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Improving Cardiac Phase Extraction in IVUS

Studies by Integration of Gating Methods
Gonzalo D. Maso Talou, Ignacio Larrabide, Pablo J. Blanco, Cristiano Guedes Bezerra, Pedro A. Lemos,

and Raúl A. Feijóo

Abstract— Goal: Coronary intra-vascular ultrasound (IVUS)
is a fundamental imaging technique for atherosclerotic plaque
assessment. However, volume-based data retrieved from IVUS
studies can be misleading due to the artifacts generated by the
cardiac motion, hindering diagnostic and visualization of the
vessel condition. Then, we propose an image based gating method
that improve the performance of the pre-existing methods,
delivering a gating in an appropriate time for clinical practice.
Methods: We propose a fully automatic method to synergically
integrate motion signals from different gating methods to improve
the cardiac phase estimation. Additionally, we present a local
extrema identification method that provides a more accurate ex-
traction of a cardiac phase and, also, a scheme for multiple phase
extraction mandatory for elastography-type studies. Results: A
comparison with three state-of-the-art methods is performed over
61 in-vivo IVUS studies including a wide range of physiological
situations. The results show that the proposed strategy offers:
(i) a more accurate cardiac phase extraction; (ii) a lower frame
oversampling and/or omission in the extracted phase data (error
of 1.492± 0.977 heartbeats per study, mean ± SD); (iii) a more
accurate and robust heartbeat period detection with a Bland-
Altman coefficient of reproducibility (RPC) of 0.23 sec, while the
second closest method presents a RPC of 0.36 sec. Significance:
The integration of motion signals performed by our method
shown an improvement of the gating accuracy and reliability.

Index Terms—Ultrasound, Gating, Motion compensation and
analysis, IVUS.

I. INTRODUCTION

INTRAVASCULAR ULTRASOUND (IVUS) is a widely

used imaging technique that allows a detailed description

of the vessel cross-section and surrounding tissues, playing a

key role in atherosclerotic plaque assessment [1]. In the case of

coronary IVUS, the periodic contractions of the heart impose

large displacements of the vessel structures and the acquisition

probe. The estimation of volumetric measurements and axial

position of structures can be misleading due to this motion [2].

Consequently, non-homogeneous displacements and rotations
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(INCT/MACC), Petrópolis, RJ, 25651-075, Brazil e-mail: gonzalot@lncc.br.

C. Guedes Bezerra and P. A. Lemos are with Department of Interventional
Cardiology, Heart Institute (InCor) and the University of São Paulo Medical
School, São Paulo, SP, 05403-904, Brazil.

I. Larrabide is with the National Scientific and Technical Research Council
(CONICET-Pladema), UNICEN, Tandil, BA, Argentina.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

are observed along the axial and longitudinal directions of the

vessel [3]. Since the typical IVUS study acquisition time is

approximately 2 minutes, it spans along many cardiac cycles

and thus, the pseudo-periodic motion imposed by the heartbeat

is clearly distinguishable throughout the entire study. To deal

with the motion, the heartbeat is usually divided into different

cardiac phases or instants. Along the study, a repeating motion

pattern is observed, which suggests a relation between each

cardiac phase and the motion exerted to the structures. Several

approaches explore this aspect by sampling images of a

particular cardiac phase during (online) or after (offline) the

IVUS acquisition [2], [4]–[15]. From these methods, a severe

reduction of motion is expected, so that specific configurations

of the vessel structures in a particular state of the heart can

be identified.

Online ECG-gated techniques [16] use the ECG signal to

acquire images of one particular cardiac phase. This procedure

increases the acquisition time up to three times in comparison

with the standard IVUS study [17]. Furthermore, it only

presents information of one cardiac phase, neglecting all

the others, forbidding studies such as palpographies or 4-

D reconstructions. Online gated ECG aims at acquiring end

diastolic phase images, which presents the lowest motion

artifacts. However, this is difficult to achieve [2], [10]. Since

the acquisition is gated in terms of R-peak offsets and due to

the heart rate variability, ensuring a consistent cardiac phase

acquisition is a challenging task.

To overcome these obstacles, an offline ECG gating can

be performed on top of a standard IVUS study. However, the

necessary equipment for this technique is not always available

and, furthermore, cannot be applied retrospectively on already

acquired data.

In the last decade, image-based techniques for offline gating

IVUS studies have been developed [4]–[15]. As these are

independent of ECG data, thay can be used at a lower cost

and on already available data. As proposed in [15], these

methods usually present three steps for the gating process:

1) generation of a signal that measures the cardiac motion

in each frame; 2) filtering and extraction of the local extrema

values from the motion signal and 3) offline gating of the study

in cardiac phases. The first stage creates a signal describing

the motion between neighbouring frames mentioned above. In

the second step, local extrema related to a specific cardiac

phase are extracted to obtain a partition of the study into

cardiac cycles. Finally, each cycle is divided in cardiac phases

which are used to retrieve images corresponding to a specific

cardiac phase along the whole study. The main differences
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among these methods resides in the methodological strategies

involved in the first two steps.

For the first step, the signal generation can be performed by

analysing the lumen morphological variations [6], [7] or the

image intensity features [4], [5], [8]–[15]. The methods in the

former category require the segmentation of the luminal area,

which is still an open research topic, and some approximations

are time consuming [6]. Also, luminal topological variations,

such as bifurcations, induce spurious extremal values in the

motion signal.

