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Abstract

The current diagnosis process of dementia is resulting in a high-percentage of cases with delayed 

detection. To address this problem, in this paper we explore the feasibility of autonomously 

detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal 

processing approach equipped with a machine learning paradigm to process and analyze real 

world data acquired using home-based unobtrusive sensing technologies. Using the sensor and 

clinical data pertaining to 97 subjects, acquired over an average period of 3 years, a number of 

measures associated with the subjects' walking speeds and general activity in the home were 

calculated. Different time spans of these measures were used to generate feature vectors to train 

and test two machine learning algorithms namely support vector machines and random forests. We 

were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 

and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This work 

is of great significance since it can potentially assist in the early detection of cognitive impairment 

in older adults.

Index Terms
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I. Introduction

PEOPLE aged 65 and older constitute the fastest growing population segment in North 

America, Europe, and Asia. According to the US Census Bureau, the global number of 

adults over the age of 60 is expected to reach 1.2 billion by the year 2025 [1]. In Canada, the 
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proportion of Canadians aged 65 and over is expected to represent 26.4% of the total 

population by the year 2031 [2]. This statistic poses a serious problem to the health care 

system since older adults possess a higher propensity to suffer from chronic illnesses or 

dementia. Statistics show that 1 in 11 Canadians over the age of 65 has Alzheimer's disease, 

and given that the Canadian population is aging, in just 5 years, as many as 50% more 

Canadian families could be facing Alzheimer's disease or another dementia [3].

Although clinical tests and procedures for diagnosing dementia have been very accurate in 

identifying dementia, studies have shown that there is a high degree of underrecognition of 

dementia [4]. Those studies have shown that in more than 50% of the cases, it is the family 

members who serve as the source of primary recognition and not the general practice 

physicians. This delay in detecting dementia can have detrimental effects especially to 

subjects with reversible forms of dementia, who form up to 11% of the cognitively impaired 

population, since failing to recognize some of these causes early might lead to irreversible 

damage [5]. Therefore, early detection of dementia is of great significance because it 

increases the chances of successfully reversing the cause of dementia. In addition, for 

subjects with irreversible dementia, although no treatment exists, early detection of dementia 

still provides them and their families with an opportunity to proactively plan for their future. 

They can seek the appropriate interventions that enhance daily functioning and safety of the 

impaired member and that reduce any emotional stress and individual fear [6]. However, 

early detection of dementia can be very challenging with the contemporary detection 

process.

Current detection process starts by general practice physicians referring patients to memory 

clinics for cognitive assessments after repeated reports of memory problems by the patients 

themselves, family members, or caregivers. In memory clinics, cognition of patients is 

assessed using questionnaires, screening tools, and episodic examinations of cognitive 

capacity such as the Montreal Cognitive Assessment (MoCA) [7], the Mini-Mental State 

Examination (MMSE) [8], and the Clinical Dementia Rating (CDR) [9]. However, the 

detection process suffers from inherent shortcomings. First, some studies have found that 

older adults or families reported memory problems in only a small percentage of cases in 

which the older adult had been clinically labeled as cognitively impaired [10]. This could be 

because older adults might be unaware of their impairment, or if noted, might be 

uncomfortable discussing their concerns. Also, people cannot recall with high fidelity 

meaningful changes that are infrequent and brief in duration or subtle and evolving slowly 

over time. Accordingly, older adults may fail to sufficiently identify key transient events 

which because of their infrequent occurrence may be easily forgotten [11]. As for 

questionnaires and episodic in-person examinations, they depend on a snapshot observation 

of function and assume that observations recorded during the examination represent the 

person's typical state of function and cognition for relatively long periods of time prior to the 

assessment [12]. Consequently, an alternative approach is to bring assessment into the daily 

activity of a person in their home environment preferably via unobtrusive sensors and smart 

systems.

The rest of the paper is organized as follows: Section II summarizes related work, lists 

research questions, and presents contributions. Section III sets up the problem and 
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introduces a general overview of the proposed cognitive status recognition methodology. 

Section IV describes the data and how they were acquired, and the measures and the features 

that were computed and experimented with. Section V presents and discusses the results 

obtained. Section VI addresses the limitations of the current work and discusses potential 

future work. Finally, Section VII concludes the paper.

II. Related Work

The use of technology in developing systems that promote older adults' independence and 

aging-in-place has been well-received by many caregivers, clinicians, older adults, and 

family members [13] [14]. This along with recent advances in technology has lead to the 

proliferation of smart homes. Literature contains a plethora of published studies on smart 

homes such as the Microsoft's EasyLiving project [15], the GATOR Tech Smart House [16], 

the AWARE home at Georgia Tech [17], the MavHome Project at the University of Texas at 

Arlington [18], and the GE QuietCare System [19], and other works that have attempted to 

detect early changes in health using unobtrusive sensors such as [20]. All these published 

studies endeavor to promote older adults' independence by automating repetitive tasks 

carried out by the inhabitants of these homes. Some studies were also able to detect general 

changes in daily activities which could indicate a potential change in health. All respective 

results reported in the literature were based on data acquired in a laboratory environment 

and not in a real world setting.

The most recent smart home that addressed discriminating older adults with cognitive 

impairment is the CASAS project at the Washington State University. In their latest study, 

the CASAS group used a machine learning approach to detect cognitive impairment in about 

179 older adults based on their ability to complete ‘Day Out Task’, that consisted of 

carrying out eight Instrumental Activities of Daily Living (IADL) that might be interwoven 

[21] [22]. Data acquisition was conducted in the CASAS testbed. Machine Learning 

algorithms were employed to discriminate older adults with cognitive impairment from 

cognitively intact older adults based on several features that were computed from the sensor 

data. The results reported were based on subjects carrying out the task in a laboratory 

environment and not a real world setting. However, an approach that would be more 

reflective of the subjects' actual performance would be continuous monitoring of the 

subjects' ability to complete the task over several trials, perhaps in their home since this 

would capture their true performance.

