan (24 eigen 

modes) was smaller compared to the prostate case (42 eigen modes). That implies less 

independent variables and consequently smaller execution times.

Evaluation of the effect of the dimensionality reduction on the plans quality was based on 

the DVHs as this is the most common way in clinical practice. As can be seen in Fig. 7, 

there is a good agreement between our method and the nonreduced algorithm for both the 

prostate and lung case. Finally, Fig. 8 (a) and (b) illustrates for the prostate and lung case, 

respectively,

We observe that the maximum reduction of the D95 was ~4%, whereas the mean dose at the 

rectum and bladder was reduced by ~23%, compared to the maximum mean value. 

Similarly, for the lung case, the D95 was decreased by ~2% when a slip factor of 3 was used.

IV. Conclusion

We have described a reduced-order hierarchical programming method for IMRT treatment 

planning. The applicability of our method was demonstrated for a prostate and lung 

treatment planning case. The advantages of the proposed method over the ‘conventional’ 

approach of creating a linearly weighted multiterm objective function are: (i) qualitatively, 

priorities of objectives can be defined intuitively by the planner/physician before treatment 

planning optimization; (ii) once the hierarchy of the objectives and slip factor are 

determined, the process is automatic and does not require several trial and error 

optimizations. In that way, the planner can focus on the final evaluation of the treatment 

plan; (iii) since normal tissue dosimetric goals are used as objective functions, rather than 

simple constraints, the method reduces the dose to normal tissue as much as possible without 
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adversely affecting more important goals; and (iv) the reduction of the search-space 

dimensionality enhances computational efficiency of the sequential constraint optimizations.

In the current formulation, mean dose objective functions were used for the OARs for both 

the unconstrained sampling stage and the PO, in a manner similar to Wilkens et al. [12]. 

However, in clinical practice, dose-volume constraints are commonly used in addition to 

mean-dose constraints. Previous studies have incorporated dose-volume constraints in 

gradient-based algorithms for inverse treatment planning [26]. One disadvantage of dose-

volume constraints is that they introduce nonconvex feasibility spaces into the optimization 

problem, potentially creating multiple local minima and associated issues in solver accuracy 

and run-time efficiency [27]. Thus, mixed-integer or heuristic techniques are required, and 

these are generally not as efficient as linear/quadratic methods. Additionally, for nonconvex 

regions, the weighted-sum approach cannot discover optimal solutions of the Pareto front 

[28], and one cannot assert that linear PCA will always detect all structures in a given data 

set [29]. In that case, nonlinear feature-extraction algorithms would be more adequate for the 

reduction of search-space dimensionality and abstraction of the structures in the beamlet 

intensities. Alternatively, Romeijn et al. have previously suggested using ‘mean tail dose’ 

rather than conventional dose-volume constraints [30], which are linear functions and hence, 

computationally attractive. ‘Mean tail dose’ refers to the mean dose of either the hottest or 

coldest specified fractional volume and has been successfully used in PO studies in the past 

[13]. However, one disadvantage of the ‘mean tail dose’ approach is the increase in problem 

size, which would result in extensive execution times.

A key variable of the current technique is the slip factor ‘s’. As previous studies have 

shown, a small relaxation of a higher-priority objective can result in a large improvement of 

a lower-priority goal [12], [13]. The studies indicated that, in the reduced-order space, the 

slip factor could significantly improve the average dose at the OARs, without significantly 

compromising the dose homogeneity at the PTV. Additionally, from our results it appears 

that reduction of the search-space dimensionality produces similar solutions with those 

obtained from the PO without utilizing dimensionality reduction.

We would like to stress that in the current study, we focus on the methodological aspects of 

the proposed algorithm, rather than investigate its performance under various conditions. 