For methods in the latter category, a set of features are

used to measure the variations between adjacent images: cross-

correlation [5], [9], [10], [12], sum of squared distances (SSD)

[14], local mean variation [4], [11], [12], [15], Gabor filters’

descriptors [8] or radial blurring [13]. It is worth noting that

the blurring feature measures the motion by perturbations over

the transducer probe being not sensitive to topological varia-

tions, while features like cross-correlation or SSD measure by

differences between adjacent frames. Then, these features are

potentially complementary to assess the motion in each frame.

The second stage frequently involves the application of a

bandpass filter centered in a fundamental frequency associated

with the mean cardiac frequency along the study. This strategy

neglects the high order frequencies of the motion signal, which

might misalign local extrema.

In the present work, we propose an automatic gating

method for synergical combination of image features. Also,

a novel method for phase extraction is presented using an

iterative signal reconstruction scheme. Specifically, the pro-

posed method, hereafter referred to Combined Correlation and

Blurring (CCB), is based on: (i) the definition of a combined

motion signal that integrates the signals presented in [10]

and [13] giving less sensitivity to topological variations and a

more accurate cardiac phase extraction; (ii) a scheme for the

identification of local extrema in the motion signal based on

the progressive incorporation of harmonic components, which

increasingly refines the position of extremal values; and (iii) a

physiological criteria for the extraction of multiple phases. The

method validation is conducted using 61 in-vivo IVUS studies

from 21 patients including a wide range of functional and

physiological situations (different degrees of stenoses, stent

deployments and mild arrhythmias) through different coronary

arteries.

The paper is organized as follows. In Section II, we present

a detailed description of each step involved in the proposed

methodology and the parameter setup to ensure the automation

of the method. In Section III, we present the validation

of the method and a comparison with the state-of-the-art

methods for image-based gating. Finally, Section IV presents

the conclusions of this work.

II. METHODOLOGY

A. Integration of motion signals

Let us define the motion signal as a function s(n) that

measures the motion of the n-th image of the study. Then,

s(n) increases if the structures in the vessel change their

distribution by translation, deformation or rotation with respect

to the preceding/succeeding images. Besides, the image noise

(speckle) produced by the micro-structures of the tissue [18]

arises as a coherent pattern that varies through the different

material composition in the vessel wall. For this reason,

the noise variations that increment s(n) are associated to

movements or topological changes of the structures present

in the images.

The signal s(n) is chosen to be a linear combination of M
image features, si(n), i = 0, . . . ,M − 1, characterizing the

motion in an image. Then, the function s(n) is defined as

s(n) =

M−1
∑

i=0

wi si(n) (1)

where wi ∈ (0, 1) is the weight factor of the feature si and
∑M−1

i=0 wi = 1.

In this work, we choose two features similar to those pre-

sented in [10] and [13], respectively. The first feature, ŝ0(n),
is an inverse correlation between two consecutive images, that

is

ŝ0(n) = 1−

∑H

i=1

∑W

j=1 (un(i, j)− µn) (un+1(i, j)− µn+1)

σn σn+1
,

(2)

where un(i, j) is the intensity at the i-th row and j-th column,

µn and σn are mean and standard deviation of the intensity

for the n-th frame and H and W are the frame height and

width. The choice of this feature is justified because the

absence of movement is associated with two almost identical

images, leading to a s0(n) ≈ 0. When the motion between the

frames increases, the matching of structures decreases leading

to smaller correlation. Although, the feature also increase

in motionless scenarios such as topological changes (e.g.

bifurcations) or the appearance of new structures (e.g. stents or

calcium deposits). To improve the treatment of these scenarios,

we use another feature for motion assessment, insensitive

to differences between adjacent frames. This second feature,

called ŝ1(n), measures the blurring in the image,

ŝ1(n) = −

H
∑

i=1

W
∑

j=1

|∇un(i, j)| , (3)

which exploits the fact that the transducer movement provokes

a blurring effect at the borders of the structures.

To adequately combine the image features used to generate

s(n), we normalize their ranges as

si(n) =
s+i (n)

∑N
n=1 s

+
i (n)

(4)

where

s+i (n) = ŝi(n)− min
1≤n≤N

(ŝi(n)) (5)

and N is the number of images in the IVUS study. This last

step ensures that all si are positive and of the same magnitude

order. For the particular case of using two image features, the

weighing factors can be reduced to only one parameter, α,

defined as w0 = α and w1 = 1− α, thus

s(n) = αs0(n) + (1 − α)s1(n). (6)
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Fig. 1: Partial longitudinal view (first 150 frames) of an IVUS

study presenting the motion signal s(n) and the associated

features, s0(n) and s1(n), using α = 0.25. Also the P-wave

occurrence from the synchronized ECG is marked.

The image features and the integrated signal are presented in

Fig. 1 for a frame window in an in-vivo study. It is observed

that several consecutive columns present a similar intensity

pattern around the points of minima, which means the trans-

ducer is acquiring a set of almost identical frames. A pseudo-

periodic pattern with equally separated minima is observed for

s(n). These minima are also present in the individual features

and are equally displaced to the end diastolic phase (P-wave,

marked with green dashed vertical lines) in each heartbeat.

