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Abstract

Concentric tube robots, which are comprised of pre-curved elastic tubes that are concentrically 

arranged, are being developed for many medical interventions. The shape of the robot is 

determined by the rotation and translation of the tubes relative to each other, and also by any 

external forces applied by the environment. As the tubes rotate and translate relative to each other, 

elastic potential energy caused by tube bending and twisting can accumulate; if a configuration is 

not locally elastically stable, then a dangerous snapping motion may occur as energy is suddenly 

released. External loads on the robot also influence elastic stability. In this paper we provide a 

second-order sufficient condition, and also a separate necessary condition, for elastic stability. 

Using methods of optimal control theory, we show that these conditions apply to general 

concentric tube robot designs subject to arbitrary conservative external loads. They can be used to 

assess the stability of candidate robot configurations. Our results are validated via comparison 

with other known stability criteria, and their utility is demonstrated by an application to stable path 

planning.
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I. Introduction

CONCENTRIC tube robots are lightweight and slender, and can assume complex-shaped 

curves simply by rotating and translating the concentric tubes relative to each other (see Fig. 

1). Because the tip position and orientation can be directly guided and controlled along 

prescribed paths, concentric tube robots have been regarded with great promise as a surgical 

device for minimally invasive surgery.

Currently, these robots are being developed for procedures throughout the body. In 

neurosurgery, for example, designs have been developed to access and remove skull base 
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tumors [1] as well as to perform intraventricular procedures [2]. Lung procedures are also an 

area of interest since bronchoscopes are limited in how deeply they can navigate into the 

lungs [3]–[5]. Robotic catheters are being tested as a means of converting procedures 

currently performed via open surgery into beating-heart interventions [6]–[9].

In designing robots for these procedures, tubes with higher pre-curvatures offer better 

maneuverability. As tube pre-curvature and length increase, however, instabilities can arise 

[10]–[12]. Elastic potential energy stored during bending and twisting of the individual tubes 

can be suddenly released at certain configurations, creating dangerous snapping motions.

From a mechanics perspective, such snapping occurs when a configuration of the robot has a 

nearby configuration with lower energy, implying that the current configuration is not a 

stable equilibrium. For this reason an understanding of local stability, in particular an 

efficient and reliable method for quantitatively evaluating local stability, is important in 

practical applications involving concentric tube robots.

For example, the design of a concentric tube robot can be cast as a problem of finding a set 

of design parameters that satisfies local stability over a given range of configurations, or 

maximizes local stability at the most unstable configuration. In sampling-based path 

planning algorithms such as those based on the rapidly exploring random tree (RRT) [13], a 

local stability criterion can be used to define the feasible configuration space. The local 

stability criterion can also be used for online safety checking during real-time control, to 

avoid such snapping configurations.

It is also important to understand and predict the effect of external loads on robot stability. A 

wide range of loading scenarios are possible during medical interventions. For example, 

concentric tube robots can be employed as steerable needles following 3D curves through 

solid tissue. In these situations, loads will consist of tip cutting forces and torques as well as 

distributed forces and torques from the tissue along the inserted length. If a steerable needle 

is designed to follow a particular path through tissue, but the tissue forces are not 

considered, the robot may behave stably when operating in free space, but become unstable 

during actual insertion and cause the needle to veer off course. Since tissue properties are 

hard to estimate, methods to predict robust stability would clearly be of value.

When introduced into a body cavity such as the heart, the inserted portions can operate as a 

robot performing such tasks as manipulating tissue and deploying devices. In these 

scenarios, forces and torques are generated at the robot tip. Furthermore, if the robot presses 

against tissue along its length, this generates distributed loads on the robot. These forces and 

torques can generate sudden motions. If the tip is grasping tissue delicate tissue, e.g., a heart 

valve leaflet, an an unstable motion occurs, it could tear off the leaflet. Achieving robust 

stability can be important in such tissue manipulation tasks.

Existing results on the elastic stability analysis of concentric tube robots are either limited to 

planar tubes of constant pre-curvature, do not consider external loads, or otherwise require 

significant computation. The notion of elastic instabilities was first introduced in [11], [12]. 

A global stability condition for planar tube pairs with constant pre-curvatures was presented 

in [10]; here an analytic stability condition for measuring the stability of a tube pair based on 
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the notion of an s-curve was developed. For robots comprised of more than two tubes, a 

multi-dimensional generalization of the s-curve was developed in [14] to determine both 

local and global stability.

For robots with non-constant tube pre-curvatures, an analogous stability condition based on 

the s-curve is presented in [15]: global stability was determined from the existence of 

positive solutions to a certain initial value problem, and an optimal design problem to 

maximize global stability was also formulated and solved. An analytic stability condition for 

tube pairs with constant pre-curvatures and straight transmission lengths is presented in [16], 

together with an implicit method to design a globally stable robot with more than two tubes.

