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Abstract

Recent advances have led to renewed interest in ballistocardiography (BCG), a non-invasive 

measure of the small reaction forces on the body from cardiovascular events. A broad range of 

platforms have been developed and verified for BCG measurement including beds, chairs, and 

weighing scales: while the body is coupled to such a platform, the cardiogenic movements of the 

center-of-mass (COM) are measured. Wearable BCG, measured with an accelerometer affixed to 

the body, may enable continuous, or more regular, monitoring during the day; however, the 

signals from such wearable BCGs represent local or distal accelerations of skin and tissue rather 

than the displacement of the body's COM. In this paper we propose a novel method to reconstruct 

the COM BCG from a wearable sensor via a training step to remove these local effects. 

Preliminary validation of this method was performed with fifteen subjects: the wearable sensor 

was placed at three locations on the surface of the body while COM BCG measurements were 

recorded simultaneously with a modified weighing scale. A regularized system identification 

approach was used to reconstruct the COM BCG from the wearable signal. Preliminary results 

suggest that the relationship between local and central forces is highly dependent on both the 

individual and the location where the wearable sensor is placed on the body and that these 

differences can be resolved via calibration to accurately measure changes in cardiac output and 

contractility from a wearable sensor. Such measurements could be highly effective, for example, 

for improved monitoring of heart failure patients at home.

Index Terms

ballistocardiography; wearable sensing; sensor informatics; home health monitoring

I. Introduction

Each year, one in every four deaths in the United States is due to cardiovascular disease 

(CVD), and 47 percent of sudden cardiac deaths occur outside of the hospital [1]. 

Continuous heart monitoring has the potential to not only reduce costs associated with 

invasive and minimally-invasive testing but also to improve the quality of life for many who 

are struggling with CVD and to provide the capability of early detection and preventative 

care. One method in development for noninvasively monitoring the mechanical aspects of 

cardiovascular function is ballistocardiography (BCG).
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The BCG phenomenon was first discovered in the 1800s following J. W. Gordon's paper in 

1877 explaining how the needle on a weighing scale fluctuates with the rhythm of the heart. 

Gordon speculated that the cause was ejection of blood into the aorta, comparing the recoil 

to “a ball propelled from a gun [2].” Studies with human subjects in the mid-20th century led 

to the discovery that the BCG can be used to detect heart malfunctions [3]. In an attempt to 

simplify the instrumentation required for measuring such vibrations of the body in response 

to the heartbeat, researchers developed another similar technique named seismocardiography 

(SCG), a measure of local accelerations of the chest wall resulting from the heartbeat [4]. In 

contrast to BCG, which required elaborate tables and beds, SCG could be measured by 

simply placing a small accelerometer on the chest of a supine subject. However, as the 

subsequent revolution in solid-state electronics led to significant progress in electrical heart 

monitoring techniques, and imaging technologies (ultrasound and magnetic resonance 

imaging, MRI) became widely prevalent in clinical practice, BCG research reached a nadir 

in the late 1980s [5].

Over the past two decades, developments in the semiconductor process have led to 

extremely low-cost and low-power micro-electromechanical systems (MEMS) sensors and 

microprocessors. These developments promise the ability to precisely measure and process 

BCG and SCG signals with extremely small and low-cost equipment in ways that have 

never before been possible. Simultaneously, the need for inexpensive medical equipment 

capable of measuring large quantities of physiological parameters outside of clinical settings 

– such as in the home – is imminent. Interest in the BCG is thus returning, and the volume of 

publications has been trending upward [5].

Scales, chairs, and beds were developed in the last few decades to measure the BCG and 

SCG signals at home [6-10]. These platforms are relatively well understood, however they 

do not offer the ability to monitor cardiac function continuously throughout the day. 

Wearable accelerometers placed at arbitrary locations on the upper body do offer this 

capability, but the signals they produce are fundamentally different from both the BCG and 

SCG: while the BCG represents displacements of the body's center-of-mass (COM), and the 

SCG represents accelerations of the chest wall, the wearable BCG represents accelerations 

of the surface of the skin at an arbitrary location on the upper body. As we showed in a 

previous paper, simply interpreting the wearable BCG signal as a COM BCG – as has been 

the norm in the existing literature – yields incorrect cardiac assessments [11]. This paper 

moves far beyond our previous work to build a framework for reconstructing the COM 

BCG from the wearable sensor via a calibration, or training, step. Furthermore, we 

demonstrate for the first time that COM BCG parameters can even be measured from the 

vertical accelerations of the wrist.