Therefore, we can infer a direct relation between these minima

and a specific cardiac phase in the study.

B. Cardiac phase identification

Next goal is to detect the set of pseudo-periodic minima

related to the specific cardiac phase previously described. As

seen in Fig. 1, s(n) presents many local minima in each heart-

beat making non-trivial the automatic gating of this cardiac

phase. But taking advantage of the s(n) pseudo-periodicity, the

frequency spectrum of s(n) is analyzed and a low frequency

version of s(n) is created, eliminating spurious minima. To

maintain the direct relation between the remaining minima and

the physiological cardiac phases, the filtered low frequency

signal must include a minimum amount of frequencies such

that the original pulsation pattern is preserved. Otherwise, the

lack of high order frequencies can lead to a poor representation

of the pseudo-periodicity of the signal local minima.

The frequency spectrum of the signal, s̃(k), is computed as

the discrete Fourier transform of s(n). In Fig. 2, the absolute

value of the frequency spectrum s̃(k) from an in-vivo IVUS

study is presented. There, a local maximum frequency fm in

the range of physiologically valid heart frequencies is observed

(0.75 Hz to 1.66 Hz or, equivalently, 45 BPM to 100 BPM).
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Fig. 2: Motion signal in the frequency domain. Red lines depict

the range of physiologically valid heart frequencies.

As will be shown later fm is a close approximation of the

mean cardiac frequency along the study (see Section III-E).

The use of fm as cut frequency for a low-pass filter over s(n)
yields a filtered signal that preserves an approximate amount

of heartbeats in the study. Therefore, the automatic detection

of fm is performed by extracting the maximum frequency

component of s(n) in the physiological range, i. e.,

fm = max
k∈[0.75,1.66]

(s̃(k)) (7)

where the physiological range is defined between 0.75 Hz and

1.66 Hz.

To consider the pseudo-periodicity of the signal we intro-

duce a factor, δ fm, δ ∈ (0, 1), which models the deviation

of the heartbeat frequency along the study. Then, the cut

frequency for the low-pass filter is defined as

fc = (1 + δ)fm . (8)

The low frequency signal, slow(n), is constructed as the

convolution of s(n) against a low-pass kernel f(n), namely

slow(n) = s(n) ∗ f(n), (9)

where ∗ is the convolution operator. In turn, the low-pass

kernel is defined as

f(n) = w(n) · h(n), (10)

where w(n) is the equivalent of a rectangular unitary window

for the frequencies k ∈ [0, fc] and h(n) is a Hamming window

of N points. The approximations involved with the Fourier

discrete transform are avoided by applying this kernel in the

time domain. Thus, the expression of f(n) is given by

f(n) =

[

fc
fmax

sinc

(

fcn

fmax

)]

[

τ − ν cos
(

2π
n

N

)]

, (11)

where fmax if the maximum frequency in the study calculated

as half of the transducer frame rate. In the equiripple sense,

optimal values for the Hamming window are chosen as τ = 25
46

and ν = 21
46 (see [19], [20]).

The resulting signal slow(n) presents approximately one

minimum for each heartbeat, which provides a first approxima-

tion for the local minima positions p(i), at the i-th heartbeat.
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fc = (1 + δ)fm
slow(n) = s(n) ∗ f(n)

with cut frecuency fc

p(i) =
the i-th minima in slow(n)

fc = fc + fm

if fc > fmax

slow(n) = s(n) ∗ f(n)
with cut frecuency fc

adjust each previous minimum

p(i) to the nearest minimum
fc = fc + fm

no yes

Fig. 3: Activity diagram detailing the iterative adjustment of

p(i) from the initial signal slow(n) to s(n).

Using this initialization, the iterative scheme presented in

Fig. 3 is applied. At each step, all frequencies up to the

next harmonic component are incorporated in the definition

of slow(n) and p(i) is adjusted to the nearest local minimum.

Note that, the adjusted value of p(i) is not necessarily the i-th

minimum of slow(n) because addition of higher frequencies

may induce the apparition of additional minima. This process

is repeated until slow(n) incorporates all harmonic components

of fm, obtaining the adjusted minimum for each heartbeat.

In Fig. 4, the evolution of slow(n) through the incorporation

of frequencies is observed along the fc axis. It can be seen that

the initialization of the minima in slow(n) can be displaced

from the pseudo-periodic minima of s(n) due to the absence

of high frequency contributions. As we incorporate harmonic

components of s(n) progressively, the minima is adjusted

smoothly (red points path in the fc axial direction) to the

associated minima position at the signal s(n). This increases

the precision of the p(i) locations, for the cardiac phase

detection.

C. Decomposition in cardiac phases

The identification of the images corresponding to the de-

tected cardiac phase, i. e. the ones acquired at the p(i) instants,

allows the decomposition of the study in sets of images

associated to each heartbeat. This is done by grouping the

images between p(i) and p(i+1) as the set of images acquired

in the i-th heartbeat. In this manner, the number of sets found,

is equivalent to the number of heartbeats identified in the IVUS

study.

