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Abstract

Goal—This manuscript describes a million-plus granule cell compartmental model of the rat 

hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, 

and feedforward and feedback inhibitory input from dentate interneurons.

Methods—The model includes experimentally determined morphological and biophysical 

properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic 

GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was 

composed of approximately 200 compartments having passive and active conductances distributed 

throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex 

was guided by axonal transport studies documenting the topographical organization of projections 

from subregions of the medial and lateral entorhinal cortex, plus other important details of the 

distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously 

published maps of this major hippocampal afferent were systematically converted to scales that 

allowed the topographical distribution and relative synaptic densities of perforant path inputs to be 

quantitatively estimated for inclusion in the current model.

Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the 
IEEE by sending an email to pubs-permissions@ieee.org.
*phendric@usc.edu..
T. W. Berger also is a member of the Program in Neuroscience.
P. J. Hendrickson can be reached at 3641 Watt Way, HNB 403, University of Southern California, Los Angeles, CA 90089

HHS Public Access
Author manuscript
IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 January 01.

Published in final edited form as:
IEEE Trans Biomed Eng. 2016 January ; 63(1): 199–209. doi:10.1109/TBME.2015.2445771.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs-permissions@ieee.org


Results—Results showed that when medial and lateral entorhinal cortical neurons maintained 

Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a 

robust, non-random pattern of spiking best described as spatio-temporal “clustering”. To identify 

the network property or properties responsible for generating such firing “clusters”, we 

progressively eliminated from the model key mechanisms such as feedforward and feedback 

inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical 

organization of entorhinal afferents.

Conclusion—Findings conclusively identified topographical organization of inputs as the key 

element responsible for generating a spatio-temporal distribution of clustered firing. These results 

uncover a functional organization of perforant path afferents to the dentate gyrus not previously 

recognized: topography-dependent clusters of granule cell activity as “functional units” or 

“channels” that organize the processing of entorhinal signals. This modeling study also reveals for 

the first time how a global signal processing feature of a neural network can evolve from one of its 

underlying structural characteristics.
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I. Introduction

Developing large-scale, quantitatively based models of neural systems has become a 

realizable goal in recent years [1]–[3], largely because of three major developments: (i) data 

collection over the course of the past several decades has led to substantial databases of 

anatomical and physiological properties for many neural systems [4]–[11]; (ii) the 

development of sophisticated and parallelizable software systems for representing these 

anatomical and physiological characteristics [12]–[15]; (iii) the continued growth of high 

performance computing systems capable of sustaining the numerical burden of such large-

scale models [16], [17].

One of the most extensively studied regions of the brain is the hippocampal formation. 

Numerous anatomical analyses over the course of the last century have documented the 

classes, numbers, and organization of principal neurons [18]–[22] and interneurons [23], 

[24] in this limbic region. Extensive studies at the electron microscopic level have provided 

knowledge of the numbers, densities, membrane locations, and neurotransmitter properties 

of synapse populations [25]–[29]. Despite this wealth of knowledge, there have been few 

detailed, quantitative models of the hippocampal system. Those that have been developed 

have been limited to subregions of the hippocampus, understandably given the complexity 

of the system. These initial models have been successful in providing insights into 

functional properties of the hippocampus at a subsystems level [30]–[33].

Here we describe the first step in an implementation of a full-scale model of the 

hippocampal formation. We have dealt with the first stage in what has been termed the 

intrinsic “tri-synaptic pathway” of the hippocampus, i.e., the “perforant path” excitatory 
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projections from the entorhinal cortex (EC) to granule cells of the dentate gyrus (DG), 

including inhibitory feedback from DG interneurons. Our model is based on the 

hippocampal formation of the rat, as the majority of quantitative anatomical information 

available is for the rat species. We have taken into consideration a number of factors 

concerning the EC-DG projection in an attempt to attain a model that is as biologically 

realistic as is achievable given current knowledge. In general, these factors include: the 

number and ratio of layer II EC neurons and dentate granule cells; the ratio of inhibitory 

interneurons and dentate granule cells; the dendritic morphological structure and 

morphological variability of granule cells; the terminal field distributions of EC layer II 

cells; the synaptic density of EC layer II cells onto dentate granule cells; the passive 

membrane properties of granule cells; both somatic and dendritic active conductances 

responsible for the action potential and for other voltage-dependent properties.