In summary, existing works on elastic stability assume planar and constant pre-curvatures 

[10], or those with straight transmission lengths [16]. The multi-dimensional s-curve 

approach in [14] is based on the global shape of the s-curve, which requires significant off-

line computations whenever the tube parameters or transmission lengths are changed. None 

of the prior works consider external loads in their stability analysis.

This paper presents an energy-based local stability condition for a concentric tube robot in 

the presence of conservative external loads, including distributed forces and torques along 

the tubes as well as concentrated forces and torques at the tip. While point loads applied 

along the length are not explicitly included, they can be closely approximated using 

distributed loads. Mathematical conditions for local stability are derived through a 

variational approach based on optimal control theory. Our results are applicable to robots 

comprised of any number of tubes. Furthermore, tube pre-curvature and stiffness can be 

arbitrary functions of arc length. The computations involved in evaluating local elastic 

stability consist simply of solving a matrix initial value problem together with the evaluation 

of determinants for numerical integration.

The paper is organized as follows. Section II presents the definitions and notation behind our 

concentric tube robot model. Section II introduces the optimality conditions from control 

theory that we apply to evaluating robot elastic stability. The elastostatic kinematic model is 

derived in a form suitable for stability analysis in Section IV and the question of determining 

local elastic stability is then formulated as an optimal control problem in Section V. 

Numerical experiments relating our stability conditions to prior results are presented in 

Section VI, including tube pair examples with various external loads, and a path planning 

example involving a three-tube robot.

II. Concentric Tube Robot Modeling

The shape of the concentric tube robot is determined by external loading, the initial shape 

and the stiffness of each tube, as well as the kinematic inputs including the base rotation and 

translation of each tube [10], [12], [17], [18]. To extend these models for stability analysis, a 

concise set of definitions and properties is presented here.

Consider the tubes are concentrically combined as depicted in Fig. 2. The kinematic inputs 

are the base rotations and the translations of the tubes about and along z-axis of the world 

coordinate frame. Let θ0,i and ai denote the base rotation and the translation of i-th tube, and 
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s denotes the arc-length parameter of the robot, of which the initial value is an and the final 

value is bn. The material coordinate frame

Ri(s) ∈ SO(3) is then defined as a body frame rigidly attached on the infinitesimal length of 

material of tube i at s. Its z-axis is tangentially aligned to the tube’s central axis. Then the 

curvature vector of tube i

(1)

can be computed by

(2)

where [r] denotes the skew-symmetric representation of r = [r1 r2 r3]T ∈  given by

(3)

The pre-curvature vector of tube i, , is defined as the initial curvature of tube i 
when the tube is not subject to any external loads due to the interactions between other tubes 

or the environment.

Since the z-axes of the material coordinate frames Ri(s) of all the tubes are aligned 

tangentially to the backbone curve, they can be expressed with a reference coordinate frame, 

R(s), and relative rotation angles of the tubes about the z-axis, θi(s), i.e.,

(4)

where

(5)

Note that any arbitrary choice of the reference frame R(s) is possible as long as its z-axis is 

tangentially aligned to the tube’s central axis. We have chosen a Bishop frame [19] as the 

reference frame. Note that  represents the mechanical twisting of tube i in this case. The 

Bishop frame R(s) and the backbone curve p(s) ∈  are then given by

(6)

(7)

where ux(s), uy(s) ∈  are the backbone bending curvatures, and  is the unit vector in the 

z-direction, i.e.,  = [0 0 1]T. The initial value of R(s) is chosen to be an identity matrix, i.e., 

R(an) = I.
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Additional properties that determine the shape of the combined tubes are the bending 

stiffness and the torsional stiffness of each of the tubes along the length. Let Ki(s) ∈ 

denote the stiffness matrix of tube i at s. Since the cross section of each tube is an annulus, 

the bending moment about x-axis and y-axis are the same. The stiffness matrix Ki(s) is then 

given by

(8)

where ki,xy (s) is the bending stiffness and ki,z (s) is the torsional stiffness.

As shown in Fig. 2, tube i does not exist over the entire arc-length interval [an, bn], but only 

in the interval s ∈ [ai, bi]. For convenience, let us introduce an equivalent model by 

imagining virtual tubes at the tips and the bases of the actual tubes.

Fig. 3 shows an example of the equivalent model using virtual tubes. At the proximal end, 

virtual tubes have zero curvature and infinite bending and torsional stiffness, while those at 

the tips have zero curvature, zero bending stiffness and arbitrary positive torsional stiffness. 

The stiffnesses and pre-curvatures at the proximal end are chosen to keep the backbone 

curve straight and to keep the bending and the tube torsion to be zero, while the bending 

stiffnesses and the pre-curvatures at the distal end are chosen to make the virtual tubes 

flexible enough not to distort the backbone curve of the original model. Note that the 

internal axial torque on the cross section of each virtual tube at the distal end is zero based 

on both the boundary condition and these values, and the resulting torsions of the virtual 

tubes are uniquely determined to be zero as long as the torsional stiffnesses for the virtual 

tube, ki,z, are chosen to be nonzero. Since the potential energy of the virtual tubes is zero at 

each equilibrium configuration, elastic instability, which is caused by the sudden release of 

the elastic potential energy, is not affected by the virtual tubes.