Over these new sets of images, we define HB(i, j) as the

index (frame number) in the original IVUS study of the j-th

image corresponding to the i-th heartbeat in the study. In this

indexation HB(i, 1) represents the images at the first identified

cardiac phase (i.e., the frames acquired at p(i)).
Since the heart frequency changes along the study, the

heartbeats are sampled with a variable amount of frames. This

variability in the heartbeat affects mainly the time of the dias-

tole (more specifically the T-P interval), i. e. the heart relaxes

during a major or minor period of time. Although, the cardiac

waves duration associated with the cardiac phases show almost

no change at all. As consequence, longer heartbeats present

more cardiac phases than a short heartbeat.

Then, P cardiac phases for the i-th heartbeat are identified

as the first P frames. The value of P is chosen as the

amount of frames of the shortest heartbeat in the study.

The reason behind this choice was to preserve axial spacing

as homogeneous as possible between images from different

cardiac phases. This guarantees that each phase is represented

by the same amount of information.

Finally, the set of images Uk(i) corresponding to the k-th

cardiac phase is defined as

Uk(i) = I(HB(i, k)), i = 1, . . . , B, k = 1, . . . , P (12)

where I(n) is the n-th image of the IVUS study and B is the

quantity of heartbeats along the study.

D. Parameter setup

An analysis for the parameters α and δ (Eq. (6) and

(8), respectively) is performed to ensure an appropriate and

automatic execution of the method.

1) Parameter α: IVUS studies present small variations

in the cardiac period during acquisition for patients without

severe cardiac arrhythmia. For this reason, the criteria used to

choose the optimal α is to reduce the heartbeat period vari-

ability detected with the gating method (see Section III-H for

associated implications). This is simply done by minimizing

the standard deviation of the set of values p(i+ 1)− p(i) for

i = 1, . . . , B − 1.

In this manner, an optimization problem is solved to deter-

mine the optimal α parameter that efficiently combines the fea-

tures s0 and s1 for an specific IVUS study. This minimization

process is performed by testing a large number of candidates,

say αc, c ∈ C being C the set of candidates, and then

picking the best fitting one for the aforementioned criteria.

Combining s0 and s1 with a particular α and computing the

adjusted minima p(i) are computationally cheap tasks, then

we can apply a brute force minimization scheme with low

computational cost.

To formalize this, let us define tαc

HB(i) = p(i+ 1)− p(i) as

the period of the i-th heartbeat from the signal s(n) calculated

with αc and σαc

t as the standard deviation of the periods tαc

HB(i)
for the entire study, then the optimal α is obtained as

α = arg min
αc∈C

σαc

t . (13)

To determine an appropriate quantity of αc values used in

the calculus of α, we evaluate the variation of the minimum

σαc

t from Eq. (13) for different sizes of C. We define C as

a set of equally spaced candidates C = {αi
c;α

i
c = i/A, i =

0, . . . , A} where A is the quantity of αc candidates to be tested

in Eq. (13). For the set of studies available (61 studies), a

suitable size of C was given by A = 103, for which the error

of estimating σαc

t was smaller than 10−3 seconds.

The α value from Eq. (13) varies among studies due to their

vessel topology and intensity of sensor motion. As commented

before, s0 does not accurately represent motion for studies
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Fig. 4: Evolution of the iterative scheme for adjusting the minima position. The axis fc corresponds to the cut frequency of the

low-pass filter and, at each fixed value of this axis, the slow(n) associated signal is presented. The red dots mark the position

of the adjusted minima, p(i), corresponding to the identified cardiac phase.

with numerous topological changes (bifurcations, dissections,

etc.) then a lower α is expected for these cases. On the other

hand, studies with poor blurring (usually associated with low

sensor motion during acquisition) will produce a unreliable s1,

increasing the value of α.

This setup is straightforward generalized for the integration

of K motion signals by performing the same optimization

scheme over the K dimensional space defined by the weight

factors w = w1, w2, . . . , wK (see (1)). The optimal weights

factors of the features are obtained as

w = arg min
w∈Cw

σw

t (14)

where Cw = Cw1
× Cw2

× . . . × CwK
and Cwi

is the set of

candidates for the weight factor wi.

2) Parameter δ: The range δ ∈ (0, 1) guarantees no

harmonic contributions in each low-pass filter iteration. This

ensures that the signal s(n) contains only one minima at

each heartbeat. Meanwhile, the variability in the heartbeat

frequency can mislead the detection of the heartbeats for

values of δ near the range limits.

For the lower limit, when δ is close to 0, the heartbeats

with frequency above fm are not recovered in slow(n). For

the superior limit, when δ is close to 1, we are recovering

in slow(n) a harmonic contribution for the heartbeats with

frequency below fm. As result, we would be generating two

local minima for the heartbeats with duration above the mean

heartbeat duration. Both cases are unacceptable because they

introduce inaccuracies to the initialization of our minima

adjustment scheme (Fig. 3).

For these reasons, intermediate values render better results.

Concretely, a good agreement was empirically obtained for

δ = 0.4, which presented no omission nor addition of minima

in comparison with the data retrieved from the ECG signal.

Theoretically this value is also valid given that variability in

the heartbeat frequency above 40% of the mean is not usually

seen in patients without severe cardiac arrhythmia.