One other anatomical feature that also is the focus of the present study concerns the 

topographical organization of ECDG projections. Topography of anatomical connections, 

i.e., the point-to-point relation of typically non-uniform synaptic connectivity between any 

two brain regions, is a property of nearly all mammalian brain systems, and is distinctly 

different for each. The topography of EC-DG projections in the rat has been studied 

elegantly and reported previously [34]–[38]. The question being asked in the present study is 

the functional consequence of that topography. To our knowledge, the issue of the functional 

significance of the topographical organization of a projection system has yet to be addressed 

quantitatively for any brain system, and is an issue particularly well-suited for a large-scale, 

structural-functional model. We show here that the topographical characteristics of EC 

projections to the DG impose quantifiable boundaries on the spatio-temporal properties of 

granule cell network activity. Findings conclusively identified topographical organization of 

inputs as the key element responsible for generating a spatio-temporal distribution of 

clustered firing. As such, these results uncover a functional organization of perforant path 

afferents to the DG not previously recognized: topography-dependent clusters of granule cell 

activity as “functional units” or “channels” that organize the processing of EC signals.

II. Methods

A. Model Scale and Features

Models of the EC-DG system were completed according to two scales – one with 1,000,000 

granule cells, i.e., equivalent to the number of cells in one hemisphere of the rat 

hippocampus [7], [39], and one with 100,000 granule cells, i.e., equivalent to 1:10 scale to 

accelerate simulation time. All results reported here were observed at both scales. All 

networks studies were composed of dentate granule cells and inhibitory interneurons, with 

excitatory input to granule cells modeled after the organization of layer II EC afferents. In 

general terms, the models featured complex and variable morphologies for granule cells, 

multiple active conductances distributed non-uniformly throughout granule cell membranes, 

interneurons configured (as cell bodies only) to provide both feed-forward and feedback 

inhibition, and either randomly or topographically organized excitatory input to network 

neurons. Specifics are provided below.
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B. Granule Cell Morphology

The morphological characteristics of hippocampal dentate granule cells have been studied in 

depth and with quantitative detail [40]–[42]. Example three-dimensional dendritic structure 

was obtained from sample reconstructed neurons labeled using a variety of methodologies 

and available through neuromorpho.org [5]. To incorporate morphological diversity in the 

granule cell population, however, the L-NEURON tool [43] was used. L-NEURON allows 

for the generation of unique dendritic and axonal trees based on sampling from a set of 

statistical distributions that describe their fundamental structural parameters [43], [44]. 

Table I shows the distributions used for each of the granule cell parameters, while Fig. 1 

shows a sample of L-NEURON generated granule cell somata and dendritic trees. Only the 

somata of basket cells were modeled as part of the present study, so no basket cell dendritic 

structures were included; no cells were given an explicit axon.

C. Granule Cell Bioelectric Properties

Biophysical properties for each of the cell types in the model were taken from previously 

published experimental data and from previously published mathematical models of the DG 

[4], [45]–[52]. Table II shows the channel distribution for granule cells, while Table II and 

Fig. 2 show key passive and active properties for one instance of a granule cell.

The modeled network used AMPA and GABAergic synapses for connectivity. We modeled 

the postsynaptic conductance as a sum of two exponentials, with the rise time, fall time and 

maximum conductance, optimized to match experimentally recorded EPSPs and IPSPs in 

both granule and basket cells [53]–[58], to the extent such data was available. At certain 

levels of basket cell inhibition, whether feedforward or feedback, there was pronounced 

synchrony in network activity (see Fig. 5). Because highly synchronous firing was not the 

focus of the present study, and without complete knowledge of IPSP size for granule cells, 

we scaled the basket cell inhibition until the persistent synchrony disappeared. Because 

axons were only implicitly modeled, a delay to postsynaptic activation was added to account 

for axonal conduction of action potentials. In the million-granule-cell model, the number of 

synapses in the network corresponded to the number of reported spines on granule cells [27], 

[42], [59]. In the 1:10 scale model, we scaled the number of synapses down by a factor of 

10, while simultaneously increasing peak synaptic conductance by a factor of 10. Table III 

shows the relevant synaptic parameters for the network.

D. Topography

The EC is divided into two areas termed the lateral entorhinal cortex (LEC) and the medial 

entorhinal cortex (MEC). Anatomically, the LEC lies rostral and lateral to the MEC. Both 

areas contribute to the perforant path that projects onto the DG in a laminar manner. The 

LEC primarily targets the outer third of the molecular layer of the DG, and the MEC 

primarily targets the middle third [60], [61]. This laminar organization is present in our 

model.