Although the wearable signal differs from these two widely-studied signals, it is related to 

them via the mechanics of the body. These underlying relationships can be leveraged to 

cross domains between different sensor modalities. In this paper we propose the relationship 

between the wearable BCG and the traditional BCG (which we will call the COM BCG) 

shown in Fig. 1, develop an improved numerical integrator to estimate the displacement of a 

wearable sensor from its acceleration, build a framework to resolve the COM BCG from the 
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wearable BCG, and provide preliminary validation of this framework with data from human 

subjects.

II. Physical Overview and Hypotheses

The BCG is a displacement measurement that represents small reactionary forces of the 

body's COM resulting from cardiac ejection of blood into the vasculature [2, 12]. In this 

paper we examine the BCG signal in the vertical, or head-to-foot, axis when the subject is 

standing upright. Recently, several researchers have attempted to measure BCG signals from 

wearable devices, most notably a miniature accelerometer attached to the surface of the skin 

[13, 14]. Although this approach may yield continuous BCG recording in naturalistic 

environments, there are several outstanding scientific questions that must be addressed to 

properly compare between the two domains - wearable versus COM BCG.

The results of our previous study suggest that these whole-body (COM) displacements most 

closely match those at the surface of the skin when the wearable sensor is located at regions 

on the body that are well-coupled to the rigid skeletal system. Specifically, acceleration 

measurements at these locations closely matched the second derivative of the BCG as 

measured with a weighing scale [11]. This paper builds on our previous work by examining 

the relationship between these two fundamentally different BCG measurements and 

developing a novel method to reconstruct the COM BCG from the wearable signal. To 

achieve this reconstruction, our method relies heavily on the following hypothesis: a first-

order approximation of the COM BCG can be obtained by twice integrating the wearable 

BCG.

To motivate the need for double integration, it is important to first highlight one aspect of 

the wearable BCG vis-à-vis the COM BCG. The wearable BCG is a measure of the 

acceleration of the sensor's mass on the surface of the skin. By contrast, the weighing scale 

is a measure of whole-body displacement via force measurements and Hooke's law. These 

two signals are fundamentally different and related primarily by the integral operator. When 

modeling the relationship between the wearable and COM BCG signals, it is important to 

first integrate the wearable acceleration signal twice in order to obtain an estimate of the 

sensor's relative displacement.

A priori knowledge about the physical behavior of the wearable sensor was leveraged to 

improve this displacement estimate. Since the accelerometer was physically attached to the 

skin and not able to move freely in space, we assume that nearly zero low-frequency energy 

should exist in the acceleration, velocity, and displacement. (If low-frequency components 

in these signals were allowed to persist, small errors in the acceleration measurement would 

accumulate into large velocities and displacements via the integral operators, and would thus 

incorrectly signify a slow drift of the sensor's position away from the thorax.) Therefore, 

numerical integration was performed in series with high-pass filters as shown in Fig. 2 to 

eliminate spurious low-frequency energy, and the cutoff frequency of the filters was 

determined empirically. The output of this sequence of operations was an estimate of the 

wearable sensor's displacement as a function of time, which was then used in subsequent 

steps to estimate the displacement of the body's center of mass (COM).
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To estimate the COM displacement, we would like to model the relationship between the 

wearable and COM BCG as a mathematical system H as shown in Fig. 1. In this model, the 

input to H is the wearable sensor's estimated displacement and the output is the COM BCG 

as a direct measure of the COM displacement. Single-input-single-output (SISO) mechanical 

systems, such as the classic spring-mass-dashpot system, are generally causal as 

perturbations at the input result in changes at the output only after they occur. However, 

since the genesis of energy in mechanical cardiac signals like the BCG is myocardial 

contraction and relaxation inside the thorax, and the resultant ejection of blood into the 

aorta, we hypothesize that wearable BCG signals recorded with an accelerometer on the 

surface of the body and COM BCG signals recorded with a weighing scale at the feet will 

both be coupled to the same source, the heart muscles and central blood movement, via two 

different unknown mechanical systems in the body. In this situation the outputs of two SISO 

systems, HWEAR and HCOM, are the displacements of the wearable and COM BCG signals, 

and these two systems share a common input originating from the heart. If this hypothesis is 

accurate, H will be non-causal because it involves the inverse of a causal system, HWEAR, in 

series (cascaded) with HCOM. Because inverting a causal system in general results in a non-

causal one, the overall series system will also in general be non-causal.