III. RESULTS

The proposed method was validated using IVUS images

with a synchronized ECG signal. A manual offline ECG

gating was chosen as ground truth for comparison, where

a specialist determine the frames at the R-wave peak by

inspection of the ECG signal. Moreover, other state-of-the-

art methods described in the literature were implemented for

comparison, namely Absolute Intensity Difference (AID) [4],

Correlation Dissimilarity Matrix (CDM) [10] and Motion Blur

(MB) [13]. It is worth noting that the image feature combined

by our method are the presented in CDM and MB. A direct

comparison between the three methods is useful to assess the

improvement introduced by our proposal.

A. Acquisition of in-vivo IVUS studies

The IVUS studies were acquired with the AtlantisTMSR Pro

Imaging Catheter 40 MHz synchronized with an ECG signal

and connected to an iLabTM Ultrasound Imaging System

(both by Boston Scientific Corporation, Natick, MA, USA), at

the Heart Institute (InCor), University of São Paulo Medical

School and Sı́rio-Libanês Hospital, São Paulo, Brazil. The

acquisition frame rate was of 30 FPS performing for each

frame 256 radial scans with 256 intensity measurements. The

generated frames of 512× 512 pixels in cartesian coordinates

present a resolution of 17.5µm × 17.5µm per pixel.

The procedure was performed during a diagnostic or thera-

peutic percutaneous coronary procedure. Vessels were imaged

during automated pullback at 0.5 mm/s, but additional manual

runs, not used in the subsequent analysis, were performed.

Overall, multiple runs where performed on 21 patients leading

to 61 IVUS studies with synchronized ECG signal. The

IVUS sequence length reported in these studies comprises
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2974.8± 1133.8 frames (mean ± SD). Images from different

coronary arteries (Left Anterior Descending - LAD, 31 studies;

Right Coronary Artery - RCA, 8 studies; Left Circumflex

Artery - LCx, 12 studies; and Obtuse Marginals and Diagonals,

10 studies) at different mean cardiac frequencies (from 65
BPM to almost 105 BPM) including cases with severe stenosis,

stent deployment and mild arrhythmia (presence of ≤ 5
extrasystole in 9 studies) were analyzed.

After the procedure, a manual offline ECG gating was

performed for each study. Specifically, a specialist marks, as

shown in Figure 5, the elapsed time at each R-wave peak

over the ECG signal of each study. Using that information,

the period of each cardiac cycle in the studies is calculated.

As the IVUS study is synchronized with the ECG signal, the

R-wave peak frames are identified and the gating of this phase

is used as ground truth. As the time between the beginning

P-wave and the R-wave peak rarely varies, it is reasonable

to infer the period between the steady phase as the period

between the R-wave peaks.

Manual R-wave peak segmentation reliability was estimated

by calculating intra- and inter-observer variability in terms of

the Bland-Altman limits of agreement (LA) and the coefficient

of variability (%CV ). Thus, 3 specialists segment 3 times

5 studies (with 77, 112, 130, 130 and 165 R-wave peaks

giving N = 614 samples). For intra-observer variability,

we compare among the repeated segmentations of a fixed

specialist to observer the degree of variation. The results are

presented in Table I where it is seen that variations within

each specialist are less than 1 frame (maximum variation of

0.3634 frames for the specialist 3 between segmentations 1

and 3), showing negligible variability in the segmentation

process. Inter-observer variability was addressed by estimating

the mean observation, Oi, corresponding to the i-th specialist.

The values of Oi are simply the mean values of each R-

wave peak time from the 3 repeated segmentations of the i-th
specialist. This step attenuates the intra-observer variability in

order to deliver a more reliable inter-observer analysis. The

results presented in Table II suggest even lower variability

than intra-observer analysis (worst case present a discrepancy

of 0.184 frames between specialist 2 and 3), indicating a high

level of agreement between specialists about this ground truth.

B. Features correlation

The main purpose of constructing a combined signal from

two image features is to increase the robustness of the heart

motion estimation. Thus, we seek for features uncorrelated that

at the same time present a close motion pattern associated with

the heartbeat. As the features present a low correlation, their

combination presents minimal redundancy, implying that the

motion is characterized in different manners by each feature.

In that manner, we analyze the correlation between the fea-

tures s0 and s1, by computing the Pearson’s linear correlation

between them. As result, we obtain a mean correlation of

−0.164± 0.266 (mean ± SD), presenting scarce redundancy

of information. Meanwhile, both features present a similar

motion frequency, characterized by fm from (7), showing a

shallow absolute difference of 0.0146± 0.0263 heartbeats per
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Fig. 5: ECG signal depicting the specialist red marks at R-

wave peak instants. The marks are then associated to the

frames acquired at these instants according with the IVUS

DICOM header. This example shows 5 seconds of the ECG

signal synchronously acquired during the IVUS pullback by

the iLabTM Ultrasound Imaging System.

second (mean ± SD) along the studies. The resemblance in fm
allow us to infer that both feature reproduce a closer pseudo-

periodic pattern associated with the transducer motion.

C. Error measurements

The proposed image-based gating method was assessed

using two quality measures. For the sake of simplicity, we

introduce some definitions first. Let us generalize the definition

of p(i) as the time at which a particular cardiac event occurs

at the i-th heartbeat of the study, e. g., the R-wave peak in

the ECG signal (pECG(i)) or the minima in an image-based

method (pIB(i)). From p(i) then we can derive tHB(i) and

pm(i), the heartbeat period and the middle time instant of the

i-th heartbeat of the study, as

tHB(i) = p(i + 1)− p(i)

pm(i) =
tHB(i)

2
+ p(i).