III. Formulation of the Analogous Optimal Control Problem

The kinematics and local stability conditions to be presented in this paper are derived based 

on optimal control theory. We thus begin with some preliminaries on the first- and second-

order conditions for optimal control.

Consider an n-dimensional state variable x = x(s) ∈  and m-dimensional control variable u 
= u(s) ∈  defined in an interval s ∈ [a, b], that satisfy

(9)

(10)

where x(b) is free and  denotes dx/ds. We consider the following optimal control problem:
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(11)

Let Jλ denote the augmented objective functional of the form

(12)

where

(13)

and λ is the Lagrange multiplier for the state equation (9). Assume that the first and second 

variations of (12) exist. The first-order necessary condition for optimal control is then given 

by

(14)

for all admissible state-control perturbation pairs (η, ξ) at (x∗, u∗), i.e.,

(15)

The solution of these equations for concentric tube robots yields the elastostatic kinematic 

model as derived in Section IV. To investigate stability, second-order conditions must be 

considered as described below.

A stationary solution (x∗, u∗) that satisfies (14) is a weak local minimum if (x∗, u∗) 

minimizes J over the neighborhoods of (x∗, u∗). Note that a strong local minimum is defined 

as a minimizer of J over (x, u) in which x is a neighborhood of x∗, while u is not necessarily 

a neighborhood of u∗ [20]–[22].

One of the second-order necessary conditions for a weak local minimum is given by the 

strengthened Legendre-Clebsch condition [21], [22]:

(16)

for given (x, u, λ) and for all s ∈ [a, b], where  denotes matrix positive definiteness. For the 

class of problems in which the strengthened Legendre-Clebsch condition is satisfied, a 

sufficient condition, and a necessary condition, for a weak local minimum are given in [22], 

respectively, by

(17)

and
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for all admissible non-zero perturbations (η, ξ).

When the strengthened Legendre-Clebsch condition is satisfied, the Jacobi condition 

provides an efficient way to check if the second-order conditions (17), (18) are satisfied [22], 

[23]. Consider the following second variation evaluated at a stationary solution (x∗, λ∗, u∗):

(19)

where the matrices A(s), B(s), C(s) and D are given by

(20)

and ηf = η(bn). The starred variables denote that the variables are evaluated at the stationary 

solution (x∗, λ∗, u∗). Here η(s) and ξ(s) are the perturbations in the state and input, 

respectively, satisfying the linear state equation

(21)

with the boundary condition

(22)

At this stage, we assume that the optimal control u∗ is continuous. Then the Jacobi condition 

is given as follows:

• Consider a linear system

(23)

with a boundary condition

(24)

where P is defined as

(25)

with

(26)
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and A(s), B(s),C(s) and D are given in (20). This linear system has no non-zero 

solution (η, ν) on s ∈ [a, b] such that η(c) = 0 for some c in [a, b). In other words, 

this says that there exists no point c in [a, b) conjugate to b.

When the strengthened Legendre-Clebsch condition is satisfied, the Jacobi condition is 

equivalent to the second-order sufficient condition (17). If the Jacobi condition is modified 

to allow the conjugate point c at a, it becomes equivalent to the necessary condition (18) 

[22].

These standard conditions must be adapted to accommodate discontinuities in curvature for 

analyzing the stability of concentric tube robots. These adaptations are described in Section 

V after first deriving the kinematic model below based on first-order optimality conditions.

IV. Elastostatic Kinematic Model

Following the formulation above, energy methods can be used to derive the elastostatic 

kinematics of concentric tube robots subject to distributed loads over the length and 

concentrated loads at the tip. While prior researchers have considered energy-based 

derivations without external loads [18] and non-energy-based derivations with external loads 

[17], [24], the formulation derived in this section differs from prior formulations in the 

representation of external loads and cross-sectional internal moments.

Consider a concentric tube robot with n tubes in the absence of any external loads. The 

potential energy of the system is then given by the sum of the elastic potential energies of 

each of the tubes. The potential energy functional is then given by

(27)

Since the tubes are concentric, the x-y curvatures of the tubes are identical to the backbone 

bending curvature expressed in different material coordinate frames. In order to reduce the 

number of variables, the bending curvatures of the tubes are expressed as a single variable 

uxy (s) ∈ , which is the Bishop frame representation of the x-y curvature of the backbone 

curve. Let θi(s) ∈  denote the rotation of tube i along the arclength, i.e.,

(28)

where the upper dot represents the derivative taken with respect to the arclength parameter s, 

and θi(a) is given as a kinematic input. The bending curvature of tube i is then expressed as

(29)

where

(30)
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(31)

Substituting uxy into Equation (27) yields

(32)

where

(33)

(34)

The potential energy J in the above equation is a functional of (s) as well as uxy(s), θi(s), 

which results in a standard calculus of variation problem. The unloaded kinematics is then 

obtained by applying the Euler-Lagrange equation to (32).