Consequently, we posit that an approximation of H can be obtained via system identification 

by training a non-causal linear finite impulse response (FIR) filter Ĥ with simultaneous 

recordings of the wearable and COM BCG. Although H is almost certainly an infinite 

impulse response (IIR) system due to its mechanical origins in HWEAR and HCOM, an FIR 

filter of sufficient length can approximate an IIR system provided that the latter is stable. As 

instability would imply oscillations in the mechanical systems over time of sustained or 

increasing magnitude, stability of H is almost certainly a reasonable assumption. Therefore, 

if Ĥ can be made long enough to include most of the energy in the true system, Ĥ should 

provide a good reconstruction of the COM BCG from the wearable BCG. The methods we 

used to find Ĥ and the error metrics we used to quantify its goodness of fit are explained in 

the following section.

III. Methods

A. Hardware and Data Acquisition

COM BCG recordings in the head-to-foot axis were measured with a modified weighing 

scale, wearable BCG measurements were made with a high-resolution instrumentation-grade 

accelerometer oriented along the same axis, and electrocardiogram (ECG) measurements 

were made with handlebar and gel electrodes. For a detailed description of the hardware, 

refer to [11]. Two ECG waveforms were captured simultaneously to synchronize the 

wearable and COM BCGs, which were recorded with separate data acquisition units and 

sample rates of 120 Hz and 1000 Hz, respectively. All signals were recorded by a PC, 

resampled to a sample rate of 1000 Hz, synchronized via cross-correlation of the two ECG 

recordings, and analyzed offline.
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B. Human Subjects

Fifteen healthy subjects with differing anthropometrics were recruited for this study 

approved by the Georgia Institute of Technology (GT) Institutional Review Board (IRB). 

Among these subjects were ten men and five women aged 22 to 57. Body mass ranged from 

49 kg to 104 kg and height spanned 160 cm to 196 cm. The subjects were asked to wear 

three gel electrodes for measuring the ECG while also standing on a modified weighing 

scale to simultaneously capture the COM BCG. Additionally, subjects were asked to wear 

an accelerometer adhesively attached to the skin at each of three locations on the body: the 

body of the sternum halfway between the manubrium and the xiphoid process, the point of 

maximum inflection (PMI) on the pectorals directly above the heart, and the lumbar 

vertebrae at the lower back near the center of mass (COM). The subjects were asked to stand 

as still as possible on the scale while wearing the ECG electrodes and the accelerometer, and 

recordings approximately one minute in length were captured with the accelerometer at each 

of the three locations resulting in 45 total recordings.

In addition to the fifteen-subject trials, recordings were also made on one individual over a 

span of nine consecutive days to determine if cardiovascular health could be monitored over 

time via the wearable BCG. The wearable sensor was placed at the sternum, PMI, and lower 

back as before; however, additional recordings were also taken at the wrist. For the wrist 

trials, the wearable sensor was attached to the body where a person would typically place the 

face of a wrist watch. Cross validation was not used. Instead, Ĥ was trained on data from the 

first day, the COM BCG was reconstructed from the wearable BCG on each day using Ĥ , 

and these reconstructions were evaluated using the same error metrics as before.

C. Cross Validation and Error Metrics

K-fold cross validation is a technique commonly used to perform model selection in 

statistical and machine learning problems [15]. To use this tool on our dataset we split the 

BCG and ECG waveforms in each of the 45 recordings into individual heartbeats. Within 

each recording, five equal-sized sets of heartbeats were randomly partitioned. The signal 

processing steps described in the next section were performed on each recording five times, 

each time using four heartbeat sets to train the model (the training set) and using the 

remaining heartbeat set to perform a reconstruction of the COM BCG from the wearable 

BCG (the validation set). K=5 was chosen as a trade-off between immunity to overfitting for 

large values of K and low signal-to-noise-ratio (SNR) of the ensemble average when using a 

small number of heartbeats in the validation set.