The ORegon Centre for Aging and TECHnology (ORCAT-ECH) at the Oregon Health and 

Science University (OHSU) developed and pilot tested the first community-wide, scalable 

home-based assessment platform and protocol. They employed unobtrusive sensing 

technologies in the homes of at least 300 cognitively healthy older adults for an average 

period of 3 years, resulting in a large database of sensor data and clinical data. In their latest 

work [23], Dodge et al. presented for the first time trajectories of home-based daily walking 

speeds and their variability, associated with the recruited subjects over 3 years. According to 

Dodge et al., participating older adults with non-amnestic mild cognitive impairment 

(naMCI) were characterized by a slowing of walking speed. Furthermore, older adults with 
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naMCI exhibited the highest and lowest variability in their walking speeds in comparison 

with the participating cognitively intact older adults.

Walking speed and variability of walking speed have been found, in different works [24] 

[25] [26], to be good measures in differentiating older adults with MCI and cognitive decline 

syndromes. Accordingly, our work explores the following research questions:

1. Can we use signal processing along with machine learning techniques to 

autonomously detect older adults with mild cognitive impairment (MCI) using 

predefined measures calculated from unobtrusive sensing technologies?

2. What time span of predefined measures results in the highest areas under the ROC 

curve and the precision-recall curve?

3. How do features extracted from these predefined measures rank in terms of their 

importance for detection of mild cognitive impairment?

To answer these questions, by collaborating with OR-CATECH, we were able to access 

sensor and clinical data corresponding to 97 homes with singe occupants collected over an 

average period of 3 years in the subjects' homes. Several predefined measures associated 

with the subjects' weekly walking speeds and general activity in the home were used to train 

and test two machine learning algorithms namely support vector machines (SVM) and 

random forests (RF). This paper makes the following contributions:

1. We demonstrate how a signal processing approach equipped with a machine 

learning paradigm can be used to discriminate older adults with MCI from their 

cognitively healthy counterparts using several predefined measures associated with 

the subjects' walking speeds and general activity in the home.

2. We demonstrate that by analyzing a time window of only 24 weeks we can detect 

older adults with MCI with areas under the ROC curve and the precision-recall 

curve of 0.97 and 0.93, respectively.

3. We further analyze the measures and their respective features and rank them in a 

descending order based on their importance for detection of cognitive impairment.

4. Finally, we take the lead in reporting these promising results using real-world data 

suffering from too much noise and missing many datapoints. Almost all of the 

other related work in the literature, by contrast, have reported results obtained by 

carrying out activities and analyzing data acquired in a laboratory setting which 

might not have necessarily reflected the real performance of the subjects.

III. Problem Setup

Suppose that a database consists of N subjects being continuously monitored in their homes 

using unobtrusive sensing technologies, and for each subject, p weekly measure vectors 

exist. A weekly measure vector v is basically a vector of values, such as median walking 

speed and coefficient of variation of walking speed, calculated over a period of one week 

from the sensing technologies. Given this database of measure vectors, we are interested in 

autonomously labeling these vectors as belonging to subjects who are cognitively intact or to 

subjects suffering from MCI. We are formulating the problem as a classification problem 
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with two classes: cognitive intactness and MCI. In this work, we refer to the MCI class as 

‘positive’ class and the cognitive intactness class as ‘negative’ class, and will be using them 

interchangeably depending on the context. Also, we represent vectors by bold lower case 

letters, e.g. v, matrices by bold upper case letters, e.g. V, and sets by calligraphic uppercase 

letters, V. Mathematically, the cognitive status recognition problem can be formulated as 

follows: The database consists of N subjects, each having p measure vectors, tabulated as the 

following sets,

(1)

Each vi,j is an R-dimensional vector where R is the number of measures calculated from the 

sensor data as shown in Fig. 1. Note that R is the same for all vectors among all subjects but 

the number of weekly measure vectors p can be different among subjects since subjects can 

be monitored for different periods. Hence, the subscript i in pi indicates the subject number.

Fig. 2 depicts the general overview of the proposed approach in recognizing the subjects' 

cognitive status. Using a sliding window of size ℓ (in weeks), the measure vectors are 

transformed into feature vectors. The resulting feature space can be tabulated as the 

following sets,

(2)

Note that for ℓ ≥ 1 week, the resulting number of feature vectors for subject i, qi, will be less 

than the corresponding number of measure vectors, pi. In this work, each feature vector 

represents a datapoint. Note that the number of feature vectors, or datapoints, for each 

subject is different for each ℓ. Also, note that each wi,j can have different dimensions 

depending on the feature type. For example, if the feature type selected is the average of the 

individual measures in a window, then each wi,j would be an R-dimensional vector. On the 

other hand, if the feature type selected is a concatenation of the trajectories of the individual 

measures in a window for example, then wi,j would be an (R × ℓ)-dimensional vector.

For each window size ℓ, the generated feature vectors are then used to train and test a 

machine learning algorithm using the following procedure. The database of feature vectors 

is first divided into three groups of subjects, each group containing approximately the same 

number of feature vectors pertaining to each class: positive class and negative class. Since 

subjects can be monitored for different periods, which in turn results in subjects having 

different numbers of datapoints, then each group does not necessarily contain the same 

number of subjects. However, all three groups are created such that each group has 

approximately the same number of datapoints pertaining to each class. Then the 
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performance of the machine learning algorithm is evaluated through a 3-fold cross-

validation process, that consists of three runs. In each run, two groups are used to train the 

algorithm and the third group is used to test it. Accordingly, in each run, the algorithm is 

tested on datapoints it has not seen in the training phase. Using this methodology, the 

algorithm eventually yields a prediction for each datapoint. As depicted in Fig. 2, 

performance is quantified by generating the ROC curve and the precision-recall curve and 

calculating the areas under them, AUCSS and AUCPR respectively, where,

(3)