Let us now assume that conservative forces are applied as the external loads. Then there 

exists a total potential energy, including the elastic potential energy of the tubes and the 

potential energy by the external forces, of the form

(35)

where uz (s) = [u1,z(s) ··· un,z(s)]T ∈ , p(s) ∈  is the backbone curve, and R(s) ∈  is 

the Bishop frame along the arc-length; these satisfy

(36)

(37)

The term w(p(s), R(s), θ(s), s) is the potential density function of the distributed loads at s ∈ 

[a, b], and W(p(bn), R(bn), θ(bn), bn) is the potential energy function of the concentrated 

load applied to the tip. Intuitively, the tubes are considered to be subject to the reaction 

forces from an environment whose potential energy is . Then the total 

potential energy of the system including the tubes and the environment is given by J. Solving 

for the backbone curve, consisting of the state variables x(s) = (p(s), R(s), θ(s)), that 

minimizes elastic potential energy (35) can be interpreted as an optimal control problem in 

which u(s) = (uxy(s), uz(s)) comprise the input variables. Note that R(s) is constrained to be a 

rotation matrix by (37) as long as the initial frame R(an) is a rotation matrix, even though the 

constraints for a rotation matrix, i.e., RT R = I and det R = 1, are not explicitly applied 
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throughout the paper. The first variation of Equation (35) should be zero; this yields the 

well-known first-order necessary condition for optimal control:

(38)

with boundary conditions

(39)

where the Hamiltonian H is defined as

(40)

Here, (λp(s), λR(s), λθ(s)) ∈ , and Tr(·) denotes the trace operator. Note that 

each component of λR is a Lagrangian multiplier for each corresponding component of R. 

The trace operator is used to represent the sum of the component-wise multiplication 

between λR and R[(ux, uy, 0)].

The elastostatic kinematics of the concentric tube robot subject to conservative loads is then 

obtained from the first-order condition (38). Substituting the Hamiltonian (40) into (38) 

yields the following differential equations:

(41)

Here uxy, ui,z are given by

(42)

where ,  and . The boundary 

conditions are given by

(43)
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For convenience, the partial derivatives  and  are defined to be R3×3 matrices, whose 

components are the partial derivatives with respect to the corresponding components of 

and  are column vectors in  and in , respectively. Note that the partial derivatives in 

these definitions are transposed from the conventional scalar-by-column vector or scalar-by-

matrix derivatives so that the number of transposes used in the differential equations (41) is 

reduced.

The Lagrange multipliers λp, λR and λθ in the equations are physically interpreted as the 

(negative) generalized forces applied to the generalized coordinates p, R and θ. Note that 

−λp and the i-th component of −λθ are, respectively, the linear force and the z-directional 

moment of the i-th tube on the cross section of the robot. The variable −λR also represents 

the x, y-moments on the cross section of the robot.

More familiar representations of the x, y-moments are obtained by projecting the 

generalized force −λR onto the tangent space of the rotation group SO(3). We adopt the 

following exponential local coordinate representation for a rotation matrix about R0:

(44)

where w = [wx wy wz ]T ∈  is the local coordinate variable [25]. Unit velocities along the 

x- and y-directions of the local coordinates yield the tangent vectors of the rotation matrix, 

whose components are given by

(45)

(46)

To express mx in terms of λR, consider a infinitesimal displacement in wx, δwx. The the 

work done by this displacement is given by

(47)

where the last term with the trace operator represents the inner product of the generalized 

force, −λR, and the infinitesimal displacement in the generalized coordinate, txδwx. The 

subscript x in the above equation can be replaced with y or z for the y or z moment. The x, y 
moments on the cross section are then given by

(48)

(49)
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Substituting mx and my into (42), the resulting kinematic equations (41), (42) are equivalent 

to the mechanics-based kinematics derived in [17], [24].

V. Evaluating Local Elastic Stability

The second order stability results of Section III can be adapted, as described below, to 

concentric tube robots to provide a second-order sufficient condition and also a separate 

necessary condition for stable equilibria. These conditions can be formulated as tests for 

proving stability and instability, respectively, of candidate configurations as subsequently 

described in Section V-A.

First, observe that the strengthened Legendre-Clebsch condition is satisfied for all robot 

configurations since the matrix C(s)  0 in (20). Note that C(s) is a diagonal matrix whose 

diagonal components are the torsional stiffness of each tube, and the sum of x- or y-

directional bending stiffnesses of all the tubes. Though there are zero-valued bending 

stiffnesses for the virtual tubes, the sum is always positive since there exists at least one non-

virtual tube everywhere over the length.