Three error metrics were calculated from each fold's reconstructed COM BCG. These error 

metrics were the R-J interval, R-I interval, and I-J amplitude. These values are classical 

BCG measures of different cardiac metrics, and a good reconstruction of the COM BCG 

should accurately reproduce these values [7, 13, 16]. The average of these three values 

across all recordings and folds was determined and used as a composite error score to select 

each parameter in the model. 1-D error traces were generated by calculating the composite 

error score via cross validation for different values of one parameter while holding other 

parameters constant. Likewise, 2-D error traces were performed by varying two parameters.
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D. Signal Processing

Fig. 2 shows a block diagram of the signal processing subsystems. First, band-pass filtering 

was performed on the BCG signals to eliminate out-of-band noise. The passband for these 

filters was 0.8 Hz – 8.0 Hz. Although the BCG contains frequency components higher than 

8.0 Hz, we found that removing them improved the reconstruction (see below).

Next, a preprocessing step was necessary to increase the signal-to-noise ratio (SNR) of the 

two BCG signals. As described in the literature, the SNR of repeating events can be 

improved by leveraging the uncorrelated nature of the noise via ensemble averaging 

[citation needed]. An ensemble average of each signal was therefore produced by calculating 

the sample-by-sample mean with respect to fiducial points synchronous to the cardiac cycle. 

Similar to previous studies, the R-peak in the ECG was used as the fiducial point [13, 16, 

17]. The minimum R-R interval for each recording, RRMIN, was used as the total number of 

samples in the ensemble average including and following the R-peak. A smaller number of 

samples before the R-peak were also included in the ensemble average to increase the total 

number of samples. This length was called the padding, tPAD, and the total number of 

samples in the ensemble average was therefore RRMIN + tPAD. Since cross validation was 

used, separate ensemble averages were constructed for the training and validation sets.

Finally, an estimate for the accelerometer displacement was determined via double 

integration and high-pass filtering. Numerical integration was performed with trapezoidal 

integrators, and high-pass filters were implemented with moving average subtractors. The 

output of each high-pass filter was its input subtracted by its moving average, and the length 

of the moving average was the same for all the filters. The optimal length was determined 

empirically with a 1-D error trace and found to be 100 samples for our sample rate of 1000 

Hz. This resolves to a cutoff frequency of 6.0 Hz (corresponding to the filter's -3 dB point) 

and a maximum passband ripple of 1.45 dB.

E. System Identification via Least Squares Regression

A training step was used to find the impulse response of Ĥ. For any FIR filter, there are 

three parameters that must be optimized with the objective of achieving generalization and 

thereby avoiding overfitting: (1) causality of the system, (2) length of the filter, and (3) 

values for the filter weights. The following approach was used for optimizing these three 

parameters.

First, the COM BCG ensemble average was modified with a variable delay. A zero delay 

resulted in the best-fit causal impulse response while delays greater than zero produced a 

non-causal FIR. Performing cross validation for each case revealed that causality had a large 

impact on the reconstruction accuracy.

Second, the length of the filter was determined using 2-D error tracing. A sweep of filter 

lengths from 1 to 800 samples and padding lengths from 0 to 400 samples was performed 

and the values of these two parameters corresponding to the minimum composite error score 

from cross validation were found.
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Third, the impulse response of the optimal FIR filter was found via least-squares regression. 

In a typical discrete linear system, an unknown signal x modified by a known linear 

transform A produces a known output b as shown in (1).

(1)

To find the best-fit FIR filter of order m to transform one signal f of length N into another 

signal d, a linear equation can be constructed in the same form. In this case, the A matrix 

contains samples from the input signal f, b contains samples from the desired output signal 

d, and x is a 1-D vector of FIR coefficients, or taps. This process is broadly named least 

squares filtering.

The explicit form of A, b, and x is shown in (2), (3), and (4). In this paper, signal f is the 

vector of samples from the wearable BCG displacement ensemble average, d is the vector of 

samples from the (possibly delayed) COM BCG ensemble average, and x contains the 

adaptive filter coefficients.

(2)

(3)

(4)

This particular form of A, b, and x is sometimes called the covariance method because it 

uses only data that is explicitly available and does not assume that samples outside of the 

available data window are zero [18]. In this context all of the samples in the ensemble 

average are used and we do not assume that samples outside of the ensemble average 

window are zero. This results in a matrix equation that is more computationally expensive to 

solve but improves the accuracy of the solution.