(4)

and,

(5)

where TP stands for true positives, FN stands for false negatives, TN stands for true 

negatives, and FP stands for false positives. Since our ROC curves display sensitivity versus 

(1 - specificity), then an algorithm with good performance yields a point close to the upper 

left corner of the ROC space, representing a high sensitivity score and a high specificity 

score. A completely random guess would give a point along the diagonal line from the 

bottom left corner to the top right corner. Since datasets associated with problems similar to 

the cognitive status recognition problem at hand are generally biased - having significantly 

more instances from one class (commonly the negative class) than the other, then using 

sensitivity and specificity scores only could lead to overly optimistic results. The reason is a 

system with a biased dataset could yield satisfactory sensitivity and specificity scores but at 

the same time could be generating too many false positives. In order to address this problem, 

we also compute precision and recall scores. On a precision versus recall curve, a good 

performing algorithm would yield a point close to the upper right corner, representing a high 

average precision (low rate of false positives).

IV. Data, Measures, and Features

All data acquisition was done by ORCATECH who built the first community-wide, home-

based assessment platform by deploying sensing technologies in the homes of many older 

adults and continuously monitoring them unobtrusively for several years.

A. Participants and Data Acquisition

Participants were recruited from the Portland, Oregon, metropolitan area and provided 

written informed consent before participating in study activities. Eligibility criteria included:

1. being a man or woman aged 80 years or older;

Akl et al. Page 6

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. living independently in a larger than one-room “studio” apartment;

3. cognitively healthy (Clinical Dementia Rating (CDR) score < 0.5; Mini-Mental 

State Examination (MMSE) score > 24); and,

4. in average health for age (well-controlled chronic diseases and comorbidities or 

none at all).

Data were acquired by installing sensing technologies in the homes of the recruited subjects. 

Subjects' homes ranged from simple one-bedroom apartments with one entry/exit door to 

houses with as many as 5 bedrooms, a garage, a laundry room, and more than one entry/exit 

door. Fig. 3 shows an example of a home map with a layout of the sensing technologies. In 

order to detect movement and general activity by location, passive infra-red motion sensors 

were installed in rooms frequently visited by the participating subjects, and are represented 

by the ‘S’ boxes in Fig. 3. Visitors and absences from the home were tracked through 

wireless contact switches placed on the exit doors of the home, and are represented by the 

‘D’ boxes in Fig. 3. Finally, walking speeds were estimated unobtrusively by placing motion 

sensors on the ceiling approximately 61 cm apart in areas such as a hallway or a corridor, 

and are represented by the ‘W’ boxes in Fig. 3. These sensors had a restricted field view of 

±4° so that they would only fire when someone passed directly under them. A detailed 

description of how the walking speed was estimated is fully described in [27]. All sensor 

firings were sent wirelessly to a transceiver, which is represented by the ‘HC’ box in Fig. 3. 

The firings were time stamped, and then stored in an SQL database. In addition to sensing 

technologies, recruited subjects were requested to complete a weekly online questionnaire. 

Using these weekly questionnaires, the subjects reported any visitors during the week, days 

spent away from the home, any change in health or medication, admittance to ER, and a 

number of other queries. For further details on data acquisition, the reader is referred to [28] 

[29].

B. Labeling of Data

In this work, we focused only on homes with single occupants, who either remained 

cognitively intact or transitioned to MCI without bouncing back to cognitive intactness. 

Occupants were assessed in-home at baseline, and during annual in-home visits by research 

personnel who administered standardized health and function questionnaires and physical 

and neurological examinations, including the Mini-Mental State Examination (MMSE) and 

the Clinical Dementia Rating (CDR). CDR served as our ground truth and was used to 

determine if subjects were cognitively impaired or intact. A score of 0 on CDR scale 

indicated cognitive intactness whereas a score of 0.5 on CDR scale indicated mild cognitive 

impairment. Since subjects were assessed annually, labeling of data fell into three 

categories:

1. cognitively intact (CIN),

2. unknown (UN), and

3. suffering from MCI (MCI).

The labeling protocol that we implemented in assigning labels to the data is summarized in 

two examples depicted by Fig. 4 and Fig. 5. Fig. 4 corresponds to a subject who was 

Akl et al. Page 7

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



monitored for a period of more than 3 years and was administered three annual assessments 

in addition to baseline. The subject scored 0 on CDR scale on all assessments. Therefore, all 

data from baseline up to the 3rd year assessment were labeled ‘CIN’. Since the subject 

continued to be monitored after the 3rd year assessment and the 4th year assessment was not 

available, then any data after the 3rd year assessment were labeled ‘UN’. This was because 

without the 4th year assessment, it was not possible for us to determine if the subject 

continued to be cognitively intact or not.

Fig. 5, on the other hand, corresponds to a subject who was also monitored for at least 3 

years and was administered three annual assessments besides baseline. Unlike the first 

example, the subject here scored 0 on CDR scale at baseline, but scored 0.5 on CDR scale 

on the 2nd-year and 3rd-year assessments. Therefore, the data from baseline up to the 1st 

year assessment were assigned the label ‘CIN’ and the data from the 2nd-year assessment 

onward were assigned the label ‘MCI’. As for the data between the 1st-year and the 2nd-

year assessments, they were assigned the label ‘UN’. This is because the conversion to 

cognitive impairment is not a point event but a gradual process. Accordingly, the subject's 

cognitive status would be in flux between years 1 and 2 and would belong to neither 

cognitive intactness nor MCI.

C. Measures and Features

From the sensor data, a number of predefined measures was computed for each week of 

monitoring. In order to compute the predefined measures, we made the following 

definitions:

1. Measures were computed for each week, where a week was defined from Monday 

to Sunday.

2. Weekly walking speed was computed as the median of all the walking speeds 

registered within a week.

3. Morning period was defined from 6AM - 3PM, and evening period was defined 

from 3PM - 12AM.

