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Assess Sleep Stage by Modern Signal Processing
Techniques

Hau-tieng Wu, Ronen Talmon, Yu-Lun Lo*

Abstract—In this paper, two modern adaptive signal processing
techniques, Empirical Intrinsic Geometry and Synchrosqueezing
transform, are applied to quantify different dynamical features
of the respiratory and electroencephalographic signals. We show
that the proposed features are theoretically rigorously supported,
as well as capture the sleep information hidden inside the signals.
The features are used as input to multiclass support vector
machines with the radial basis function to automatically classify
sleep stages. The effectiveness of the classification based on the
proposed features is shown to be comparable to human expert
classification – the proposed classification of awake, REM, N1,
N2 and N3 sleeping stages based on the respiratory signal (resp.
respiratory and EEG signals) has the overall accuracy 81.7%
(resp. 89.3%) in the relatively normal subject group. In addition,
by examining the combination of the respiratory signal with the
electroencephalographic signal, we conclude that the respiratory
signal consists of ample sleep information, which supplements to
the information stored in the electroencephalographic signal.

Index Terms—Sleep Stage; Empirical Intrinsic Geometry;
Synchrosqueezing transform; breathing pattern variability

I. INTRODUCTION

IN human beings, sleep is a universal recurring dynam-
ical and physiological activity, and the quality of sleep

influences our daily lives in diverse ways. However, it was
not until recently that sleep became a brach of medicine and
found its role in several seemingly unrelated clinical problems.
Physiologically, it is divided into two broad stages: rapid
eye movement (REM), and non-rapid eye movement (NREM)
[1]. Normally, sleep proceeds in cycles in between REM and
NREM. The NREM stage is further divided into shallow sleep
(stage N1 and N2) and deep sleep (stage N3). In all procedures
identifying sleep stages, we need a sleep scoring process
with the help of polysomnography (PSG), which includes
electroencephalography (EEG), electromyogram (EMG), and
electrooculogram (EOG), etc.

Among these physiological signals, EEG signals are the
most concentrated ones since the clinically acceptable stage
of the sleep is majorly determined by reading the recorded
EEG based on the R&K criteria, which were standardized
in 1968 by Allan Rechtschaffen and Anthony Kales [2]
and further developed by the American Academy of Sleep
Medicine on 2007 (AASM 2007) [3]. However, due to the
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subjective judgement and different training background, the
agreement of manual sleep scoring among trained clinicians
and professionals has been known to be limited [4], thereby
motivating the development of an objective and automatic
scoring system.

Based on these clinical findings, various features of the EEG
signals have been proposed to study the sleep dynamics, for
example, time domain summary statistics, spectral analysis,
coherence, time-frequency analysis, entropy, to name but a
few [5], [6], [7], [8]. Recently, a theoretically solid approach
suitable to model the underlying dynamics of the brain activity
and estimate the evolutionary dynamics from recorded EEG
signal was proposed in [9], [10], and had been successfully
applied to predict the pre-seizure state from the intra-cranial
EEG signals [11], [12].

However, it is well known that sleep is a global and system-
atic behavior not localized solely in the brain. For example,
the muscular atonia and low amplitude EMG are related to
the significant changes in the breathing pattern during normal
sleep: during NREM sleep, especially stage N3, breathing
is remarkably regular, while during REM sleep, breathing is
irregular with sudden changes. The above physiological facts
hint that the respiratory pattern of the recorded breathing signal
during sleep might well reflect the sleep stage. There have
been some reported studies of the sleep stage from analyzing
the respiratory signal [13], [14], [15], [16], [17]. In [13]
(resp. [14]), an averaged respiratory rate over a fixed window
is used to estimate the REM and NREM (resp. awake and
sleep). In [15], a notch filter based instantaneous frequency
estimator is applied to extract features to differentiate awake,
REM and NREM. In [16], [17], the adaptive harmonic model
and a modern time-frequency analysis technique have been
applied to further quantify the notion of respiratory dynamic.
In particular, the instantaneous respiratory rate has been related
to awake, REM, shallow and deep sleep stages, with a rigorous
mathematical foundation.

The above-mentioned physiological patterns inside the EEG
and the respiratory signals are actually outcomes of the in-
tricate deformation of the underlying sleep dynamics, which
we call intrinsic dynamical features of the sleep, that are
not directly accessible to us. Although it is not an easy task
to fully model or estimate the dynamical system underlying
sleep, we might expect to benefit if we are able to quantify
and integrate these hidden intrinsic dynamical features. In
this paper, we propose to combine two modern adaptive
signal processing techniques, Empirical Intrinsic Geometry
(EIG) and Synchrosqueezing transform (SST), to estimate these
intrinsic dynamical features of sleep guiding the observed EEG
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and respiratory signals – we define an index, referred to as
Sleep Index, to quantify these features. Then, by applying
the suitable classifier algorithm, we show that the extracted
features are highly correlated to the sleep stage determined
by reading the EEG by the AASM 2007 criteria. Indeed, the
proposed classification based on the respiratory signal (resp.
respiratory and EEG signals) has the overall accuracy 81.7%
(resp. 89.3%) in the relatively normal subject group, which is
comparable to human expert classification.