The Jacobi condition must be applied carefully, however, since the standard formulation 

assumes continuous control candidates and that the integrand and system equation are twice 

continuously differentiable in x, u and t [22], [26]. Since robot curvature can be 

discontinuous with respect to arc length (e.g., piecewise continuous pre-curvature and at the 

proximal and distal ends of tubes), this condition is not met. Variations on the standard 

formulation have been considered. For example, for piecewise control candidates and in the 

presence of equality/inequality control constraints, a modified Jacobi condition and 

strengthened Legendre-Clebsch condition are presented in [20] as a sufficient condition for 

(17). When the control is not subject to any constraints, as in our problem, these conditions 

reduce to the known form of the classical conditions. Since the strengthened Legendre-

Clebsch condition always holds, the Jacobi condition is the only condition required to be 

sufficient for the second variation to be positive for all non-zero perturbations. In fact, the 

Jacobi condition is not only sufficient but also necessary for the positive second variation as 

proven in Appendix A. Consequently, the Jacobi condition is a necessary and sufficient 

condition for (17), and is thus a sufficient condition for stability.

The derivation of necessary conditions for stability has also been considered when the 

standard assumptions are not met, e.g., control discontinuity [27]. These conditions are 

derived under a “normality assumption” on the linearized state equation, as defined in [27], 

which is not necessarily satisfied for all robot configurations. To match the conditions of 

concentric tube robots, the following condition is derived in Appendix B:

• Consider the second variation (19) and the linear system (23)-(26) where A(s), 

B(s),C(s) and D are given in (20). A necessary condition for stability of the 

equilibrium point is that this linear system have no solution (η, ν) on s ∈ [a, b] such 

that η(c) = 0 for some c in (a, b) and η(d) ≠ 0 for some d in [a, c).
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A. Local Stability Tests for Stable and Unstable Equilibria

The sufficient and necessary conditions given above can be used to classify equilibria as 

stable and unstable, respectively. Most applications will only require the sufficiency test for 

stability. The test for instability, which is based on failure to satisfy the necessary condition, 

is instructive, however, since our numerical examples suggest that configurations not 

covered by either the sufficient condition or the necessary condition are rare. They are 

observed to occur only on the boundary between stable and unstable equilibria and 

correspond to configurations for which higher-order tests are needed to evaluate stability.

As presented below, the procedure for performing the local stability tests is based on the 

transition matrix of a linearized system and is similar in form to the local optimality test of 

[26]:

1. Solve a backward initial value problem for the differential equation

(50)

with the following boundary condition:

(51)

where P is defined by (25). We remark that  = f(x, u) is the combination of the 

state equations (28), (36) and (37). A(s), B(s),C(s) and D are given by substituting 

the Hamiltonian (40) and h = W into (20).

2. Consider a partitioning of Θ into (12 + n) × (12 + n) sub-matrices of the form

(52)

Define  as

(53)

where D is given in (20).

3. Then the sufficiency test for local stability can be stated as: If there is no c ∈ [an, 
bn) that satisfies det(X(c)) = 0, the given configuration is a stable equilibrium.

If this is not the case, the next step can be used to test for instability:

4. If there exist c ∈ (an, bn) and d ∈ [an, c) that satisfy det(X(c)) = 0 and det(X(d)) ≠ 0, 

the givenconfigurationisanunstableequilibrium.

The first and second steps are to compute X(s), the transition matrix for η in the linear 

system (23)-(24), and the third and forth steps are the tests for stable and unstable equilibria, 

respectively. The nonsingular transition matrix X(s) over s ∈ [an, bn) corresponds to the 

nonexistence of point c conjugate to bn described in the sufficient condition for stable 

equilibria, i.e., the Jacobi condition. The test for unstable equilibrium is based on the fact 
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that configurations not satisfying the necessary condition are unstable equilibria since there 

exists a perturbation with negative second variation as proven in Appendix B.

Note that the computations involved in these tests consist of solving a matrix initial value 

problem and computing determinants during the integration. In numerical implementations, 

the point the matrix singularity is detected by observing the sign switching of det(X(s)), or 

by checking an inequality |det X(s)| < ϵ with a small positive margin ϵ. Alternately, | det 

X(s)| can be replaced with the condition number of X(s) for robust detection of a nearly 

singular matrix that is not detected by | det X(s)| < ϵ.

VI. Numerical Examples

To facilitate understanding of the stability criterion, a series of examples are presented 

involving constant curvature tube pairs. These examples are used since their unloaded 

stability has been previously derived [10], [16] and stability can also be presented 

graphically. In addition, an example demonstrating use of the criterion for stable path 

planning of a 3-tube robot is also presented.