4. Difference between two variables was computed as the square difference between 

the medians of the variables, e.g. difference between (x) and (y) was computed as

(6)

5. A walk was defined as walking under the line of sensors that was used to measure 

the walking speed.

6. An outing was defined as a firing of any of the exit-doors' sensors followed by a 

period of inactivity for at least 15 minutes. Exit-doors included front door, back 

door, garage door, or any other door that the subjects could exit the living unit 

from.

7. Activity was defined as the total number of sensor firings averaged by the total 

time spent inside the home.
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Based on these definitions, List 1 below presents the measures that were computed:

1. weekly walking speed (ws),

2. coefficient of variation of weekly walking speed (cvws),

3. coefficient of variation of weekly morning walking speed (cvmws),

4. coefficient of variation of weekly evening walking speed (cvews),

5. difference between morning and evening speeds (Δmes),

6. coefficient of variation of number of walks (cvw),

7. coefficient of variation of weekly number of outings (cvo),

8. coefficient of variation of daily activity (cvda),

9. coefficient of variation of morning activity (cvma),

10. coefficient of variation of evening activity (cvea), and,

11. difference between morning and evening activities (Δmea).

Consequently, the total number of sensor measures, Sm, was equal to 11.

Buracchio et al. recently conducted a study that aimed at comparing the trajectory of motor 

decline exhibited by older adults who developed MCI and those who remained cognitively 

intact [30]. Buracchio et al. reported different change points - times at which the change in 

gait or finger-tapping speed accelerates - between men and women. The study also reported 

significant difference in baseline gait speed between those who transitioned to MCI and 

those who did not, only in women. So gender seems to be an important clinical measure to 

include. Furthermore, it is well-established within the clinical community that age is the 

most significant known risk factor of dementia. As a result, in addition to the above 

measures enumerated in List 1, age and gender were included as clinical measures. 

Accordingly, the total number, R, in (1) was equal to Sm + Cm which was equal to 13, where 

Cm represented the total number of clinical measures, i.e., 2.

A sliding window of size ℓ was used to extract features from the aforementioned sensor 

measures. Note that age was computed as the mean age in a window of size ℓ. In this work, 

we experimented with three types of features:

1. Average of measures, where features were extracted by taking the average of the 

individual measures in the window of size ℓ. Each wi,j in (2) was an R-dimensional 

vector.

2. Probability densities of measures, where features were extracted by estimating the 

probability densities of the individual measures in the window of size ℓ. By treating 

each measure as a random variable, we used kernel density estimation to estimate 

the probability density for each measure using a Normal kernel. These densities 

were then concatenated into one vector. Accordingly, each wi,j in (2) was an (Sm × 

K + Cm)-dimensional vector, where K was the dimension of the probability density, 

specified based on our discretion.
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3. Trajectories of measures, where features were extracted by concatenating the 

trajectories of the individual measures into one vector. In addition, with this type of 

features, we kept track of how the walking speed changed within a window by 

computing the difference between the current walking speed and the window 

baseline walking speed (Δws,bws), as indicated in Fig. 1. The resulting vector was of 

length ℓ - 1 since the first entry would always be 0. Accordingly, each wi,j in (2) 

was an (Sm × ℓ + ℓ − 1 + Cm)-dimensional vector.

V. Results and Discussion

Of the 97 subjects, 10 were males, 2 of which had MCI at baseline or transitioned to MCI 

during the monitoring period. The remaining 87 subjects were females, 16 of which had 

MCI at baseline or transitioned to MCI during the monitoring period. Baseline here 

corresponds to the beginning of the data that we received from ORCATECH, which for 

some subjects did not necessarily represent the actual subjects' baseline -when the subjects 

were recruited. Subjects were monitored for different periods for reasons such as subjects 

passing away, moving out of the metropolitan area, and subjects withdrawing due to 

household changes or feeling overwhelmed by study procedures. Table I presents statistics 

associated with the monitoring periods (in weeks) of the 97 subjects.

In this section, we start by describing a preprocessing step that was necessary before we 

could process the data. Then we report the areas under the curves obtained by executing the 

cognitive status recognition methodology for the different types of the aforementioned 

features. Finally, we conclude the section by reporting the best performance after ranking 

the features in descending order of their importance for detection of MCI.

A. Preprocessing

Because we focused on homes with single occupants, before we could compute the sensor 

measures presented in List 1, the collected data had to be cleaned. The cleaning process 

consisted of three main stages:

1. The first stage involved discarding the days on which subjects had their annual 

assessments. Because assessments were conducted in-home and were administered 

by research personnel and clinicians, and it was not possible for us to differentiate 

the research personnel activity from the subjects', these days had to be discarded.

2. The second stage involved discarding the days on which subjects had any visitors 

over, days which subjects spent away from the home, days spent in ER, days on 

which subjects had maintenance people over, or days on which people reported 

health problems that limited their activity.

3. The third stage of cleaning involved discarding days on which sensors failed to fire 

due to a dead battery or other malfunction.

The most reliable sensors were found to be the motion sensors with the modified field of 

view, which were used to estimate the subjects' walking speeds. The rest of the sensing 

technologies were found to be very noisy. Consequently, a large number of days had to be 

discarded resulting in only 68 homes with sufficient data. Among those 68 subjects, 7 
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subjects were males, 2 of which had MCI at baseline or transitioned to MCI during the 

monitoring period. The remaining 61 subjects were females, 13 of which had MCI at 

baseline or transitioned to MCI during the monitoring period.

The subjects' age distributions are shown in Fig. 6. Although the cognitively intact subjects' 

age distribution peaks around 87 to 89 years, the cognitively impaired subjects' distribution 

covers a wider range of ages resulting in a big overlap between the two groups. As a result, 

age alone does not suffice in discriminating older adults with MCI.