The article is organized in the following way. In Section
II, we summarize the theoretical background of EIG and SST
and the associated models. Then the Sleep Index is introduced
in Section III. In Section IV, the proposed Sleep Index is
applied to study the whole night sleep signals. We conclude
with discussion in Section V.

II. TWO ALGORITHMS – SYNCHROSQUEEZING
TRANSFORM AND EMPIRICAL INTRINSIC GEOMETRY

The work presented in this paper is an application of
the modern signal processing techniques to study the sleep
dynamics. In particular, we will extract different features from
the respiratory and EEG signals by the well studied EIG [9],
[18] and SST [19], [17]. As such, the theoretical material will
be presented in a compact, informal manner emphasizing on
the intuitions. We provide a formal and rigorous summary
without proof of the details. Those interested in the proofs are
encouraged to read the associated references.

A. Adaptive Harmonic Model and Synchrosqueezing Trans-
form

The major characteristic pattern of the respiratory signal is
that it is almost periodic. We call the movement of air from
the environment into the lungs inspiration and the movement
of air in the opposite direction expiration. An inspiration and
an expiration constitute a respiratory cycle. Breathing process
is a physiological process consists of a sequential respiratory
cycles. In this paper, we focus on the breathing process
and call the time-varying volume occupying the lung space
the physiological respiratory signal. This general observation
leads us to the following phenomenological model for the
respiratory signal R(t) (without noise):

R(t) = A(t) s(φ(t)), (1)

where we shall call s(·) the wave shape function; it is a
1-periodic real function that satisfies some mild technical
conditions. See [16] for the details. The respiratory signals
recorded from different devices, like the airflow measuring
device or the chest wall movement, shall be understood as
observations of the respiratory system. Different observations
lead to different shape functions. We call the derivative φ′(t)
of the function φ(t) the instantaneous frequency (IF) of the
respiratory signal R(t). We require IF to be positive, but it
does not required to be constant as long as the variations are
slight from one period to the next, i.e. |φ′′(t)| ≤ εφ′(t) for all
time t, where ε is some small, pre-assigned positive number.
Likewise, We call A(t) the amplitude modulation (AM) of
R(t), which should be positive, but is allowed to vary slightly

as well, i.e. |A′(t)| ≤ εφ′(t) for all time t. We refer the
interested reader to [17] for the technical details and a further
discussion of the well-definedness of the definition of AM and
IF. Note that our treatment of the respiratory signal is purely
phenomenological; that is, the parameters and indices we will
derive from the signal will be based solely on these signals
themselves, and not on explicit, quantitative models of the
underlying mechanisms.

Physiologically, the quantities φ′(t), A(t) and s in the model
(1) quantify the dynamics of the breathing process, which we
refer to as phenomenological dynamical features. For example,
one way to quantify the widely used notion breathing rate
variability (BRV) [20], [21], [22] is considering the IF and AM
[23]. Indeed, if φ′(t0) > φ′(t1) where t1 6= t0, we know that
the subject breaths faster at time t0 than at time t1. We mention
that this “fast-slow” momentary behavior in the respiratory
signal has been shown to be clinically informative and can
be helpful in the ventilator weaning prediction [22], [23] and
sleep stage estimation [16], [17].

Due to the inevitable measurement error and other outliers
appearing inside the system, we model the recorded respira-
tory signal as

Y (t) = R(t) + σ(t)ξ(t), (2)

where ξ(t) is a stationary generalized random process and σ
is a smooth function which varies slowly. Here ξ(t) models
the noise and other outliers and σ models the possible non-
stationary nature of the noise. A particular example for ξ
frequently encountered in practice is the Gaussian white noise.
We refer the read having interest to [17] for further information
about this noise model and its mathematical details.

To estimate the phenomenological dynamical features of
R(t), φ′(t) and A(t), from Y (t), we apply the Synchrosqueez-
ing transform (SST), which is a special reallocation technique
[19], [17]. In a nutshell, we evaluate any linear time-frequency
analysis on the observation Y (t), for example the short time
Fourier transform or the continuous wavelet transform, and
we take the phase information hidden inside the chosen linear
time-frequency analysis into account to obtain a sharpened
time-frequency representation, which is denoted as SY (t, ξ). In
addition to capturing the phenomenological dynamical features
of R(t), the SST provides a sharper time-frequency repre-
sentation compared with the other traditional time-frequency
analyses. See Figure 1 for an example of the respiratory signal
and its instantaneous frequency. We refer the reader to [19],
[17] for more details.

B. Empirical Intrinsic Geometry and its underlying Mathe-
matical Model

In many real-world applications, the seeming complicated
time series collected from the system is controlled by a
relatively simple underlying process. In some situations, when
the underlying evolutionary process lies on a low-dimensional
Riemannian manifold, it can be parameterized through a
manifold learning framework, which was first introduced and
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Fig. 1. The time-frequency representation of the respiratory signal determined
by the Synchrosqueezing transform (SST) superimposed by the respiratory
signal (the blue curve). The dominant black curve shown in the time-frequency
representation indicated by the red arrows is the instantaneous frequency (IF)
of the respiratory signal. It is clear that the subject breathes faster during the
time indicated by the blue arrow than that indicated by the green arrow. This
observation is captured by the IF indicated by the blue and green arrows.

studied in [24]. The main idea in [24]1 and its extensions to
time-series [9], [10] is to bridge between data mining, and
in particular manifold learning, and dynamical systems. The
authors’ observation that the accessible measurements at hand
do not necessarily convey the true essence of the system led to
the development of a more generalized model, which separates
between measurements and intrinsic hidden variables.