Two additional features of the EC-DG projection were used to define its topography. First, 

there was the relationship between the position of the presynaptic inputs (cell bodies) and 

the position of their projections (axons) onto the postsynaptic population. Second, there was 
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the geometry of the axon terminal field. The combination of the two features constrained the 

subset of the DG population with which a given presynaptic neuron can synapse.

Experimental analyses have revealed that EC input to the DG is distributed with a non-

random topography. In general, the lateral regions of the LEC and the lateral/caudal regions 

of the MEC project to the septal portion of the DG, and the medial regions of the LEC and 

the medial/rostral regions of the MEC project to the temporal portion of the DG (Fig. 3). 

Dolorfo and Amaral characterized this topography in rats, and their work is the basis of the 

specific topographical relationships implemented here, though we verified the generality of 

the Dolorfo and Amaral findings with those of other researchers [34]–[38]. Dolorfo and 

Amaral found that any injection within a particular septo-temporal quartile of the DG 

resulted in the same characteristic labeling of EC. Therefore, the data were divided into sets 

based on the quartiles in which the injection sites were located in order to calculate the mean 

EC area that projected to a given quartile. However, because each injection was performed 

on a different rat, each brain map had a different size and shape. In order to quantify this 

work, an image processing pipeline was designed that digitized the brain maps, projected the 

individual anatomical brain maps onto a common standard coordinate system, calculated the 

mean of the data, and projected the resulting data back onto an average anatomical map (Fig. 

3). An average anatomical map was calculated by computing the mean of all of the 

dimensions of the individual anatomical subject maps.

To determine the axon distribution, the maps were converted into probabilities where the 

intensity, or darkness, of the pixel corresponded to the probability that an EC neuron located 

within would send its axon to a particular quartile of the DG. The specific point within the 

quartile to which the axon is sent is referred to as the “perforation point.”

Upon reaching the perforation point, the axon branches out into the terminal field. The 

terminal field was limited to between 1.0 and 1.5 mm in the septo-temporal direction and 

encompassed the entire transverse width of the DG within this extent. The constraints were 

based on morphological and anatomical studies that characterized individual axon 

morphologies and the overall patterns of projection [61], [62].

E. Computational Platform

All simulations were run on a high-performance compute cluster consisting of 394 dual 

quad-core Intel-based nodes and 74 dual hexa-core Intel-based nodes, for a total of 4,040 

processor cores. The system has 8.1 TeraB of distributed RAM, 73.1 TeraB of distributed 

disk space, and a maximum theoretical performance of 38.82 teraflops. All nodes are 

connected to a high-speed, low-latency 10G Myrinet networking backbone. These nodes are 

housed, maintained and monitored in facilities operated by the University of Southern 

California Center for High-Performance Computing and Communications. We used version 

7.3 of the NEURON simulation engine [12], [63] to run all simulations, and used Python 2.7 

for model specification, data visualization, and analysis [64], [65].
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III. Results

A. Granule Cell Response to Random Entorhinal Input: Firing in Spatio-
Temporal ”Clusters”

Initial simulations of granule cell network dynamics to EC input involved both medial and 

lateral entorhinal (MEC & LEC) neurons firing at a mean frequency of 3.0 Hz, accelerated 

(by design) over the course of approximately the first 1000 ms of the simulation. Four (4.0) 

seconds of time were simulated in all results presented here. Entorhinal inputs were 

topographically organized according to the relations described in the Methods. Basket cells 

were configured to provide both feedforward and feedback inhibition. All active granule cell 

membrane properties included those described in Table II. Simulation results with a one 

million granule cell population revealed that despite continued Poisson EC input, granule 

cells discharged in a decidedly non-random, nonuniform manner. As shown in Fig. 4 (top), 

granule cells throughout the entire septo-temporal extent of the DG fired in what we call 

here spatio-temporal “clusters,” i.e., irregular periods of spiking and non-spiking lasting 

approximately 50-100 ms “on” and 50-75 ms “off”. The granule cells engaged in firing 

changed spatial location along the septo-temporal axis, as evidenced by the apparent “drift” 

in patterned firing in Fig. 4A and other similar figures. The appearance of clustered spiking 

in response to Poisson EC input was not specific to million-granule cell populations, but was 

equally apparent for simulations involving 100k granule cells as well (Fig. 4, bottom).