Therefore, in our implementation, we did not extensively alleviate computational 

bottlenecks of the executable code, which might hinder its computational complexity and 

consequently, its performance. Despite the fact the code was implemented in MATLAB, 

which is slower when compared to other commercial software for constraint optimization, 

we observed a maximum acceleration of ~49.9 for PO. That is due to the decrease in 

independent variables of the numerical optimizer. The main disadvantage of our method, 

however, is the sampling stage, during which several optimization runs are required. GPU-

based IMRT optimization [31] and parallel global optimizers [32], which result in 

significantly reduced execution times, have been suggested in the past. Future directions of 

our study involve parallelization of the numerical optimizer, which would lead to further 

acceleration of the proposed method.
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Overall, the proposed reduced order prioritized-prescription treatment planning bears not 

only the ability to impact the dose distribution in a direct intuitive way, but also the 

enhanced computational efficiency makes the method attractive for clinical use.
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Fig. 1. 
Generic outline of the reduced-order PO method.
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Fig. 2. 
Screen plot of the first fifty eigenvalues obtained with the PCA of the unconstrained set of 

optimized plans (stem bars) for the prostate (a) and lung (b) case. The dashed line represents 

the percentage of variance explained as a function of the eigenvalues (left y-axis).
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Fig. 3. 
A simplified summary of the sequential optimization formulation (a), as used in this paper 

for the prostate case, and DVHs for each step of the reduced-order PO for the PTV (b), 

rectum (c), and bladder (d). A quadratic slip factor of 2.0 was used for the PTV in this set of 

optimizations.
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Fig. 4. 
Traversal (left panel) and sagittal (right panel) view of the dose distribution for each step of 

the PO (Step 1: a, d; Step 2: b, e; Step 3: c, f). The outlined structures are (from top to 

bottom for traversal view; left to right for sagittal view) the bladder, PTV, and rectum.
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Fig. 5. 
A simplified summary of the sequential optimization formulation (a), as used for the lung 

case in this paper, and the DVHs for each step of the reduced-order PO for the PTV (b), lung 

(c), and heart (d), structures respectively. A quadratic slip factor of 3 was used for the PTV 

in this set of optimizations.
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Fig. 6. 
Traversal (left panel) and sagittal (right panel) view of the dose distribution for each step of 

the PO (Step 1: a, d; Step 2: b, e; Step 3: c, f). The outlined structures are the lungs, PTV, 

and heart.

Kalantzis and Apte Page 18

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
DVHs of the PO with (solid line) and without (dashed line) dimensionality reduction for the 

two cases.
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Fig. 8. 
Effect of the slip factor s on the reduced-order PO for the prostate and lung case.
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TABLE I

Summary Metrics for the PTV and Two OARs at Each Step of the Prioritized Optimization Algorithm Using a 

Slip Factor of 2

Metric Step 1 Step 2 Step 3

PTV

D95 68.4 67.9 67.0

s.t.d. 0.59 0.83 1.17

<D> 69.7 69.6 69.8

Rectum

Dmin 0.1 0.1 0.1

Dmax 71.7 70.9 71.7

<D> 32.3 26.8 26.8

Bladder

Dmin 1.7 1.5 0.1

Dmax 72.5 73.1 72.7

<D> 45.5 46.2 37.2

Dose values are in Gy.
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TABLE II

Dosimetric Evaluation Parameters for the PTV and Two OARs at Each Step of the Optimization Algorithm

Metric Step 1 Step 2 Step 3

PTV

D95 59.0 58.3 57.6

s.t.d. 0.48 0.72 1.21

<D> 58.1 57.4 56.5

Lung

Dmin 0.1 0.1 0.1

Dmax 61.7 60.9 60.7

<D> 11.9 10.2 10.2

Heart

Dmin 1.7 1.5 0.1

Dmax 59.1 59.3 48.9

<D> 1.8 1.8 0.8

Dose values are in Gy, and a slip factor of 3 was used.
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TABLE III

Speedup Factors for Each Step of the Prioritized Optimization for the Prostate and Lung Case

Plan Step 1 Step 2 Step 3

Prostate

36.8 37.8 34.3

Lung

49.9 46.5 44.1
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