One particular example for such a dynamical system is the
respiratory signal recorded during sleep – we consider the
model that the evolutionary process governing the respiratory
signals is restricted to a low-dimensional Riemannian mani-
fold, which is fundamentally different from the phenomeno-
logical model (2). This dependency is encoded using the state-
space formalism and the model of the recorded respiratory
signal (2) is extended as follows:{

Y (t) = Rθ(t) + σ(t)ξ(t), [measurement equation]
dθi(t) = ai(θi(t))dt+ dwi(t), [state equation]

(3)
where θ(t) := (θ1(t), . . . , θd(t)) forms the inaccessible in-
trinsic state at time t that governs the respiratory signal Rθ(t)
and evolves in time with unknown drifts ai and independent
standard Brownian motions wi, i = 1, . . . , d.

The idea that lies behind the model (3) is twofold. First,
the measured signal Y (t) has typical (unknown) dynamics,
modeled here by the state equation, which need to be taken
into account and encoded in the desired features. Second, the
accessible signal is viewed as a measurement of the neural
system controlling the sleep cycle. While it can be effected
by numerous factors relating to the measurement modality
(e.g., measurements of airflow or chest movements), the used
equipment (e.g., the type of sensors and their exact positions),
and noise, the true intrinsic variable we have interest in is the
intrinsic states controlling the respiratory signal (represented

1In the original paper [24], the method was referred to as Nonlinear
Independent Component Analysis. However, for the sake of avoiding pos-
sible confusion with Independent Component Analysis, the name Empirical
Intrinsic Geometry (EIG) was adpated in [9], [10].

here by θ(t)). Indeed, the notation Rθ(t) implies that the res-
piratory signal depends upon the “real” physiological variable
θ in an unknown way, possibly through its amplitude Aθ(t),
wave shape sθ(·), or instantaneous frequency φ′θ(t).

In the above model (3), however, due to noise and other nui-
sance factors, the measurement Y (t) might be too redundant to
faithfully describe the dependency of the the respiratory signal
on the underlying state and its temporal evolutionary. Thus, to
improve the underlying state observability, we introduce a high
dimensional (possibly nonlinear) observer Φ to the measured
signal [12], i.e.,

Z(t) = Φ(Y (t)) ∈ Rm, [observation equation] (4)

where Φ is a map from the suitable scalar valued functional
space to the Rm-valued functional space and m ≥ 1 is an
integer specified by the observer.

With the sampled observation set Z := {Z(ti)}Ni=1, a
natural question is how to estimate θ(t), namely, the system
intrinsic state and dynamics of interest. Such an analysis may
complement the phenomenological dynamical features pro-
vided by the SST. While the SST mainly carries instantaneous
information, recovering the intrinsic state of the dynamical
system θ(t) provides a characterization of coarser, slower
dynamical changes of the shape and structure of the signal,
especially when the observer Φ is implemented as a transform
that relies on short time frames analysis.

It was shown in [24] that if the observations Z(t) can be
written as a regular deterministic function f : Rd → Rm of
the samples of the underlying state, i.e., Z(t) = f(θ(t)), then,
by Itô’s formula, we have

dZj(t) =

d∑
i=1

(
1

2
f jii + aif

j
i

)
dt+

d∑
i=1

f ji dwi(t) (5)

where f ji = ∂fj/∂θi and f jii = ∂2fj/∂θ
2
i . By a direct

calculation, the covariance matrix C(t) ∈ Rm×m of the
observation at time t define by

Cj,k(t) := Cov(dyj(t), dyk(t)), (6)

satisfies C(t) = J(t)JT (t), where J = ∇f ∈ Rm×d is the
Jacobian of f . This key result, along with the assumption that
θ(t) is locally stationary evolving much more slowly than
the observation scale so that the it stays closely on a low-
dimensional manifold M embedded in Rd, which is referred
to as the intrinsic state manifold, as well as the assumption
that f is stably invertible on its range, allow the authors in
[24] to estimate the inaccessible state through the solution of
an eigenvector problem, which will be described later in this
section. The main step leading to the solution theory is the fol-
lowing estimation. Suppose θ(t),θ(τ) ∈ M, Z(t) = f(θ(t))
and Z(τ) = f(θ(τ)). By the Taylor expansion of f , up to the
error term O(‖Z(t)−Z(τ)‖4) [24], we have:

‖θ(t)− θ(τ)‖2Rd = 1
2 (Z(t)−Z(τ))T

×[C−1(t) +C−1(τ)](Z(t)−Z(τ)).
(7)

Note that in our example, the function f leading to the
observation depends on the observer Φ. As a result, with
the estimated covariance matrix from the accessible collected
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data Z , we can build a graph Laplacian associated with the
intrinsic state manifold from the finite observations Z using
the estimated Euclidean distance between the corresponding
underlying samples θ(ti) (7). This graph Laplacian gives
rise to re-parametrization of the intrinsic manifold through
diffusion maps (DM) [25]. This re-parametrization procedure
aiming to extract the intrinsic dynamics of the observation is
referred to as Empirical Intrinsic Geometry (EIG).