In some cases, the appearance of spatial-temporal clusters did not appear immediately with 

the onset of EC input, but instead only appeared after a period of highly rhythmic granule 

cell activity. In those cases, granule cell spiking started after approximately 200 ms, 

reaching a maximum at approximately 300 ms. At this time point granule cell output was 

highly synchronous, with granule cells along the entire extent of the septo-temporal axis 

firing at a high rate for a duration of approximately 100 ms. Approximately midpoint in this 

initial 100 ms of extended firing, basket cells fired synchronously as well, leading to a 

termination of extended granule cell firing. After a few more periods of synchronous granule 

cell discharge alternating with periods of heightened basket cell output the system appears to 

reach an equilibrium (after 800-900 ms into the simulation). It is at this point that a steady-

state of “clustered” spike discharges emerges and continues.

Quantitative analyses verified the existence of clusters of spike firing. 2D autocorrelation 

allows an analysis of the data in both spatial and temporal dimensions, and was used to 

analyze most of the results presented here. It was constructed by computing every pairwise 

cross-correlation of discretized spike trains in a random sample of 10,000 neurons. The 

spike trains were discretized by counting the number of spikes elicited by a particular 

neuron within a bin size of 5 ms. The resulting cross-correlations were sorted by the distance 

between the neuron pairs and were further binned using a resolution of 0.05 mm. The mean 

cross-correlation within each bin was computed.

The right-hand column of Fig. 4 shows the 2D autocorrelations for the million-cell and 

100k-cell simulations. What emerges from the analysis is something that looks like a typical 

cluster for each of the datasets: in the million-cell case, clusters are roughly elliptical, with a 

temporal width of approximately 40-50 ms and a spatial height of 1-2 mm. The analysis 

Hendrickson et al. Page 6

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



looks very similar for the 100k-cell simulation, which verifies that clusters exist and are 

similar at both simulation scales.

Further analysis was performed on the 100k-cell dataset using DENCLUE 2.0, a density-

based cluster identification algorithm [66]. For this application, a Gaussian density kernel 

was used. Analyses show that a) clusters exist, and b) they appear in a wide variety of sizes, 

though their basic shape remains similar. Statistical analysis of the identified clusters shows 

that inter-centroid cluster time is 11±12 ms, and that the density of spikes within a cluster is 

approximately 12±9 spikes/ms-mm.

B. Mechanisms Responsible for Spatio-Temporal Clustered Spiking: Inhibition

Following this initial characterization, we conducted experiments designed to identify the 

mechanisms underlying granule cell clustered spiking: what was responsible for 

transforming continuous random spike firing into non-continuous, non-periodic, clusters of 

spikes? A first hypothesis concerned a possible role for GABAergic inhibition, given the 

strong effect of interneuron activity in synchronizing granule cell activity in the early stages 

of the simulation. Indeed, when feedback inhibition was increased by 4-10 times that used in 

initial simulations, longer periods of synchronous activity, marked by multiple bands of high 

activity followed by bands of almost zero activity in the DG followed (Fig. 5A). This pattern 

of bands eventually becomes asynchronous, though, giving rise to spatio-temporal clusters 

similar to the ones we see with less inhibition. When we increase inhibition to a level 20 

times greater than normal, however, the synchrony persists for the entire duration of the 

simulation.

One-dimensional discrete Fourier transforms (DFTs) were used to analyze the temporal 

frequency spectrum of the spike data. They were computed using a spike density matrix. 

The matrix was constructed by counting the total number of spikes elicited within a spatio-

temporal bin with a resolution of 0.05 mm and 2 ms. The 1D DFT was computed for each 

row of the matrix resulting in the temporal frequency spectrum at a particular septo-temporal 

location on the DG. The mean of all of the resulting DFTs was then computed.

As Fig. 5B shows, as the amount of GABAergic inhibition increases in the network, a small 

peak at approximately 22 Hz turns into a sharp one, followed by another sharp peak at about 

45 Hz with even more inhibition. This points to oscillations occurring in the low to medium 

range of the gamma band. This GABA-dependent rhythmicity has been described previously 

[67], [68].