B. Implementation Results

Using the cleaned data of the 68 subjects, the measures in List 1 were calculated for each 

subject and the sets in (1) were generated, and each measure vector was assigned a label as 

discussed in Section IV. Given that we formulated the cognitive status recognition problem 

as a classification problem, only the CIN and MCI data were used. In this work, we 

experimented with two machine learning algorithms: support vector Machines (SVM) and 

random forests (RF). For implementation of the machine learning algorithms, we used the 

SVM library, LIBSVM, developed by Chang and Lin [31], to train and test an SVM with a 

Radial Basis Function (RBF)-kernel. As for RF, we used the TreeBagger class that is part of 

the Statistics Toolbox in Matlab 2009b. As a baseline model, we trained and test SVM and 

RF using only age and gender as features. The results are summarized in Table II. Both 

algorithms performed poorly using only age and gender. This result was expected given the 

big overlap in the age distributions of the two groups and the gender imbalance of the 

subjects with a majority of them being females.

1) Average of Measures—The first type of features that we experimented with was the 

average of the individual measures in a window of length ℓ. All the measure vectors as well 

as the feature vectors were of length 13. Although a dimension of 13 was not considered a 

high dimension relative to the size of the data, we anticipated that the dimension of the 

vectors could pose a problem especially with the next two types of features. Accordingly, 

we decided to introduce a stage of dimensionality reduction alongside with the ‘training and 

testing’ block in Fig. 2. Principal component analysis (PCA) was chosen to project the data 

onto a lower dimensional subspace while preserving 95% of the variance in the data. Table 

III shows the results obtained from trying to recognize the subjects' cognitive status with and 

without PCA using ℓ = 1 week. The reported results are optimized based on the area under 

the precision-recall curve, AUCPR. So the parameters associated with SVM, mainly the soft 

margin parameter C and the standard deviation of the Gaussian RBF-kernel λ, were 

optimized to yield the best AUCPR. Similarly, the parameter associated with RF, mainly the 

number of trees, was optimized to yield the best AUCPR. As Table III shows, using PCA led 

to a 3% increase in AUCPR with SVM and a 2% increase in AUCSS. As for RF, using PCA 

enhanced the algorithm with a 6% increase in AUCSS and a 2% increase in AUCPR.

Accordingly, all results reported, from this point onward, are based on 3-fold cross 

validation with each run accompanied by a dimensionality reduction step using PCA and 

optimized based on AUCPR.
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Table IV provides a summary of the areas obtained by extracting features as the average of 

the individual measures for ℓ = 1, 2, 3, and 4 weeks. We observe that although AUCSS was 

generally more than 0.5 for all ℓ using both algorithms, the algorithms did poorly in terms of 

AUCPR. The algorithms were making false positives from 60% to 80% of the time. Also, 

note that as ℓ increased, the number of datapoints associated with both classes decreased. 

Finally, although ℓ = 4 weeks yielded the largest AUCPR using both SVM and PR, an 

increase in ℓ did not necessarily lead to an increase in the areas under the curves. Intuitively, 

this was expected because by averaging the measures useful discriminative information 

could be lost. This gave rise to the second type of features.

2) Probability Densities of Measures—Instead of averaging and potentially losing 

discriminative information, with the second type of features, we tried to estimate the 

probability densities of the individual measures in a window of size ℓ. By assuming that 

each measure was a random variable, we used kernel density estimation to estimate the 

probability density function that generated the measure samples. The features were 

represented by the estimated density functions. All density functions were computed at 16 

points, resulting in K = 16 for all ℓ and feature vectors of dimension 178 (11 × 16 + 2 = 178) 

for all ℓ.

Table V presents a summary of the areas under the curves obtained by using features in the 

form of the probability densities of the measures for ℓ = 4, 8, 12,16, 20, and 24 weeks. The 

performance of both algorithms in terms of AUCSS was comparable. In terms of AUCPR, 

SVM outperformed RF, especially for smaller ℓ's. However, as Table V shows, the 

algorithms still performed comparable to a random classifier since AUCSS obtained using 

both algorithms was almost equal to 0.5 for all ℓ. With respect to AUCPR, both algorithms 

performed worse than a random classifier. As with averaging the measures, the performance 

of the algorithms did not improve with an increase in ℓ, and the number of datapoints 

decreased as ℓ increased.

3) Trajectories of Measures—We also experimented with features in the form of 

trajectories of the individual measures as they appeared in a window of size ℓ. One big 

challenge with this type of features was that the dimension of the data grew with ℓ. Another 

challenge was that the measure vectors had to exist for all weeks in a given window. If a 

week was missing, then the whole window of data had to be discarded, and because the 

sensing technologies were very noisy, a large amount of data ended up being discarded. For 

a given window of size ℓ, the feature vectors extracted had a dimension of (11ℓ + ℓ - 1 + 2). 

Table VI presents a summary of the results associated with using features in the form of 

trajectories of individual measures using ℓ = 4, 8, 12, 16, 20, and 24 weeks.

By examining the areas obtained, we found that this type of features yielded the best 

performance. Similar to the first two types of features, SVM outperformed RF for all ℓ and 

yielded much higher areas especially in terms of AUCPR. As expected, as ℓ increased, the 

number of datapoints associated with each class decreased. Although SVM yielded a 

promising performance, it was still suffering from a high rate of false positives which was 

reflected by the low AUCPR. However, note the high dimension of the data especially for the 

larger ℓ's, and despite using PCA for dimensionality reduction, the dimension was still high 
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and the poor performance was attributed to the problem of overfitting. With the high 

dimension, the algorithm learned the training data very well and failed to generalize its 

learning to data it had not seen before.