The remaining key question is the choice or design of a
“proper” observer Φ in (4) to the system. In particular, in order
to accommodate the inevitable noise in real-world signals,
estimates of the conditional probability density p(Z|θ) (e.g.,
histograms) were proposed as observers in [9]. The analysis
relies on the following facts: (a) any measurement noise is
translated to a linear transformation in the conditional densities
domain, and (b) the distance (7), which is the Mahalanobis
distance, is invariant under linear transformations. Indeed,
these two facts allow for the estimation of the distance between
two nearby samples on the intrinsic manifold in adverse noisy
conditions. However, estimating the conditional probability
densities requires a large amount of data and often is not
feasible. Unfortunately, standard representations based on the
Fourier transform are also inadequate for respiratory signals.
By linear approximation of the function φ(t) around a nearby
sample at t0, the respiratory signal in (1) can be approximated
by

R(t) ≈ A(t0) s(φ(t0)− t0 + φ′(t0)t), (8)

As a result, the modulus of the Fourier transform of R(t)
around t0 is approximated by

|R̂(t0, ω)| ≈ |A(t0) ŝ(ω/φ′(t0))|, (9)

where ω is the frequency, R̂(t0, ω) is the Fourier transforms
of R(t) around t0 and ŝ(ω) is the Fourier transform of
s(t), respectively, assuming A(t) changes slowly with time.
The approximation in (9) implies that even an almost linear
function φ(t) (i.e., when the IF is φ′(t) ≈ 1) is translated to
large deformations in the Fourier domain in high frequencies
[26]. Consequently, if we take the short time Fourier transform
as the observer, the observations exhibit instabilities, thereby
leading to irregular f and a poor estimation of the Euclidean
distance on the underlying intrinsic state manifold (7).

To overcome the instability of the Fourier representation,
following [12], we use the scattering transform as an ob-
server. The scattering transform has a low variance because
it is based on first order moments of contractive operators,
it linearizes deformations, and it can represent effectively
intermittent behavior [26], [27]. The scattering transform is
computed based on a cascade of wavelet transforms and
nonlinear modulus operators [26]. Here, we briefly review the
construction procedure of its first and second order levels,
since they were empirically shown to provide a sufficient
representation of the signals considered in this paper.

Let ψ(t) be a complex wavelet, whose real and imag-
inary parts are orthogonal and have the same L2 norm.
Let ψj(t) denote the dilated wavelet, defined as ψj(t) :=
2−jψ(2−jt), ∀j ∈ Z. Let Φs(Rθ(t)) denote the observations
computed by applying the first and second level scattering

transform to the signal samples Rθ(t), which are given by

Φs(Rθ(t)) = (||Rθ(t) ∗ ψj1(t)| ∗ ψj2(t)| ∗ w(t)

∀(j1, j2) ∈ Zn, n ∈ {1, 2})j1,j2
where w(t) is a smoothing window, i.e., a scaling function
associated with the mother wavelet. The scattering transform
has been shown to be an observer that is especially suitable
for deformations and intermittencies [12]. In particular, it was
shown that it is regular with respect to time deformations.
Therefore, the application of the scattering transform to the
respiratory signal is particularly suitable.

Building on the generality of the described analysis, in this
study, we use it to represent the EEG signals as well. As the
respiratory signal, the EEG signal measures a physiological
phenomenon (“the brain activity”), but, it is subject to noise,
interferences, and nuisance factors. Likewise, it can be repre-
sented using a state-space model, similar to (3), given by{
X(t) = Eζ(t) + V (t) [measurement equation]
dζi(t) = αi(ζi(t))dt+ dui(t), [state equation]

where Eζ(t) ∈ Rm′
and X(t) ∈ Rm′

are the clean
and noisy EEG signals, V (t) is a measurement noise, and
ζ(t) := (ζ1(t), . . . , ζd′(t)) denotes the inaccessible intrinsic
state representing the brain activity that governs the EEG
signal Eζ(t) and evolves in time with unknown drifts αi and
independent standard Brownian motions ui, i = 1, . . . , d′. By
applying EIG to the recorded EEG signals, we may reconstruct
the intrinsic states ζ. We remark that this approach was applied
to identify the pre-seizure state from intracranial EEG data
[11], [12]. We refer the interested reader to [9], [10], [12] for
more technical details and references.

Before closing this section, we summarize the construction
of the graph Laplacian parametrization. In a nutshell, the main
ingredient is integrating local similarities at different scales,
which leads to a global description of the data set. Unlike
linear methods such as principal component analysis (PCA), a
graph Laplacian parametrization embodies nonlinear relation-
ships among the variables. In addition to the mathematical
analysis results [25], [28], [29], it has been shown to be
robust to noise perturbation [30], [31] and it is computationally
efficient. We outline the algorithm here and refer the readers
to these literatures for further theoretical details.

Take N multivariate measurement samples Z = {Z(ti)}Ni=1

and build a complete graph with vertices Z . We first build an
affinity matrix (or adjacency matrix) W of size N × N . The
affinity between a pair of samples is defined by a metric d in
the following way:

Wij = e−
d2(Z(ti),Z(tj))

ε , for i, j = 1, . . . , N, i 6= j. (10)

Note that according to the noise analysis in [31], when the
signal to noise ratio is small, it is beneficial to set the diagonal
terms of the affinity matrix to 0. In the present work, following
the analysis in [24], the metric we choose is the Mahalanobis
distance (7). It is clear that the matrix W is symmetric.
Note that theoretically (and practically) we can choose a
more general kernel function, but we focus on the Gaussian
kernel to simplify the exposition. Then we define the diagonal
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degree/density matrix D of size n× n, consisting of the sum
of rows of W:

Dii =

N∑
j=1

Wij , for i = 1, . . . , N.