F. Tikhonov Regularization

The regression was also regularized to reduce overfitting. Since the data included 

imperfections from various sources such as electrical noise, postural sway of the subjects, 

and motion artifacts from small movements like head-tilts, a simple least squares solution 
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would overfit the training data reducing the accuracy of the reconstruction. Tikhonov 

regularization was employed to mitigate this effect [19].

The ordinary least-squares solution x is that which minimizes the square of the l2-norm of 

the error as shown in (5). The solution x̂ is shown in (6).

(5)

(6)

Since ordinary least-squares is highly sensitive to noise, x̂ can be regularized by adding a 

term to the minimization expression as shown in (7).

(7)

In this updated loss function, Γ is a Tikhonov matrix whose effect is to give preference to 

certain solutions. For this study, the scaled identity matrix in (8) was chosen.

(8)

This particular Tikhonov matrix causes the solution vector x̂ to shrink toward the origin. 

Small values of λ result in overfitting while large values of λ result in underfitting. In other 

words, the solution approaches the ordinary least squares solution as λ→ 0 and zero as λ→ 

∞. The optimal value of λ was 6.7 × 10-4 when displacements were expressed in meters as 

determined with a 1-D error trace. (Tikhonov regularization is also known as ridge 

regression in statistics, and this kind of error trace is often called a ridge trace in that field 

[20].) The Tikhonov-regularized solution is shown in (9).

(9)

In this case, the solution x̂ is the FIR filter's vector of coefficients and the impulse response 

of Ĥ.

G. Evaluating Results

The methods described above were evaluated using the composite error score. 2-D error 

traces were generated by sweeping the padding and filter lengths with cross validation on 

the entire dataset. The optimal values for these two parameters were chosen by finding the 

minimum average composite score for each of the three locations on the body to determine 

if these parameters depended on the wearable sensor's location. This process was performed 

separately for the causal and non-causal cases to support or refute our causality hypothesis. 

Additionally, the individual error values were extracted from the cross validation step for the 

sternum, PMI, and COM. Finally, uncalibrated reconstructions were also made by using the 

average FIR filter for each body location across all subjects to reconstruct the COM BCG 
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for each subject. The error scores for these uncalibrated reconstructions were used to 

evaluate whether it would be possible to achieve accurate results without raining step.

IV. Results and Discussion

A. Results for All Subjects

Fig. 3 shows 2-D error traces for causal and non-causal reconstructions of the COM BCG 

for each wearable sensor location on the body. Non-causal filters clearly resulted in a much 

better reconstruction than the causal ones, suggesting that the underlying impulse response 

of H is indeed non-causal. There was little difference in the optimal padding and filter length 

between the different locations on the body, although the optimal padding length for the 

COM was slightly longer than the other two. The optimal padding (tPAD) and filter length 

(m) in samples were 141 and 558 for an overall error of 0.1194 at the sternum, 145 and 550 

for an error of 0.1240 at the PMI, and 162 and 550 for an error of 0.1124 at the COM. The 

COM was still the best location to wear the sensor, but only slightly. The raw error metrics 

from cross validation testing for each subject with these values for tPAD and m are shown in 

Table 1.

While Fig. 3 shows that the best reconstructions were from the COM for short filter lengths, 

suggesting that the COM displacement is probably closest to the true COM BCG and 

agreeing with the results of our previous paper, it is interesting to note that when the 

techniques in this paper were applied the difference between wearable locations almost 

completely disappeared. After an initial training step, or calibration, reconstructing the COM 

BCG from the wearable BCG was just as accurate from one location on the body as another. 

As a result, the wearable device could be placed on any location on the body by the user 

themselves, and after a calibration step with the weighing scale the COM BCG could be 

accurately reconstructed for the remainder of use.

Fig. 4 shows the waveforms of an example reconstruction from the COM. The uncalibrated 

reconstruction in this example appears qualitatively worse than the calibrated, or trained, 

reconstruction. This observation is supported by the Bland-Altman plots [21] in Fig. 5 which 

compare the accuracy of the two methods in measuring I-J amplitude, R-I interval, and R-J 

interval of the COM BCG for all subjects. Specifically, the standard deviation of the 

uncalibrated measurements is much larger than the calibrated ones. Since the uncalibrated 

results are worse in all three metrics, calibration is clearly needed to obtain the most 

accurate results. This suggests that there may be large differences in the true impulse 

response H between different locations on the same subject and between different subjects at 

the same location.