The mean error per heartbeat, εHBP, measures the mean

period difference between the image-based and the offline

ECG gating method. For each heartbeat its period, obtained

from the image-based gating, is compared with the nearest

period from the ECG gating as

εHBP =

M
∑

i=1

∣

∣

∣

∣

tIBHB(i)− tECG
HB

(

min
j

(∣

∣pIBm (i)− pECG
m (j)

∣

∣

)

)∣

∣

∣

∣

M
(15)

where M is the quantity of cardiac events detected by the

image-gating method and (·)IB and (·)ECG are quantities

associated with the image-based gating method and the offline

ECG gating method, respectively. Using this error measure-

ment, the omission or erroneous detection of the p(i) event

does not affect the error estimation in the next cardiac cycles.

Notice that the quantity of heartbeats in a study according to

the gating method is equal to M − 1.

The phase detection error, εPD, measures the difference

between the R-wave peak detected by the image-based and

the ECG gating methods. As previously mentioned, the time
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S1 vs S2 S1 vs S3 S2 vs S3

LA (in frames) %CV LA (in frames) %CV LA (in frames) %CV

O1 −0.0130± 0.2351 0.012 −0.0098± 0.2553 0.014 0.0033± 0.2285 0.012
O2 −0.0081± 0.2647 0.014 0.0016 ± 0.2457 0.013 0.0098± 0.2210 0.012
O3 0.0033 ± 0.3521 0.019 0.0163 ± 0.3471 0.018 0.0130± 0.3425 0.018

TABLE I: Intra-observer variability from 3 segmentations (S1, S2 and S3) per specialist (O1, O2 and O3). Bland-Altman limits

of agreement (LA) and coefficient of variations (%CV ) are presented for each comparison.

LA %CV

O1 vs O2 −0.0141 ± 0.1196 frames 0.006

O1 vs O3 −0.0038 ± 0.1729 frames 0.009

O2 vs O3 0.0103 ± 0.1737 frames 0.009

TABLE II: Inter-observer variability from mean values of the 3 intra-observer segmentations. Bland-Altman limits of agreement

(LA) and coefficient of variations (%CV ) are presented for each comparison.

elapsed between the P-wave and the R-wave peak rarely varies

(independently of the heartbeat frequency variations), then we

can identify the R-wave peak frames in the image-based gating

by displacing all P-wave frames with the same offset. As we

want to retrieve the most similar phase to the R-wave peak,

we calculate this offset as the mean distance between pIB(i)
events to the pECG, given by

µPD =

M
∑

i=1

[

pECG

(

min
j

(∣

∣pIBm (i)− pECG
m (j)

∣

∣

)

)

− pIB(i)

]

M
.

(16)

Thus, we calculate the error at each heartbeat as the distance

between the pECG instant and the pIB displaced by µPD,

namely

εPD(i) = pIB(i)+µPD−pECG

(

min
j

(
∣

∣pIBm (i)− pECG
m (j)

∣

∣

)

)

,

(17)

with i = 1, . . . ,M .

D. Method performance

The performance of the CCB method was evaluated through

comparisons with the following methods: Absolute Intensity

Difference (AID), Correlation Dissimilarity Matrix (CMB)

and Motion Blurring (MB). The comparison of our method

against [10] and [13] shows the improvement obtained by the

integration of both motion signals and, also, from the proposed

cardiac phase identification strategy.

In the first comparison, the capability of the different

methods for predicting the cardiac cycles periods is compared.

The heartbeat periods estimated via the ECG offline method

were used as ground truth. In Fig. 6 the error εHBP for the

four methods is shown. The CCB method presents the best

behaviour as indicated by the linear fitting in the same figure,

followed by the AID method. The variability of the error is

also smaller for the CCB method and increases of the cardiac

frequency barely increment its error.

An additional comparison between the image-based meth-

ods and the ECG offline gating method is featured in Fig. 7.

In this case, we present the heartbeat period estimation for

each heartbeat in every study (61 studies). The Bland-Altman

coefficient of reproducibility (RPC= 1.96× SD) is the smallest

Mean heartbeat freqency of the study (BPM)

ε
H
B
P
(s
e
c
)

CCB
AID
CDM
MB

40 50 60 70 80 90 100 110
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 6: Error εHBP at each study for the different gating

methods. The dashed lines represents a linear fitting (via

linear least-squares) that describes the error behaviour for each

method.

for CCB, RPC(%) = 0.23 sec. (26%), followed by AID with

RPC(%) = 0.36 sec. (41%). This implies that the CCB method

is the closest one to the manual offline ECG gating. The

proposed method also presents a more robust estimation of

the heartbeat period evidenced by the reduced dispersion and

range of samples in the y-axis (see Fig. 7).