Based on W and D, the graph Laplacian is defined by

L := I− D−1W.

Note that under the manifold assumption, D−1 exists. Also
note that D−1W can be viewed as a transition matrix of a
Markov chain on the samples. Since L is similar to the sym-
metric matrix I−D−1/2WD−1/2, it has a complete set of right
eigenvectors ϕ1, ϕ2, . . . , ϕN with corresponding eigenvalues
0 = λ1 < λ2 ≤ · · · ≤ λN ≤ 1, where ϕ1 = (1, 1 . . . , 1)T

[25]. By the above construction, the eigenvectors ϕ1, . . . , ϕN
are vectors in RN . Through the eigenvectors, the measurement
samples are mapped into Rd̂ via

Z(ti) 7→ (ϕ2(ti), . . . , ϕd̂(ti)), for i = 1, . . . , N. (11)

where d̂ is an estimate of the dimension of the intrinsic state
of the system and is usually d̂� N . Estimating the intrinsic
dimension of the system d extends the scope of the paper
and is empirically set according to the spectral gap in the
decay of the eigenvalues, as will be described in Section III.
In (11), we obtain a d̂-dimensional parameterization of the
measurements. In particular, we view the jth coordinate of the
parameterization of Z(ti), i.e., ϕj+1(ti), as the jth coordinate
of the recovered hidden intrinsic state θj(ti), which we view
as the features associated with the sleep stage in this analysis.
An illustration of the DM reparametrization process with the
first 3 non-trivial eigenvectors is shown in Figure 2.

III. MATERIAL AND METHOD

A. Data Collection
Standard polysomnography was performed with at least 6

hours of sleep to confirm the presence or absence of OSA
from the clinical subjects suspicious of sleep apnea in the
sleep center at Chang Gung Memorial Hospital (CGMH),
Linkou, Taoyuan, Taiwan. The institutional review board of
the CGMH approved the study protocol (No. 101-4968A3)
and the enrolled subjects provided written informed consent.
Four channel EEG signals (C3A2, C4A1, O1A2 and O2A1),
two channel EOG signals and chin EMG were recorded at the
sampling rate 200 Hz for sleep staging. Chest and abdominal
motions are recorded by the piezo-electric bands and airflow
was measured using thermistors and nasal pressure, both at the
sampling rate 100 Hz. All signals were acquired on the Alice
5 data acquisition system (Philips Respironics, Murrysville,
PA). Apneas and hypopneas were defined using AASM 2007
guidelines [3], and the apnea-hyponea index (AHI) provided
is the value determined during sleep.

Take the recorded EEG signals, denoted as Ek, k =
1, . . . , 4, and the respiratory signal, denoted as R. Suppose
the recording time period is T = [0, T ]. We divide T into
contiguous subintervals Ti of τ seconds long, i = 1, . . . , N ;
that is, T = ∪Ni=1Ti and Ti ∩ Tj = ∅ for all i 6= j. We call
Ti the i-th epoch. We will extract p > 0 features out of the
recorded respiratory and EEG signals for each epoch.

B. Features from the respiratory signal

Given a recorded respiratory signal R(t), we extract its
phenomenological dynamical features, including the instan-
taneous frequency φ′(t) and the amplitude modulation A(t)
by applying the SST. Denote the estimated instantaneous
frequency by φ̃′(t) and the amplitude modulation by Ã(t).
The mean of Ã(t) restricted to the i-th epoch, denoted as the
Ai, and the mean of φ̃′(t) restricted to the i-th epoch, denoted
as φ′i, form the first two features for the respiratory signal
for the i-th subinterval. The third feature, denoted as vi, is
obtained by evaluating the standard deviation of φ̃′(t) on the
interval of length 30 seconds centered on the middle of the
i-th epoch.

We apply the analysis described in Section II-B to R(t) in
order to complement the phenomenological dynamical features
and to obtain a characterization of the structural, slower
underlying variables of the data. Here as well we obtain the
graph Laplacian L(R) ∈ RN×N . Then, the eigenvectors and
eigenvalues of L(R) are given by L(R)ϕ

(R)
j = λ

(R)
j ϕ

(R)
j . The

first d̂(R) ≥ 1 nontrivial eigenvectors are chosen based on the
following “spectral gap” thresholding criteria

λ
(R)

d̂(R)+1
< δ and λ

(R)

d̂(R)+2
≥ δ, (12)

where 0 < δ < 1 is the threshold chosen by the user. Thus,
using (11), we obtain d̂(R) intrinsic dynamical features of the
respiratory system.