Given the synchrony introduced into granule cell spiking as a result of feedback inhibition, 

we decided to remove sources of inhibition to see whether the cluster activity would also 

disappear. There are two sources of inhibition in dentate granule cells: external inhibition, 

from the basket cell population, and internal inhibition, due to the afterhyperpolarization 

(AHP) that granule cells experience after one or more action potentials (APs). As Fig. 6 

illustrates, spatio-temporal clusters persist with one or both of these sources of inhibition 

absent from the network.
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C. Mechanisms Responsible for Spatio-Temporal Clustered Spiking: Topographic 
Organization of Entorhinal Afferents

We next turn to topography as the potential source of clustering. As Fig. 7 shows, when the 

constraints placed on EC-to-DG connectivity are removed, thus allowing a randomly 

connected network where any EC neuron can synapse onto any dentate granule cell, the 

clusters that have always been present in the output disappear, and bands of activity appear 

in their place. The 2D autocorrelation corroborates this: while there's still a small amount of 

temporal structure in the network activity, it's 8×-10× weaker than in any of the 

topographically constrained cases, and the spatial component has completely disappeared – 

what once looked like an elliptical cluster in the 2D autocorrelation has become a band that 

occupies the full septo-temporal extent of DG. Thus, it is the topography of the EC-DG 

projection that's responsible for the emergence of spatio-temporal clusters, even when the 

input to the network is random.

D. Mechanisms Responsible for Spatio-Temporal Clustered Spiking: Axon Terminal Field 
Geometry

The previous results establish that the emergence of clusters in the spatio-temporal pattern of 

the granule cell output is caused by topography. An immediate question that came to mind, 

given these results, is how the parameters of the topography might influence the size and 

shape of the clusters. The following set of simulations varied the axons’ terminal field 

extents in the septo-temporal axis to investigate the contributions of the terminal field 

geometry to the emergence of spatio-temporal clusters. These simulations did not include 

basket cells.

The results clearly show a dependence between the terminal field size and the cluster size 

(Fig. 8). As the size of the terminal field increases, the cluster size increases. Furthermore, 

the density of the cluster decreases as the cluster size increases. This is verified given that 

each simulation resulted in approximately the same number of spikes (1,580,000±30,000 

spikes with a range of 1,560,000 – 1,650,000 spikes). An increase in cluster size for the 

same number of spikes per time signifies a decrease in cluster density.

The 2D autocorrelation demonstrates the relationship between spatio-temporal correlation 

and the terminal field extent. The analysis shows that the extent of the spatial correlation 

between one neuron and any other neuron increases as the terminal field increases. Also, the 

terminal field does not appear to affect the extent of the temporal correlation. However, the 

maximum of the 2D autocorrelation decreases as the terminal field extent increases. An 

approximately 10-fold decrease in the peak correlation is seen between a terminal field 

extent of 0.5 mm and 5 mm.

IV. Discussion

The study described here is based on the creation of a large-scale, compartmental neuron 

model of the EC-DG projection system of the hippocampal formation. We have intended for 

the model to be large-scale in the sense of including a total number of dentate granule cells, 

GABAergic interneurons, and EC axons that are equivalent to those found in one 
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hemisphere of the rat brain. We have intended the model to be biologically realistic with 

respect to the numbers and ratios of different classes of neurons, granule cell dendritic 

morphologies, classes and distributions of somatic and dendritic conductances, and the 

presence of feedforward and feedback GABAergic interneurons. In this its first generation 

of development and use, the model has uncovered a functional organization of perforant 

path afferents to the DG not previously recognized: a spatio-temporal clustering of granule 

cell spiking on the order of 11 ms between clusters and 12 spikes/ms-mm within clusters. 

These findings are important in several respects. First, these spatio-temporal clusters of 

active granule cells represent “functional units” or “channels” that organize the processing 

of EC signals. Second, results of the present study clearly demonstrate that the spatio-

temporal clustering property of the EC-DG pathway depends primarily on the topographic 

organization of perforant path afferents. This is the first time that a functional characteristic 

of a cortical projection has been linked specifically to topographic features of that 

projection. Third, this organizational property of the EC-DG pathway is apparent only when 

structural-functional relations are examined at large-scales. Smaller scale models would not 

have revealed the clustering phenomenon, and thus, these results point to the importance of 

large-scale modeling of cortical systems.