4) Speed Measures Only—The sensing technologies were generally very noisy and this 

had lead to a large amount of data being discarded. However, the lines of sensors which 

were used to estimate the subjects' walking speeds, were the most reliable and the least 

noisy. Cleaning data from these sensors only resulted in 97 homes as opposed to 68 homes 

when all the other sensors were included. Therefore, in order to address the problem of 

overfitting and by working with the data pertaining to the 68 homes still, we repeated the 

analysis for recognizing the subjects' cognitive status using only sensor measures associated 

with the subjects' walking speeds, mainly measures (1 - 6) in List 1 in addition to (Δws,bws) 

and the clinical measures. Consequently, R from (1) in this case was equal to 9. Since we 

found that the trajectories of the measures were the best features that yielded the best 

algorithms' performance, we repeated the analysis using the third type of features only.

Table VII presents a summary of the areas that were obtained for different ℓ. As expected, 

the dimensions of the feature vectors were greatly reduced to almost half of the original 

dimensions. Another observation was that, with SVM, AUCPR increased monotonically with 

ℓ and the performance of SVM improved by ∼ 20%. As for RF, although the performance 

was slightly enhanced, it still yielded AUCPR that was less than 0.5 for all ℓ. This is because 

RF requires large amounts of data to perform well since it is well-known to be susceptible to 

overfitting problems. So decreasing the dimension alleviated the overfitting problem and 

lead to a better performance for both algorithms.

Subsequently, we studied the effect of the data size on the performance of algorithms by 

using the data pertaining to the 97 homes instead of just 68 homes. So we repeated the 

analysis for recognizing the subjects' cognitive status using sensor measures (1 - 6) in List 1 

in addition to (Δws,bws) and the subjects' age and gender using more data. Fig. 7 displays the 

age distributions for both classes: cognitive intactness and mild cognitive impairment for the 

97 subjects. Adding more subjects did not result in a considerable change in the distribution 

corresponding to the cognitively intact subjects. On the other hand, the distribution 

pertaining to the cognitively impaired subjects exhibited a negative skew or was skewed 

towards older ages. However, there was a still a significant overlap between the two classes, 

and therefore, using age by itself as a feature does not suffice in detecting older adults with 

MCI. Similar to the dataset of 68 subjects, we created a baseline model by training and 

testing SVM and RF on age and gender only. Table VIII shows a summary of the 

performance of both algorithms. Although both algorithms' performance improved due to 

the changes in the age distributions, both algorithms still performed poorly, especially in 

terms of AUCPR. This supports our observation that age and gender alone do not suffice in 

discriminating older adults with MCI from their cognitively healthy counterparts.

Table IX shows a summary of the areas under the curves that were obtained by using more 

subjects. A great enhancement was achieved in the performance of RF registering an AUCSS 

of 0.8 for ℓ = 12 weeks. However, RF still suffered from a high rate of false positives, 

reflected as low AUCPR. On the other hand, SVM yielded very good scores: AUCSS of 0.81 
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and AUCPR of 0.71 for ℓ = 24 weeks, and AUCPR increased monotonically with ℓ. Fig. 8 and 

Fig. 9 show the ROC curves and precision-recall curves, respectively, corresponding to 

SVM with ℓ = 24 weeks, since ℓ = 24 weeks resulted in the best performance. Two curves 

are potted in each figure. The solid line, shown in Fig. 8, depicts the ROC curve for the case 

when we used the measures computed from the dataset of 68 homes. The dashed line on the 

other hand, depicts the ROC curve for the case when we used the measures computed from 

the dataset of 97 homes. The ROC curve corresponding to the dataset of 97 homes is closer 

to the top left corner of the figure indicating an enhanced performance in terms of sensitivity 

and specificity scores. Similarly, Fig. 9 shows the precision-recall curves for both datasets 

generated by using SVM and ℓ = 24 weeks. Again, the curve corresponding to the dataset of 

97 homes exhibited a big shift to the top right corner of the figure indicating an improved 

performance in terms of precision and recall scores.

C. Feature Ranking

After achieving very satisfactory results with SVM and ℓ = 24 weeks, we executed a 

remove-one-feature process in order to rank the features in terms of their importance for the 

discrimination process. So we repeated the analysis for recognizing the subjects' cognitive 

status 9 times and in each time, we removed a feature to see how its absence would affect 

the overall performance of SVM. Table X presents a summary of the areas that were 

obtained by removing one feature at a time. The areas obtained when all the features were 

present served as our reference: AUCSS = 0.811 and AUCPR = 0.709.

As Table X shows, removing the gender did not have a significant impact on AUCSS but still 

lead to a reduction of 10% in AUCPR indicating an increased rate of false positives. 

Evidently, gender plays an important role in discriminating older adults with MCI from their 

cognitively intact counterparts since it accounts for potential sex-specific physiological 

differences between male and female subjects. As for age, removing it resulted in a 

reduction of 3% in AUCSS and a reduction of 2% in AUCPR. The resulting small change was 

due to the big overlap between the two classes depicted in Fig. 7. Interestingly, removing 

Δws,bws and cvw lead to an enhanced performance with removing cvw resulting in the best 

scores. This is most likely because these features were not providing any additional 

discriminative information. Since we defined SVM with a RBF-kernel, then it would be 

expected that the algorithm would indirectly learn the difference between the walking 

speeds and windows' baseline walking speeds. Similarly, cvw was an indication of the level 

of activity that the subjects' were exhibiting. Evidently, SVM was able to infer this 

information from the other features rendering these features unnecessary. Similarly, 

removing Δmws,ews barely resulted in any noticeable change in performance.

The rest of the features that resulted in a deterioration in performance were ws, cvws, cvmws, 

and cvems. Removing trajectories of ws and cvmws resulted in greater deterioration in terms 

of AUCPR compared to removing trajectories of cvws and cvews. Therefore, variability in 

walking speed in the morning period was more conducive to detecting older adults with 

MCI as opposed to variability in the walking speed in the evening period. This potentially is 

due to the fact that the population of older adults, whether cognitively intact or cognitively 
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impaired, tend to be less active in the evening. Consequently, List 2 below presents the 

features ranked in descending order of importance:

1. trajectories of weekly walking speed,

2. trajectories of coefficient of variation of morning walking speed,

3. trajectories of coefficient of variation of walking speed,

4. trajectories of coefficient of variation of evening walking speed,

5. age,

6. gender,

7. trajectories of difference between morning and evening walking speeds,

8. trajectories of difference between walking and window baseline speeds, and finally,

9. trajectories of coefficient of variation of number of walks.