C. Features from the EEG signal

Given the EEG signal Ek(t) recorded from the k-th channel,
we run the analysis described in Section II-B and obtain
the graph Laplacian L(E,k) ∈ RN×N . Then, the eigenvec-
tors and eigenvalues of L(E,k) are given by L(E,k)ϕ

(E,k)
j =

λ
(E,k)
j ϕ

(E,k)
j with 0 = λ

(E,k)
1 ≤ λ

(E,k)
2 ≤ . . .. The first

d̂(E,k) ≥ 1 nontrivial eigenvectors are chosen based on the
thresholding criteria (12) with the same δ. Using the eigen-
vectors, each subinterval of the EEG signal Ek(t) is mapped
into a sub-vector of d̂(E,k) dimensions according to (11). By
collecting the low dimensional vectors of all the channel, we
obtain a vector consisting of

∑4
k=1 d̂

(E,k) intrinsic dynamical
features of the cortical activity for each subinterval.

D. Sleep Index

We consider the following two feature vectors. The first one
is extracted only from the respiratory signal and is referred as
the Respiratory Index:

ri :=
(
Ai, φ

′
i, vi, ϕ

(R)
2 (i), . . . , ϕ

(R)

d̂(R)+1
(i)
)
.

The second one is extracted only from the EEG signals and
is referred as the EEG Index:

ei :=
(
ϕ
(E,1)
2 (i), . . . , ϕ

(E,1)

d̂(E,1)+1
(i), . . . , ϕ

(E,4)
2 (i), ϕ

(E,4)

d̂(E,4)+1
(i)
)
.

An analysis result of the O1A2 EEG signal, denoted as(
ϕ
(E,1)
2 (i), . . . , ϕ

(E,1)
4 (i)

)
, is shown in Figure 2. Clearly dif-

ferent sleep stages represented in different colors have different
features and are well clustered. In addition, these different
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Fig. 2. The intrinsic dynamical features of the cortical activity extracted from the O1A2 EEG signal by the scattering Empirical Intrinsic Geometry (EIG).
On the left, the scattering EIG is illustrated – the graph Laplacian is built up from the Mahalanobis distance from the EEG signal via the scattering operator.
On the right, the top three nontrivial eigenvalues of the graph Laplacian are used to show the underlying evolutionary dynamics. The blue circles (resp. cyanid
circles, yellow circles and red circles) represent the awake (resp. REM, N1 and N2 and N3) sleep stage. It is clear that the extracted dynamical features well
parametrize the sleep stages in the sense that different sleep stages are located in different places.

sleep stages are organized in a continuous but nonlinear way
– from the right hand side of the figure to the left hand side
we have awake, REM, N1 and N2 and deep sleep stages.

Next, the 3 phenomenological respiratory features, the d̂(R)

intrinsic respiratory features and the intrinsic dynamical fea-
tures of the cortical activity at the i-th epoch are combined
together to comprise the Sleep Index with p =

∑4
k=1 d̂

(E,k) +

3 + d̂(R):
si :=

(
ri, ei

)
.

E. Sleep Stage Classifier

Support vector machine (SVM) is a commonly used tech-
nique for the purpose of classification in statistical learning
theory [32]. In a nutshell, SVM determines a hyperplane in
the space separating the data set into two disjoint subsets, such
that each subset is lying in a different side of the hyperplane.
With the help of the reproducing kernel Hilbert space theory,
SVM is generalized to the kernel SVM, which allows for classi-
fication with nonlinear relationship; that is, a nonlinear surface
separating the data set into two disjoints subsets may be used.
We refer the interested reader to [32] for technical details. For
the sake of identifying the (possible) nonlinear relationship
between different sleep stages, in this work we choose the
radial based function (RBF), K(x,x′) = exp(−‖x−x

′‖22
2σ2 ),

where σ > 0, as the kernel function. Note that our dataset
is multi-class – the response has more than 2 categories –
therefore, we need to further generalize the kernel SVM to
the multi-class SVM to complete our mission. To this end,
we apply the one versus all (OVA) classification scheme [33].
Despite its simplicity, the OVA classification scheme is highly
effective and useful, as was extensively shown and discussed in
[33]. Group data will be reported as mean ± standard deviation
unless otherwise specified.

IV. RESULT

Ten subjects without sleep apnea (AHI less than 5) were
chosen for this study. The demographic characteristics of the
individuals whose data was used are as follows: 6 males and
4 females, age: 45.9± 12.3 years, range 28− 61 years; BMI:
23.6±1.9kg/m2, range 21.5−28kg/m2 ; AHI: 1.9±1.1, range
0.4 − 3.4. The total recorded time are of length 384 ± 27.8
minutes with range 363 − 443 minutes and we have a sleep
period time of 367±27.5 minutes with range 338−428 minutes
for the sleep stage estimation.

We divide the whole night sleep into contiguous epochs of
length 2.56 seconds. We take δ = 0.01 and the dimension of
the Sleep Index p is 11.2±1.69. We consider the sleep stages
in this study:

R = {Awake, REM, N1,N2, N3} =: {1,2, . . . ,5}.

Here to simplify the notation, we reindex the set of sleep
stages and use the teletype-font to avoid confusion; that is, 1 is
the awake stage, etc. Then we generate the different indices,
{si}Ni=1, {ri}Ni=1 and {ei}Ni=1, from the recorded EEG and
respiratory signals. The sleep stages in R are determined by
the sleep expert as the ground truth.