The model described in this report is not complete in the sense that there are several features 

of the biological dentate gyrus not included in the present model, and that ultimately may 

modify and extend the results reported here. One of these features includes other classes of 

interneurons within the dentate hilus that are activated by granule cells and/or perforant path 

axons, and that provide feedback to granule cells. Most prominent among these are mossy 

cells [69] which are the source of the dentate commissural-associational system [70] and that 

terminate throughout the inner one-third of the molecular layer [71]. This cell population 

lies beneath the granule cell layer, and is excitatory to both dentate granule cells and 

inhibitory interneurons [72], [73]. Additional types of hilar cells are not included in the 

present model, e.g., hilar perforant path-associated (HIPP) interneurons that provide 

inhibitory input to granule cells in the inner and outer thirds of the molecular layer, 

respectively [29], [74]. The precise role that these and other types of interneurons [23] play, 

if any, in modulating the spatio-temporal “cluster” firing of granule cells has yet to be 

determined.

Another difference between the present model and one that is completely biologically 

faithful concerns NMDA receptor-channels on the dendrites of granule cells. The current 

model has only AMPA receptor-channels mediating EC-DG glutamatergic synaptic 

transmission. The NMDA receptor subtype is activated preferentially by higher frequencies 

of afferent input [75], [76], so the shape and/or size of clusters may change with the 

inclusion of NMDA receptor subtypes. Future experiments will determine this, and may be 

conducted with higher mean frequencies of EC input.

These additional anatomical and biophysical properties of the DG will be included in future 

models, and ultimately will be examined for their influence on the topography-dependent 

clustered firing of granule cells.
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Electrophysiological recordings from neurons within the hippocampal formation in the 

behaving animal have identified a number of correlates affiliated with animals’ learned 

behavior [77]–[79], spatial location [80], or spatio-temporal properties of the animal learned 

behavior [81]–[83]. Other studies have explored the anatomical distribution of spatial firing 

patterns of neurons in the hippocampus [84], [85]. Many of these observations have been 

extended to EC, parahippocampal and perirhinal cortices [86]–[88]. Differences between the 

EC and hippocampal cortical correlates must be attributable to neural processing performed 

by connections between the two structures, with the DG playing a major role [89]. Although 

speculative, it may be neural processing micro-structures like the EC-DG cluster firing 

channels described here that are in part responsible for the EC-to-hippocampal pyramidal 

cell transformations observed to date.
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Fig. 1. 
Two sample dentate granule cell morphologies generated using L-NEURON with the 

parameter distributions shown in Table I.
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Fig. 2. 
Granule cell active properties. Top left: When subjected to a current clamp stimulus at the 

soma, the granule cell responds by firing an action potential with a latency of approximately 

100 ms. Top right: When the current clamp amplitude is just over the threshold required to 

elicit a second AP, its latency is approximately 350 ms. This matches experimental data 

(bottom, reproduced from [50]).
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Fig. 3. 
Summary of the image processing pipeline used to quantify the EC-DG topography from 

data obtained from [38]. Not all data is shown. 1) The data in their anatomical subject maps 

are digitized and grouped according to injection location. 2) The maps are projected onto a 

standard coordinate space. 3) The sets are averaged. 4) The averaged group data are 

projected onto an average anatomical map. The compass represents the rostro-caudal and 

medio-lateral axes.
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Fig. 4. 
Simulation results for topographically constrained EC-DG networks with feedforward and 

feedback inhibition, run at two different scales: 1M granule cells (top), and 100k granule 

cells (bottom). At both scales, spatio-temporal clusters appear in the granule cell activity, 

despite the random nature of the EC input. In the million-cell case, only a subset of the full 

dataset is plotted to keep it from appearing solid black. Column B: 2D autocorrelations 

confirm the presence of these clusters.
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Fig. 5. 
Results of increasing the feedback GABA inhibition. A) The raster plot of the granule cell 

output for increasing levels of inhibition. GABA level 1 uses the original BC-GC 

conductance values while levels 2-4 use 4, 10, and 20 times larger conductance values, 

respectively. B) The 1D DFT plot of the data. As the inhibition increases, the granule cells 

develop synchronous firing at 22 Hz.
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Fig. 6. 
Granule cell activity when removing internal and external sources of inhibition. Top: 

GABAergic inhibition removed; bottom: both AHP and GABA removed. Spatio-temporal 

clusters persist in both cases, as evidenced by both the raster plots and 2D autocorrelations 

(B).
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Fig. 7. 
Simulation results for a randomly connected EC-DG network. In this simulation, the granule 

cell AHP was removed, as was GABAergic inhibition. Spatio-temporal clusters are no 

longer present, having been replaced with bands of activity with a high level of background 

activity. In the 2D autocorrelation, what looked like a typical cluster is now a vertical band. 