By excluding the features that lead to an improved performance when removed, mainly 

trajectories of Δws,bws, cvw, and Δmws,ews, we repeated the analysis for recognizing the 

subjects' cognitive status one final time using SVM with ℓ = 24 weeks, and we were able to 

achieve AUCSS = 0.97 and AUCPR = 0.93. The reason for the enhanced performance is that 

SVM with an RBF kernel is more likely to overfit the data especially with a leave-one-out 

cross validation process. As mentioned earlier, the removed features did not add additional 

discriminative information and SVM was most likely able to learn the information provided 

by these features indirectly from the other features. For example, the difference between the 

window-baseline walking speed and the current walking speed could be learned from the 

trajectory of the walking speeds in the window. Therefore, no additional information was 

added by this feature, and with the high dimension resulting from adding these features, 

SVM with an RBF-kernel tends to overfit the data, especially when the dimensionality of the 

feature space is large for the number of data points available. Furthermore, note that 

removing these features resulted in a tremendous reduction in the dimension of the feature 

vectors from 169 to 98, which is equivalent to a 42% reduction in dimension, and with the 

comparatively small data size, a resulting enhancement in performance is expected.

The new ROC curve and the new precision-recall curve are shown in Fig. 10 and Fig. 11 

respectively, and compared with the curves that were obtained earlier. The solid lines 

represent the curves obtained from running SVM on the data from the dataset of 68 homes, 

the dashed lines represent the curves obtained from running SVM on the data from the 

dataset of 97 homes, and the lines with x-markers represent the curves obtained from 

running SVM on the ‘best’ features extracted from the dataset of 97 homes. ‘Best’ refers to 

features (1 - 6) in List 2. The line with x-markers in Fig. 10 exhibited a big jump towards the 

top left corner indicating a great improvement in SVM's performance. Similarly, the line 

with x-markers in Fig. 11 exhibited a big jump towards the top right corner indicating a 

great improvement in the precision of SVM.
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VI. Limitations & Future Work

One limitation of this work is that with features in the form of trajectories of the individuals 

measures, data have to be present for every week. If a gap exists in the form of a discarded 

week, then the whole window would be discarded. This poses a serious challenge since 

older adults are likely to have visitors over more frequently, and with the sensing 

technologies employed in this study, many weeks could potentially end up being discarded 

since there is no way to differentiate the activity pertaining to the subjects from the activity 

pertaining to the visitors. As we have demonstrated, discarding too much data could result in 

the problem of overfitting, especially for windows of large sizes such as 24 weeks, due to 

the high dimension of the resulting data.

For future work, we plan to develop proper statistical models of the subjects' activity in their 

homes and of their walking speeds. In other words, instead of building models based on 

predefined measures, we plan to build models by processing the raw data itself. We 

hypothesize that this new approach will be more robust to the problems of missing 

datapoints and overfitting.

VII. Conclusion

In conclusion, we demonstrated the ability of signal processing along with machine learning 

algorithms to autonomously detect MCI in older adults. Several measures were calculated 

from the sensor and clinical data pertaining to 97 homes with single occupants. A sliding 

time window was then used to generate features to train and test two machine learning 

algorithms namely SVM and RF. We experimented with different types of features and 

found that trajectories of the individual measures were the most conducive to discriminating 

older adults with MCI from their cognitively intact counter parts yielding an area under the 

ROC curve of 0.81 and an area under the precision-recall curve of 0.71 using SVM. This 

answered our first research question.

By varying the time window size, mainly from 4 weeks to 24 weeks with a step size of 4 

weeks, and by using features in the form of trajectories of measures, we observed a 

increasing trend in the areas under the curves. The challenge of the high dimension was 

overcome by adding more data and reducing the number of features. This lead to a great 

enhancement in the performance of SVM. A time window of size 24 weeks resulted in the 

highest areas - an area under the ROC curve of 0.81 and an area under the precision-recall 

curve of 0.71 using SVM. This answered our second research question.

Finally, by carrying out a remove-one-feature process to determine the most important 

features for detecting older adults with MCI, we found that trajectories of weekly walking 

speed, coefficient of variation of the walking speed, coefficient of variation of the morning 

and evening walking speeds, and the subjects' age and gender were the most important for 

the process of detecting MCI in older adults. Running SVM on these top ranking features 

autonomously detected MCI in older adults with an area under the ROC curve of 0.97 and 

an area under the precision-recall curve of 0.93. This answered our third research question.
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Fig. 1. 
Trajectories of weekly measures pertaining to subject i in the database. Each asterisk 

represents a weekly measure. Features are extracted using a window of size ℓ, that slides one 

week at a time.
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Fig. 2. 
General overview of the cognitive status recognition process.
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Fig. 3. 
A layout of the sensing technologies that were installed in the homes of the participating 

subjects [28].
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Fig. 4. 
Example of a subject who scored 0 on CDR scale on all administered annual assessments.
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Fig. 5. 
Example of a subject who scored 0.5 on CDR scale on the 2nd-year assessment onward.
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Fig. 6. 
Age probability densities corresponding to the dataset of 68 homes.
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Fig. 7. 
Age probability densities corresponding to the dataset of 97 homes.
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Fig. 8. 
ROC Curves generated by using SVM and ℓ = 24 weeks.
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Fig. 9. 
Precision-Recall Curves generated by using SVM and ℓ = 24 weeks.
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Fig. 10. 
ROC Curves corresponding to using SVM for three different cases: dataset of 68 homes, 

dataset of 97 homes, and dataset of 97 homes + best features.
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Fig. 11. 
Precision-Recall Curves corresponding to using SVM for three different cases: dataset of 68 

homes, dataset of 97 homes, and dataset of 97 homes + best features.
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Table I
Statistics of monitoring periods of subjects

monitoring period (in weeks)

minimum maximum mean median std. deviation

44 260 171.9 186.5 63.7
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Table II

Baseline model using only age and gender as features for the dataset of 68 subjects.