A. Example 1: Stability of an Unloaded Constant-precurvature Tube Pair

When a pair of tubes of equal pre-curvature and stiffness are rotated with respect to each 

other, their mutual curvature varies between the pre-curvature value and zero (straight) as 

shown in Fig. 4. The unloaded stability of such tube pairs has been derived previously and 

can be represented graphically as shown in Fig. 5, which plots relative rotation angle of the 

tubes at their tip as a function of relative rotation angle at their base [10]. When a tube pair is 

globally stable, there exists a unique relative rotation angle at the tips of the tubes for each 

relative rotation angle at the base. This case is depicted in Fig. 5(a).

Configurations can be unstable when multiple tip rotations are associated with the same base 

rotation. This situation is shown in Fig. 5(b) for configurations with base rotations in the 

neighborhood of 180°. The stability of a specific solution depends on whether or not 

perturbations to that solution lead a lower-energy solution. As the tubes are rotated at their 

base from 0°, they traverse a stable portion of the curve and then jump over the higher-

energy unstable solutions to the other stable branch.

As a specific example, consider a tube pair with Example 1 parameters given in Table I. This 

tube pair possesses unstable configurations as shown in Fig. 6(a). The three labeled points 

correspond to the three possible cases of the stability result by the tests presented in V-A. 

Point 3 corresponds to a stable configuration that satisfies the sufficient condition, while 

Point 1 is an unstable configuration that fails the necessary condition. Point 2 does not 

satisfy either of the conditions. In Fig. 5(b), this corresponds to the jump from one stable 

branch to the other.

B. Example 2: Stability of a Constant Precurvature Tube Pair Subject to Rotation-invariant 
Elastic Forces

Now consider the effect of elastic forces arising, e.g., from contact with tissue, on the 

stability of a variable curvature tube pair. We would like to understand if tissue contact can 
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destabilize a robot or, alternately, stabilize it. The parameters from Example 2 as given in 

Table I are used and, as shown in Fig. 7, the distributed and concentrated elastic forces, fe ∈ 

 and Fe ∈ , are given by

(54)

(55)

where cfe(s) ∈  is the spring centerline for the distributed elastic force, and cFe ∈  is the 

spring center of the elastic tip force. kfc(s) ∈  and kFc ∈  are the stiffness functions of the 

distributed elastic force and the stiffness of the elastic tip force, respectively.

To compare our results with those obtained from relative rotation plots as shown above, the 

forces are defined to be invariant under rotations of the tube set about its base. This is 

equivalent to fixing cfe(s) and cFe in the world frame and performing relative rotation of the 

tubes such that the robot’s plane of curvature remains fixed in the world frame. Note that 

this is done purely for pedagogical reasons and is not a limitation of the proposed method.

By varying the fixation points of the springs, cfe(s) and cFe, it is possible to produce forces 

that either increase or decrease the curvature of the tube pair (Fig. 7(b)). These are given, 

respectively, by:

(56)

(57)

The effect of these external loads on stability is compared with the unloaded case in Fig. 8 

using the parameter values for Example 2 in Table I. The points labeled ‘o’ in this figure 

correspond to stable configurations that satisfy the sufficient condition, while the points 

labeled ‘x’ correspond to unstable configurations that fail to satisfy the necessary condition. 

Force set 1, which increases the curvature, destabilizes the robot. This can be seen by the 

shape of the relative rotation curve in Fig. 8. Force set 2, in contrast, reduces robot curvature 

and, in so doing, stabilizes the robot.

C. Example 3: Stability of a Constant-precurvature Tube Pair Subject to Rotation-
dependent Loads

This example examines the general case of conservative external loads without the constraint 

of the preceding example that the loads remain invariant to rotations of the tube set about its 

base. This general case is depicted in Fig. 9 where it can be seen that the effect of the loads 

depends not only on the relative angles of the tubes at the robot base, but also the actual tube 
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base angles. To verify the local stability criteria for this case, a 3D plot is needed showing tip 

twist angle as a function of the two base rotation angles.

Let us consider the following potential functions w and W:

(58)

where u(s), U, v(s),V ∈  are column vectors such that ∥v(s)∥ = ∥V∥ = 1, km, kM ∈  are 

positive scalars, and rz(s) ∈  is the third column of R(s). These potential functions 

correspond to the distributed force f(s) = −u(s) and the concentrated force F = −U, as well as 

the distributed and concentrated moments that attract the tangent direction of the central axis 

of the robot to be aligned to ν(s) and V, respectively. The general expressions for the 

distributed and concentrated moment, m(s) and M, can be obtained in the same way as 

derivations for (48) and (49) by considering infinitesimal displacements in R and 

corresponding infinitesimal works done by the moments. The resulting m(s) and M 
expressed in world-frame coordinates are given by

(59)

where × denotes the cross product.

Fig. 10 depicts relative rotation at the tip as a function of the two base rotation angles. The 

surfaces with and without external loads are shown. The unloaded surface is semi-

transparent while the loaded surface is opaque. The stability tests in V-A were used to label 

the stable and unstable points on the externally loaded surface, while the points on the 

unloaded surface are unlabeled for clarity. The boundary between the regions of the unstable 

and stable configurations consists of a curve on which the tangent planes are parallel to the 

vertical axis. This is consistent with the observation for the preceding 2D plots that the 

stability boundary corresponds to points of infinite slope.