Using the acquisition time of frames at R-wave peak ac-

cording to the manual offline ECG gating, we evaluate the

performance of the methods. Since the R-wave peak is the

only cardiac phase that we can extract precisely from the ECG,

this is the only indicator where the success in recognizing a

specific cardiac phase can be measured. For this reason, the

εPD error is a trustful indicator of success when using pECG

as the R-wave peaks. As the mean of this error is zero by

construction, we are interested in its standard deviation along

each study, which shows differences between the gated phase

and the ground truth. The value of this indicator is presented

in Fig. 8 where the mean and maximum standard deviation

for the 61 studies using each of the 4 methods are shown. The

CCB method presents the most accurate results, with mean

SD of εPD being 0.165, 0.251, 0.282 and 0.475 for the CCB,
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Fig. 7: Bland-Altman plots comparing the heartbeat periods measured by the offline ECG method (assumed as ground truth)

and : (a) the CCB method presenting RPC(%)= 0.23 sec (26%); (b) the AID method presenting RPC(%)= 0.36 sec (41%); (c)

the CDM method presenting RPC(%)= 0.67 sec (90%); (d) the MB method presenting RPC(%)= 1.4 sec (170%). Each sample

represents one heartbeat period in one of the studies. The color indicates the amount of samples overlapped in the same position

of the diagram, horizontal solid line stands for the mean difference and dashed line depict the limits of agreement (1.96×
standard deviation of the differences). Plots (a)-(d) contain respectively 6802, 6614, 10077 and 7651 samples corresponding

to 61 studies.

AID, CDM and MB methods, respectively.

From the analysis of these results, it is seen that MB

presents outliers exceeding 0.8 seconds (see Fig. 6) caused

by the omission of several frames associated with the steadiest

phase. In these studies the transducer motion is too low to pro-

duce the blurring effect, at least not along the full study. Then,

the motion signal poorly represents the cardiac pulsatility

and does not present the characteristic quase-periodic pattern

(the frames extracted do not represent any specific phase, see

Fig. 8). CCB circumvents this issue by the adjustment of α
performed in Eq. (13). As s1 shows high variation of heartbeat

periods, α is adjusted to values closer to 1 giving major weight

to s0 data (which resembles the signal used in AID).

In another analysis, we compare the number of heartbeats

estimated by each method against the ground truth. Here, it

is evident that the methods using band pass filter around the

mean cardiac frequency (i.e. CCB and AID) delivered better

results (see Table III). This is given by the low heartbeat

frequency variation within a study. As extra systoles may

S
ec
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n
d
s
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MB
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standard deviation

of εPD

Maximum
standard deviation

of εPD
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Fig. 8: Mean and maximum standard deviation of the error

measure εPD for each of the gating methods.
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Id CCB AID CDM MB

Mean error 1.492 4.246 52.984 24.623
SD error 0.977 3.567 48.028 19.068

Maximum error 6 22 219 80

TABLE III: Number of heartbeats (frames in the longitudinal

view) detected by each gating method. The error in the i-th
study is calculated as |BECG − BIB| where BECG and BIB

are the heartbeats estimated in the ground truth and the image

based method respectively.

occur in a study from time to time, the cardiac frequency

remains almost invariant and the use of this information is

fundamental to provide robustness to the method. Methods

like CDM and MB do not assume low variation of the cardiac

frequency, making them potentially capable of detecting any

kind of cardiac variations. Although, these methods would also

be capable of detecting extremely shorts heartbeats (most of

the times physiologically meaningless) which would yield an

incoherent phase gating. Particularly, CCB method presents

a better performance compared to the other methods (even

against AID) diminishing the number of frames omitted or

oversampled for the extracted cardiac phase. For the CCB, less

than 6 beats per study are missed or overestimated presenting

a mean error of 1.492± 0.977 heartbeats (mean ± SD) along

all the studies. As consequence, the proposed method presents

a larger proportion of phase coherent data extracted from the

study for a specific cardiac phase.

From the different comparisons, AID and CCB reported the

closer heartbeat period detection mainly because the use of a

band filter around the mean cardiac frequency of the study.

Their motion signals present low heartbeat period variations

(as higher frequencies were removed) as is physiologically ex-

pected. Thus, an accurate prediction of mean heartbeat periods

and number of heartbeats present in the study is obtained.

Although, AID is not phase consistent, i.e. the identified

frames are not necessarily associated with the same cardiac

phase, as can be shown in Fig. 8. In turn, CCB underpins

this issue by combining the motion signal s0 (associated

with frames correlation) with another uncorrelated motion

signal (associated with blurring). The resulting signal intensity

decreases at the steadiest phase frames while increases at the

remaining phases frames. Then, when minima are adjusted

by the iterative harmonic scheme, we obtain a more accurate

steadiest phase identification.

E. Mean cardiac frequency estimation

Using the ground truth, we compute the mean cardiac

frequency, fECG, as the quantity of heartbeats detected over

the study time duration. Then, we compare fECG against fm
calculated using Eq. (7) in terms of their absolute difference,

i. e., εHF = |fECG − fm| . The comparison shows an error

of 1.109 ± 0.861 BPM (mean ± SD), and always minor

than 4.126 BPM. This allows estimating the mean cardiac

frequency of the patient with reasonable accuracy, only by

using the IVUS image data.

F. Gating comparison

As a qualitative comparison, the corresponding longitudinal

views after the gating process with the different methods for

a particular IVUS study are shown in Fig. 9. The endothelial

layer gated by the offline ECG method clearly resembles the

result of the CCB method more than those obtained with other

methods. This comparison is accentuated when looking at the

differences between our ground truth and the different methods

(see Fig. 9, right column). This can be seen at the bifurcation

presented in the middle section of the sequence, where delay

or anticipation of the branch origin occurs for other methods

(CDM, AID and BM). Moreover, a substantial reduction of

saw tooth artifact is remarkable for the results given by CCB

and AID methods.