The OVA kernel SVM with the RBF kernel with σ = 1
is applied to classify the different sleep stages. Suppose there
are n` subintervals with sleep stage `, where ` = 1, . . . ,5,
in the validation dataset. Denote ni,j to be the number of
subintervals with the sleep stage i as the gold standard, but
classified as the sleep stage j. We call the 5×5 matrix N with
the (i, j)-th entry ni,j the confusion matrix. We also define
the confusion percentage matrix P as a 5× 5 matrix with its
(i, j) entry ni,j∑5

j=1 ni,j
. We will call Pi,i the sensitivity (SE) of

the sleep stage i prediction, which is denoted as SE(i). We
will also report the overall accuracy (AC) denoted as AC :=
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∑5
i=1 ni,i∑5

i,j=1 ni,j
and the specificity (SP) of the sleep stage i denoted

as SP(i) :=
∑

j 6=i nj,j∑
k

∑
j 6=i nj,k

. Note that these definitions are direct
generalizations of the AC, SE and SP of the binary categorical
response data.

To prevent over-fitting and confirm the classification result,
we run the repeated random sub-sampling validation 25 times
and evaluate the average. To be more precise, we randomly
partition the data into the training dataset and the validation
dataset – the training dataset comprises 80% of the features
and the rest are used to form the validation dataset. The trained
classifier based on the training dataset is applied to predict the
sleep stages of the validation dataset.

With the above preparation, first, we show that the proposed
features capturing the sleep information hidden inside the res-
piratory signal are not only theoretically rigorously supported,
but also useful in practice. The overall AC is 81.7%. The
error bar of SE and SP of correlating the Respiratory Index
and the sleep stages R over 25 repeated random sub-sampling
validation for the 10 subjects is shown in the light gray curve
in Figure 3. The average SE’s (resp. SP’s) over 10 subjects
for the awake, REM, N1, N2 and N3 stages are 82%, 89%,
72%, 82% and 62% (resp. 81%, 81%, 83%, 82% and 82%).

Second, we show that the EEG Index also correlates with
the sleep stages. The overall AC is 71.6%. The error bar of the
SE and SP over 25 repeated random sub-sampling validation
for the 10 subjects is shown in the dark gray curve in Figure 3.
The average SE’s (resp. SP’s) over 10 subjects for the awake,
REM, N1, N2 and N3 stages are 70%, 67%, 50%, 74% and
54% (resp. 70%, 71%, 73%, 65% and 71%).

Next, we combine all the features extracted from the respi-
ratory signal and the EEG signals and show the result is better
than simply using the Respiratory Indices or EEG Indices. The
overall AC is 89.3%. The error bar of the SE and SP over 25
repeated random sub-sampling validation for the 10 subjects is
shown in the black curve in Figure 3. The average SE’s (resp.
SP’s) over 10 subjects for the awake, REM, N1, N2 and N3
stages are 85%, 94%, 79%, 90% and 68% (resp. 89% 89%,
90%, 87% and 90%).

We then apply the Mann-Whitney U test to test if the Sleep
Index better predicts sleep stage than the Respiratory Index
under our setup. The p value less than 0.01 is considered
significant. For the 25 realizations of sub-sampling validation
from 10 subjects, we obtained 250 SE’s and 250 SP’s for
different indices respectively. The Mann-Whitney U test is
applied to see if the SE’s and SP’s are significantly different.
The performance of the Sleep Index compared with the
Respiratory Index on the awake, REM, N1, N2 and N3 stages
in the sense of SE (resp. SP) are all significant with p-values
< 0.001 (< 0.001).

Lastly, to better present the classification result, the averaged
confusion percentage matrices over all subjects and sub-
sampling realizations based on the Respiratory Index, EEG
Index and the Sleep Index are shown in Figure 4. Note that
the diagonal entries are the SE’s of sleep stage prediction.

V. DISCUSSION

The results in Section IV show that an accurate estimation
of all sleep stages by solely analyzing the respiratory signal is
possible by combining EIG and SST. Indeed, in addition to the
overall AC 81.7%, the average SE is greater than 72% except
N3, and the average SP is greater than 81%. On the other
hand, we mention that while the features of the respiratory
signal extracted by EIG and SST are complementary, only EIG
can be applied to the EEG signal, since the EEG signal can
not be modeled by the adaptive harmonic model. The overall
AC based on EIG applied to the EEG signals is 71.8%, the
SE is greater than 67%, except N1 and N3, and the average
SP is greater than 65%. Namely, the performance of the EEG
Index is not better than the Respiratory Index. Nevertheless,
we see an improvement in the classification performance based
on the Sleep Index, which contains information from both
the respiratory and EEG signals. The overall AC is increased
to 89.3%, the average SE is now greater than 79% except
N3, and the average SP is greater than 87%. In addition,
it has been shown that the SE and SP of the Sleep Index
are significantly better than those of the Respiratory Index.
Moreover, the confusion percentage matrices also indicate
that except N3, the mis-classification does not land in any
specific sleep stage. The above findings lead to the following
two tentative conclusions: 1. in addition to the EEG signals,
the respiratory signal contains ample information about the
sleep stage; 2. combining the relevant but different information
hidden inside the respiratory and the EEG signals leads to a
better result.