Thus, while there's still a temporal variation in granule cell activity, the spatial component is 

gone.
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Fig. 8. 
Effects of increasing the terminal field extent in the septo-temporal direction. A) Raster plot 

of the granule cell output. B) The 2D autocorrelation of the data. As the terminal field extent 

increases, the cluster size increases, and this is reflected by the increase in the spatial extent 

of the 2D autocorrelation.
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TABLE I

Morphological Parameters for Dentate Granule Cells

Variable Distribution Mean/Min Std. Dev./Max

Soma Diameter Gaussian 9.00 2.00

Number of Stems uniform 2.00 4.00

stem initial diameter Gaussian 1.51 0.79

Branching diameter Gaussian 0.49 0.28

IBF branch length Gaussian 10.70 8.40

Term. branch length Gaussian 10.70 8.40

Daughter ratio uniform 1.00 2.00

Taper ratio Gaussian 0.10 0.08

Rall power Constant 1.50 ---

Bifurcation amp. Gaussian 42.00 13.00

Tree elev. (narrow) Gaussian 10.00 2.00

Tree elev. (medium) Gaussian 42.00 2.00

Tree elev. (wide) Gaussian 75.00 2.00

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hendrickson et al. Page 24

TABLE II

Passive & Active Properties for Dentate Granule Cells

Passive Property Value Mechanism Soma GCL Inner 1/3 Middle 1/3 Outer 1/3

Soma S.A. (cm2) 4.97E-4 Cm (uF/cm2) 9.8 9.8 15.68 15.68 15.68

Soma Volume (cm3) 1.11E-6 Ra (ohm-cm) 210 210 210 210 210

R.M.P. (mV) −75.01 Leak (S/cm2) 2.9E-4 2.9E-4 4.6E-4 4.6E-4 4.6E-4

Rin (M-Ohms) 185.86 sodium (S/cm2) 0.84 0.126 0.091 0.056 ---

Membrane time const. (ms) 31.0 Delayed Rectifier K (slow) (S/cm2) 6.0E-3 6.0E-3 6.0E-3 6.0E-3 8.0E-3

Latency to first AP (ms) 100.0 Delayed Rectifier K (fast) (S/cm2) 0.036 9.0E-3 9.0E-3 2.25E-3 2.25E-3

A-type K (S/cm2) 0.108 --- --- --- ---

L-type Ca (S/cm2) 2.5E-3 3.8E-3 3.8E-3 2.5 ---

N-type Ca (S/cm2) 1.5E-3 7.4E-4 7.4E-4 7.4E-4 7.4E-4

T-type Ca (S/cm2) 7.4E-5 1.5E-4 5.0E-4 1.0E-3 2.0E-3

Ca-dependent K (S/cm2) 1.0E-3 4.0E-4 2.0E-4 --- ---

Ca- and V- dependent K (S/cm2) 1.2E-4 1.2E-4 2.0E-4 4.8E-4 4.8E-4

Tau for decay of intracell. Ca (ms) 10.0 10.0 10.0 10.0 10.0

Steady-state intracell. Ca (mol) 5.0E-6 5.0E-6 5.0E-6 5.0E-6 5.0E-6
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TABLE III

Synaptic Parameters for a 1/10-Scale Network

Synapse Counts:

GC # spines - inner 1/3: 115 - 135 GC to BC 50 - 140

GC # spines - middle 1/3: 105 - 120 MEC to BC 10 - 20

GC # spines - outer 1/3: 110 - 130 LEC to BC 10 - 20

BC to GC: 4 - 8

Synaptic Weights (S/cm2):

MEC to GC: 1.17E-4 GC to BC: 1.13E-3

LEC to GC: 1.5E-4 MEC to BC: 4.21E-5

BC to GC: 5.45E-5 LEC to BC: 4.21E-5

EPSP/IPSP Rise Time (ms):

MEC to GC: 1.05 GC to BC: 0.1

LEC to GC: 1.05 EC to BC: 1.05

BC to GC: 1.05

EPSP/IPSP Decay Time (ms):

MEC to GC: 5.75 GC to BC: 0.59

LEC to GC: 5.75 EC to BC: 18

BC to GC: 5.75

Reversal Potentials (mV):

MEC to GC: 0 GC to BC: −75

LEC to GC: 0 EC to BC: 0

BC to GC: 0
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