The distribution of the differences between the image based

and the offline gating method is not homogeneous. As shown

in Fig. 10 the maximum differences are located at the middle

part of the vessel where the bifurcation is located. This en-

courages the use of features that correctly measure the motion

while topological changes occur. In fact, small differences are

seen for the CCB method, where blurring information reduces

motion misidentification.

G. Computational Cost

The method was implemented partially in MATLAB and

C++ languages. The signal si calculation is performed in C++

parallelized at frame level with OpenMP. Alpha estimation

(see Eq. (13)) and the iterative filtering scheme are performed

in MATLAB using parfor parallelization for alpha estimation.

For the method execution, we used a workstation with

an Intel Xeon CPU E5-2620 at 2.00 GHz processor and

Kingston 99U5471-031.A00LF at 1333 MHz (latency of 27

ns) RAM memory over Ubuntu 14.04.1 LTS. The method

execution process was parallelized into 12 threads for all

the measurements reported in this section. As performance

measurement, we use the wall clock time because we are

interested in showing that the execution time is reasonable for

clinical use. To diminish the operative system time variations

during the method execution, we run 5 times each study

processing, and store only the mean wall clock time from these

executions.

The results show that the execution time is 20.63 ± 8.11
seconds (see Fig. 11) which in comparison to the acquisition

time of the study (99.16 ± 37.79) represents 20%. This

overhead is found to be suitable for medical practice since

it allows to perform image gating during the diagnostic or

therapeutic procedure. In a closer analysis, it is seen that

the time consuming tasks are the α estimation and signal

computation (see Fig. 11 and 12). Both tasks could be fully

parallelized with a maximum of A and N threads, respectively,

where A is the number of alpha candidates to be tested

in Eq. (13) and N is the quantity of frames in the IVUS

study. As reported in Section II-D1 and III-A, A = 1000
and N = 2974.8± 1133.8 frames which allows a theoretical

speed up of the methods until two order of magnitude from

the reported results. Finally, almost all the estimation time for

the value of α is spent in the iterative adjustment of p(i)
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Fig. 9: Longitudinal views of an IVUS study processed with the different gating methods: (left column) standard longitudinal

view; (right column) absolute difference versus the ECG offline method.

(see Fig. 12). This task is was implemented in MATLAB

and parallelized using parfor. Clearly, its performance can be

improved by reimplementing the task in C++ with OpenMP

parallelization.

H. Limitations

Known limitations of this method, as well as for other

methods using a low/band-pass filters at the spectral filtering of

a motion signal, are related to the treatment of IVUS studies

in patients with large heart rate variability, such as cardiac

dysrhythmia, or at locations with no vessel movement at all,

such as infarcted areas of the heart.

IV. CONCLUSIONS

A novel method to improve the IVUS gating by combining

different image motion features has been presented. Particu-

larly, the implementation, called Combined Correlation and

Blurring, has shown to outperform other methods that use

the same image features separately. The proposed method is

capable of identifying cardiac phases, heartbeats and mean

cardiac frequency along the studies in an accurate and robust

manner for a wide range of situations (severe stenoses, stents,

different coronary vessels and studies from 65 to almost 105

BPM). This has been verified through direct comparison with

the cardiac phase associated to the R-wave peak, retrieved

from a manual offline ECG gating with scarce intra-inter

observer variability.

In terms of heartbeat detection and cardiac period estima-

tion, the CCB method outperforms other compared methods.

The cardiac phase detection performed by the CCB method

presents the smallest error between the image-based gating

methods, rendering the most accurate gating for IVUS study.

From the comparisons carried out in this work, it presents the

lowest frame omission and/or oversampling at each heartbeat,

as direct consequence of the correct identification of the

heartbeats along the study.

In contrast to the time consuming manual offline ECG

gating, it is worthwhile to highlight that our method is fully
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Fig. 10: Volume rendering corresponding to the absolute difference pixel to pixel of the volumes gated by the image based

gating method and the manual offline ECG gating. The study visualized is the same as in Fig. 9.
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Fig. 11: Mean processing time of the 61 IVUS studies showing

the time for: the signal computation (Eq. (2) and (3)), α
estimation (Eq. (13)), study gating (Section II-B and II-C) and

total method execution time.

automatic, independent from other studies or equipment and

it is applicable to pre-existing IVUS studies. Also, the com-

putational overhead of this method to the IVUS acquisition

time is a 20%, allowing its use for medical practice during

the diagnostic or therapeutic percutaneous coronary procedure.

All these aspects permit the direct application of the CCB

method as a pre-processing stage for filtering, segmentation

or reconstruction methods, which would be greatly benefited

from the increase of accuracy and time consistency of the so-

extracted cardiac phases from the IVUS study.

Signal
computation

(39%)

Other tasks for
α estimation

(< 1%)

Iterative
adjustment

of p(i)
(60%)

Gating signal
(< 1%)

Fig. 12: Percentage consumed by each method subtask during

the execution. The task α estimation presented in Fig. 11 here

is subdivided in the tasks: iterative adjustment of p(i) and

other tasks for α estimation.
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