The main innovation in our sleep depth analysis is the com-
bination of the clinical observation and modern adaptive signal
processing techniques. From the clinical standpoint, we take
the well known physiological fact that in addition to the brain
activity, sleep is a global dynamical process involving different
sub-system dynamics, in particular the significant changes in
the respiratory pattern among different sleep stages. From the
signal processing standpoint, we emphasize the importance
of the nonlinearity controlling the sleep cycle and focus on
finding suitable mathematical tools not only adaptive to the
signal but also with sufficient rigorousness to quantify the
clinical observation. Indeed, since the unaccessible intrinsic
sleep dynamics is reflected in the nonlinear behavior of the
respiration, and the two modern signal processing techniques,
EIG and SST, have being theoretically studied to well quantify
these nonlinearity, we obtain effective features by analyzing
the recorded respiratory signal, which surrogate the intrinsic
sleep dynamics.

The meaning of accuracy deserves some discussion. It is
well known that the sleep stage determination agreement
between different sleep experts is limited to 85% even when
the subjects under examination are normal, and it is even worse
on the abnormal subjects [4]2. Although our cases are not
diagnosed as sleep apnea, they cannot be considered as in
the normal population either, thereby attaining accuracy rates

2It is reported in [4] that the mean agreement in the normal subset is higher
(mean 76%, range 65-85%) than in the subset of sleep disordered breathing
(mean 71%, range 65-78%).
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Fig. 3. The error bar of the performance of each features for predicting the sleep stage. The upper (resp. lower) subfigure is the sensitivity (resp. specificity)
of predicting different sleep stages by different indices over 25 repeated random sub-sampling validation. The black (resp. light gray and dark gray) curve is
for the Sleep Index (resp. Respiratory Index and EEG Index). The x-axis is the subject index ranging from 1 to 10.

Fig. 4. The averaged confusion percentage matrices over all subjects and sub-sampling realizations based on the Respiratory Index (resp. EEG Index and
Sleep Index) is shown in the left (resp. middle and right) subfigure. The percentage is represented by the color. The darker the entry is, the higher the value
is. The precise value is shown in the color bar on the top of each matrix. Here, 1 (resp. 2, 3, 4 and 5) in the x- and y-axis tick label stands for awake (resp.
REM, N1, N2 and N3). It is clear to see the inclination of mis-classifying N3 into N2.

higher than 80% in our subjects may not be meaningful. On
the other hand, we found that the classification of N3 stage
is consistently worse and its mis-classification tends to land
in N2, as is shown in Figure 4. Notice that the subjects in
our study are on average 48 years old, and the distribution
of N3 sleep stages in the normal population of this age is
4 − 20%. However, the N3 sleep stages in our study cases
is 3.1%± 3.26% with 25% and 75% quantiles 0.8% and 5%
respectively, which is much fewer than those in the normal
population. Since the number of N3 in the training set is
relatively small, even by applying the weighted SVM to handle
the unbalanced data, we do not expect to attain a compatible
classification rate of N3. This unbalanced training set issue,
combined with the stable breathing pattern during N2 and
N3, might explain the inclination of mis-classifying N3 into
N2. Furthermore, while the accuracy of our classification is
compatible with/better than the state-or-art reported results, we
are able better classify between different sleep stages. Indeed,
in [14], the overall accuracy of classifying awake and sleep
is 83.6% based on the respiratory signal; in [13] an averaged
respiratory rate classifies REM and NREM with accuracy over
85%; in [15], a notch filter based IF estimator is applied
to extract respiratory features, which classifies awake, REM
and NREM with mean accuracy approximately 70%; in [17],
the IF estimated by SST is shown to be able to distinguish
awake, REM, shallow and N3 with statistical significance.

With the above discussions, we conclude that our features and
the selected classifier are accurate.

The sleep depth estimation by the EEG Index is inferior
with respect to the traditional EEG analysis. To understand
this result, we briefly revisit how a sleep expert determines the
sleep stage. Based on the protocol criteria, in addition to an
EEG signal of duration that exceeds 30 seconds, the expert also
takes into account past and future EEG signals to determine the
sleep stage. However, in our study, the EEG Index is based
on the signal in epochs of length 2.56 seconds. The choice
of 2.56-second interval is for the sake of balancing between
the dimension and number of data points in EIG. Although
the local covariance structure of the EEG signal is taken into
account in the EIG analysis, this relationship is different from
the protocol criteria. As a result, we do not expect to obtain a
compatible stratification power. However, we see that even if
we only focus on these short-term EEG signals, we still can
predict the sleep stage up to some accuracy and it does help
to attain a better classification rate when combined with the
Respiratory Index. This hints the possibility that some useful
information is hidden inside a finer scale EEG signals. This
interesting potential will be reported in the future study.

The discussion would not be complete without mentioning
the shortcomings of our study. First, we focus on a small
database containing only 10 relatively normal subjects in this
study. To confirm the usefulness of the proposed features,
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we need to study a larger database with different types of
subjects. Second, the chosen features, in particular the features
selected by EIG, are subject-dependent. Indeed, different sub-
jects might have different dynamical systems and the number
of dominant components determined by EIG might vary. A
theoretical and practical study of integrating the proposed
features among different subjects is undergoing.

In conclusion, by applying modern signal processing tech-
niques to EEG and respiratory signals, we find a set of suitable
features, which allow us to predict the sleep stages accurately.
In addition to gaining insight into the dynamics controlling
the sleep dynamics, the automatic annotation system based on
the analysis might lead to an objective classification as well as
reduce the required human expert analysis involved in sleep
evaluation.
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