B. Results for Multi-Day Trials

The error metrics over all nine days of the multi-day trials appear in Fig. 6. The I-J 

amplitude error spanned -16.2% to +8.4%, the R-I interval error was between -13.5% and 

-0.9%, and the R-J interval error was between -6.2% and -0.5%. As these errors were 

relatively low and did not trend in any particular direction with time, the wearable BCG is 

likely most consistent within the same subject and location on the body. It may therefore be 

possible to measure cardiac changes over time with the wearable BCG at one location – such 
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as with accelerometers embedded in a smartwatch – using one initial calibration with the 

scale.

V. Conclusion and Future Work

In this paper we describe, for the first time, a method for estimating the COM BCG, a 

measure of the displacement of the body's center of mass, with an accelerometer placed on 

the surface of the skin and a simultaneously-acquired ECG. Preliminary validation for this 

new technique was performed on data from 15 consenting human subjects. Whereas it has 

been shown that the acceleration on the surface of the skin differs substantially from whole-

body displacement measurements taken with traditional BCG platforms, training this 

algorithm with a COM BCG recording from a modified weighing scale allowed accurate 

reconstructions of the COM BCG from three arbitrary locations on the body for fifteen 

subjects at rest. (And from the wrist on one subject at rest over several days.) This technique 

could therefore enable trending cardiac output and contractility with a simple wearable 

device using published BCG analysis tools via a simple calibration step.

To the best of our knowledge, this is also the first demonstration of central hemodynamic 

force measurement from the wrist. Because the BCG is a measurement of central 

hemodynamic forces, the ability to measure the signal from a distal location, such as the 

wrist, potentially has profound applicability to the important problem of cuffless blood 

pressure measurement. In future work, by pairing the measurement of central BCG forces 

from the wrist with additional local pulse measurement modalities – such as 

photoplethysmography – we plan to develop novel pulse-transit time based approaches for 

blood pressure monitoring in a smart-watch form factor.

Further studies are also needed to validate this technique for subjects whose cardiovascular 

systems are modulated or diseased since this study included only healthy subjects in 

quiescence. Freedom to measure the BCG beyond large appliances and the ability to place 

the wearable sensor on arbitrary places on the body would open up many opportunities for 

heart monitoring throughout the day, and we intend for this paper to serve as a framework 

for enabling new BCG modalities and applications going forward.
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Fig. 1. 
Block diagram modeling the relationship between the wearable BCG and the COM BCG. 

Ejection of blood into the aorta causes displacement perturbations at the surface of the skin 

and the center-of-mass via two different mathematical systems.
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Fig. 2. 
Block diagram showing the signal processing subsystems. The calibrated configuration is 

shown in (a), where the system is first trained on the individual, and (b) shows the 

uncalibrated configuration, where the system is pre-trained on a population of subjects.
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Fig. 3. 
Contour plots of 2-D error traces for the causal and non-causal BCG reconstructions from 

the wearable BCG at the sternum, PMI (point of maximum inflection), and COM (lower 

back). The plots were generated on the same color scale so that comparisons can easily be 

made between them. The causal filters resulted in very large errors while the non-causal 

filters performed well with an average error across the three error metrics of about 12 

percent at the optimal filter length and padding.
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Fig. 4. 
Waveforms showing the reconstruction process of a recording with the wearable sensor 

placed at the COM. The calibrated reconstruction is visibly superior to the uncalibrated 

BCG.
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Fig. 5. 
Bland-Altman plots comparing the calibrated (blue) and uncalibrated (red) methods for I-J 

amplitude, R-I interval, and R-J interval measurements. The calibrated reconstructions had a 

much smaller standard deviation than the uncalibrated counterparts.
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Fig. 6. 
Error metrics for reconstructing the COM BCG from the wearable BCG measured at the 

wrist. The algorithm was trained on the first day, and that calibration was used for each 

subsequent day. The R-J interval reconstruction provided the lowest error of the three key 

features.
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