Fig. 11 depicts slices through the surfaces of Fig. 10 for Tube 1 rotation angles of 120°, 

180°, and 240°. The no-load case appears as a single curve since it is invariant under base 

rotations of Tube 1. It is observed that the loading can both stabilize and destabilize specific 

configurations.

D. Example 4: Application to Stable Path Planning

To illustrate the use of our stability criterion, an example of stable path planning using the 

RRT algorithm is presented here. A three-tube robot design, shown in Fig. 12, is employed 

using parameters in Table II.

To enable easy interpretation of results, external lolrls, which have been covered thoroughly 

in the preceding examples, are not included here. Furthermore, while the three tubes possess 

a total of 6 degrees of freedom, only three kinematic inputs are considered so that results can 

be viewed as a 3D plot. The kinematic inputs are comprised of rotation of the middle tube as 

well as translation and rotation of the innermost tube.
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Instability can occur in this tube set when the innermost tube is rotated while retracted inside 

the outer two tubes. To evaluate whether or not path planning using the stability criterion can 

be used to avoid the unstable configurations, the initial and goal configurations of the robot 

are defined as shown in Fig. 13 and given in Table II.

Normally, path planning involves solving for a robot path that avoids collisions with 

obstacles. To plan a stable path, we define here a ‘collision function’ for detecting instability. 

The final path from RRT after smoothing, however, tends to slide over the surfaces of 

obstacles. For ensuring stability, this is not a safe approach since it corresponds to operating 

on the border of instability. We would like to enforce a stability margin, equivalent to a 

minimum safe distance from obstacles. This is easily accomplished by enforcing an 

inequality constraint on det(X(s)) from (53):

(60)

where ϵ ∈  defines the desired stability margin. This approach is used in the collision 

function defined in Table III.

Fig. 14 depicts the trees and paths generated by the RRT algorithm for stability margin 

values of ϵ = {0, 0.9}. The red curves are the final paths before smoothing, and the green 

ones are after smoothing. The colored volumes represent the unstable regions. Each color 

represents the minimum value of det(X(s)) over the length s ∈ [an, bn]. The minimum values 

of det(X(s)) in the red regions are more negative than those in the blue regions. The 

corresponding motions of the tubes are shown in Fig. 15.

As expected, the direct path between the initial and goal configurations leads through the 

unstable region. The RRT algorithm has solved for paths in which the innermost tube is first 

extended and then rotated before being retracted again. Notice in Fig. 14 that, for ϵ = 0, the 

smoothed green path follows the boundary of the unstable region. When a stability margin is 

imposed with ϵ = 0.9, however, the smoothed path moves away from the stability boundary 

to create a condition of robust stability. Physically, increased stability is achieved through 

greater extension of the innermost tube as shown in Fig. 15.

VII. Conclusions

This paper presents the first general tests for evaluating the stability and instability of 

concentric tube robot configurations. The tests apply to robots with tubes of arbitrary 

number, pre-curvature and stiffness. They also enable the inclusion of conservative external 

distributed and tip loads.

The stability criteria are derived by considering the second-order variation of the elastic 

energy functional when the external loads are conservative. Both a sufficiency condition for 

evaluating configuration stability, and a necessary condition, for evaluating instability, are 

presented. They are shown to be numerically consistent with prior stability results.

For the cases considered, the boundary between those solutions satisfying the sufficient 

condition for stability and those failing to satisfy the necessary condition is comprised of a 

Ha et al. Page 17

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



point in 2D or a curve in 3D. While formal evaluation of stability on this boundary would 

require consideration of higher-order terms, practical considerations for robust stability 

suggest it is advisable to operate away from this boundary.

The kinematic model obtained from the first-order necessary condition requires solving a 

two-point boundary value problem. Evaluation of the stability tests, however, involves 

solving only an initial value problem. While demonstrated here in the context of stable path 

planning, the technique can also be used for generating stable robot designs or, if combined 

with load sensing, could be used to evaluate safety in real time during robot operation.
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Appendix A Appendix A: Proof of Necessity of Jacobi Condition for 

Positive Definite Second Variation

Let us show here that, if the Jacobi condition does not hold, there exists a non-zero 

admissible perturbation (η, ξ), i.e., the perturbation satisfying the linear system (21)-(22), for 

which the secorrl variation is δ2J = 0. Once this is shown, the Jacobi condition is a necessary 

condition for δ2J in (19) to be always positive for all non-zero admissible perturbation.

Suppose that the Jacobi condition does not hold. Then there exist a solution (η, ν) to the 

linear system (23)-(24) such that η(c) = 0 for some c ∈ [a,b). Let (η′, ν′) denote this solution. 