AUCSS AUCPR

SVM RF SVM RF

0.47 0.42 0.13 0.10
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Table III

Performance of SVM and RF with and without PCA for ℓ = 1 week.

AUCSS AUCPR

SVM RF SVM RF

With PCA 0.68 0.53 0.38 0.13

Without PCA 0.65 0.47 0.33 0.11

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Akl et al. Page 33

T
ab

le
 IV

Pe
rf

or
m

an
ce

 o
f 

SV
M

 a
nd

 R
F 

us
in

g 
av

er
ag

e 
of

 w
ee

kl
y 

m
ea

su
re

s 
fo

r 
ℓ 

=
 1

,2
,3

, a
nd

 4
 w

ee
ks

.

ℓ 
(i

n 
w

ee
ks

)
F

ea
tu

re
 V

ec
to

r 
L

en
gt

h
# 

N
eg

at
iv

e 
D

at
ap

oi
nt

s
# 

P
os

it
iv

e 
D

at
ap

oi
nt

s

A
U

C
SS

A
U

C
P

R

SV
M

R
F

SV
M

R
F

1
13

37
87

48
2

0.
68

0.
53

0.
38

0.
13

2
13

31
68

39
1

0.
61

0.
56

0.
16

0.
17

3
13

26
89

32
6

0.
41

0.
59

0.
28

0.
16

4
13

23
11

27
8

0.
61

0.
60

0.
43

0.
25

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Akl et al. Page 34

T
ab

le
 V

Pe
rf

or
m

an
ce

 o
f 

R
F 

an
d 

SV
M

 u
si

ng
 p

ro
ba

bi
lit

y 
de

ns
ity

 o
f 

m
ea

su
re

s 
fo

r 
ℓ 

=
 4

, 8
, 1

2,
 1

6,
 2

0,
 a

nd
 2

4 
w

ee
ks

.

ℓ 
(i

n 
w

ee
ks

)
F

ea
tu

re
 V

ec
to

r 
L

en
gt

h
# 

N
eg

at
iv

e 
D

at
ap

oi
nt

s
# 

P
os

it
iv

e 
D

at
ap

oi
nt

s

A
U

C
SS

A
U

C
P

R

SV
M

R
F

SV
M

R
F

4
17

8
32

74
40

9
0.

65
0.

45
0.

27
0.

10

8
17

8
33

68
42

0
0.

56
0.

51
0.

17
0.

12

12
17

8
33

84
41

0
0.

57
0.

53
0.

26
0.

18

16
17

8
33

14
35

9
0.

50
0.

41
0.

12
0.

08

20
17

8
32

62
33

5
0.

49
0.

52
0.

14
0.

13

24
17

8
32

07
31

1
0.

49
0.

54
0.

14
0.

12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Akl et al. Page 35

T
ab

le
 V

I

Pe
rf

or
m

an
ce

 o
f 

SV
M

 a
nd

 R
F 

us
in

g 
tr

aj
ec

to
ri

es
 o

f 
in

di
vi

du
al

 m
ea

su
re

s 
fo

r 
ℓ 

=
 4

, 8
, 1

2,
 1

6,
 2

0,
 a

nd
 2

4 
w

ee
ks

.

ℓ 
(i

n 
w

ee
ks

)
F

ea
tu

re
 V

ec
to

r 
L

en
gt

h
# 

N
eg

at
iv

e 
D

at
ap

oi
nt

s
# 

P
os

it
iv

e 
D

at
ap

oi
nt

s

A
U

C
SS

A
U

C
P

R

SV
M

R
F

SV
M

R
F

4
49

23
11

27
8

0.
58

0.
54

0.
35

0.
16

8
97

13
42

15
8

0.
54

0.
46

0.
30

0.
17

12
14

5
87

2
11

3
0.

40
0.

38
0.

26
0.

12

16
19

3
58

8
90

0.
67

0.
51

0.
28

0.
27

20
24

1
41

7
70

0.
58

0.
50

0.
30

0.
16

24
28

9
31

2
51

0.
57

0.
49

0.
43

0.
19

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Akl et al. Page 36

T
ab

le
 V

II

Pe
rf

or
m

an
ce

 o
f 

SV
M

 a
nd

 R
F 

us
in

g 
tr

aj
ec

to
ri

es
 o

f 
w

al
ki

ng
 s

pe
ed

 m
ea

su
re

s 
on

ly
.

ℓ 
(i

n 
w

ee
ks

)
F

ea
tu

re
 V

ec
to

r 
L

en
gt

h
# 

N
eg

at
iv

e 
D

at
ap

oi
nt

s
# 

P
os

it
iv

e 
D

at
ap

oi
nt

s

A
U

C
SS

A
U

C
P

R

SV
M

R
F

SV
M

R
F

4
29

26
24

35
0

0.
69

0.
71

0.
36

0.
21

8
57

15
41

21
9

0.
69

0.
68

0.
37

0.
24

12
85

99
7

16
0

0.
70

0.
51

0.
44

0.
15

16
11

3
67

3
13

0
0.

67
0.

50
0.

47
0.

17

20
14

1
47

4
10

6
0.

68
0.

53
0.

54
0.

24

24
16

9
34

9
83

0.
79

0.
46

0.
53

0.
21

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Akl et al. Page 37

Table VIII

Baseline model using only age and gender as features for the dataset of 97 subjects.

AUCSS AUCPR

SVM RF SVM RF

0.57 0.54 0.16 0.13
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