Since c exists in [a, b), we can use this c to define δ2J1 and δ2J2 as partitions of δ2J, given by

(61)

(62)

(63)

Let us focus on δ2J2 in (63) first Note that, given the fixed initial point η(c) = 0, the first-

order optimality condition for δ2J2 is equivalent to the linear system (23)-(24) and

(64)

Since (η′, v′) is a solution to (23)-(24) that satisfies η(c) = 0, it is a stationary solution of 

δ2J2, where the optimal control (perturbation) ξ′ is given by

(65)

Ha et al. Page 18

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Any scaled control ξ = tξ′ and corresponding (η, ν) = (tη′, tν′) can be easily shown to be a 

stationary solution of δ2J2 as well, where t ∈ , by substituting them into (23)-(24) and η(c) 

= 0.

Now, consider the following perturbation:

(66)

Note that this is an admissible perturbation since it satisfies the linear system (21)-(22). Now 

let us show that this perturbation pair makes the second variation zero.

δ2J1 is obviously zero as  = (0, 0) over s ∈ [a, c]. For δ2J2, let us first define a function 

q(t) ∈  by substituting the stationary solution  into (63), i.e.,

(67)

Since δ2J2 is stationary for any direction at (tη′, tξ′), it is also stationary w.r.t t, i.e.,

(68)

From Equation (68) and the fact that q(0) = δ2J2(0, 0) = 0, q(t) = 0 for any t ∈ . Thus 

.

Consequently, the second variation δ2J = δ2J1 + δ2J2 is zero for a non-zero perturbation 

 when the Jacobi condition does not hold.

Appendix B Appendix B: Proof of Necessity Condition for Stable 

Equilibrium

Let us prove the necessary condition of Section V by showing that, if the given condition is 

not satisfied, there exists an admissible perturbation with δ2J < 0.

Suppose that the given condition is not satisfied, i.e., suppose there exists a solution (η, ν) to 

(23)-(24) such that η(c) = 0 for some c in (a, b) and η(d) ≠ 0 for some d in [a, c). In this case, 

as proven in Appendix A, there exists a non-zero perturbation  with δ2J = 0, given by 

(66).

Now it will be shown that this  is not a stationary solution of δ2J in (19). We remark 

that, at any non-stationary solution, there always exists neighboring admissible pair (η, ξ) 

toward which the second variation δ2J varies. The second variation may increase along this 
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direction, while decreases along the opposite direction. This yields the existence of an 

admissible pair (η, ξ) with δ2J < 0.

Note that, given the boundary condition η(0) = 0, the first-order optimality condition for δ2J 
is given by (23), (24), and

(69)

As shown in Appendix A,  in (66) satisfies the first-order optimality condition over s ∈ 

[c, b]. However, continuous backward integration of (23) from c to a yields η(d) ≠ 0 for 

some d in [a, c). Since (d) = 0 for any d in [a, c), the perturbation  does not satisfy the 

first-order optimality condition, and is thus not a stationary solution.
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Fig. 1. 
Concentric tube robot consisting of four tubes.
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Fig. 2. 
Concentric tube robot with n tubes.
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Fig. 3. 
Equivalent tube model.
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Fig. 4. 
Variable curvature tube pair.
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Fig. 5. 
Relative rotation of tubes at their tips versus their bases. Dashed lines in (b) show jumps 

between branches of stable solutions.
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Fig. 6. 
Comparison of relative rotation plot with stability criterion.
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Fig. 7. 
Elastic tip and distributed forces applied to a variable curvature tube pair.
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Fig. 8. 
Relative rotation plots labeled for Example 2. Points on curve labeled stable (o) and unstable 

(x) using stability criteria.
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Fig. 9. 
Effect of constant wor Id-frame loads depends on both base tube angles.
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Fig. 10. 
Stability surfaces for Example 3. Robot without external load corresponds to semi-

transparent surface. Opaque surface is for externally loaded robot with red X's denoting 

unstable configurations blue O's denoting stable configurations.
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Fig. 11. 
Relative rotation plots for Example 3 and Tube 1 rotation angles of 120°, 180°, and 240°. 

Points are labeled stable (o) and unstable (x) using stability criteria.
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Fig. 12. 
Tubes comprising robot of Example 4.
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Fig. 13. 
Initial and goal configurations for stable path planning.
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Fig. 14. 
Configuration space maps showing paths and trees generated by RRT for ϵ = {O, 0.9}. Red 

and green curves are the final paths before and after smoothing, respectively. Colored 

volumes represent unstable regions.
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Fig. 15. 
Final smoothed stable paths for ϵ = {O, 0.9}. Numbers indicate sequence of configurations 

along paths.

Ha et al. Page 37

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ha et al. Page 38

TABLE I

TUBE AND LOAD PARAMETERS FOR EXAMPLES. Units for load parameters are normalized with respect to bending 

stiffness units (force-length2).

Tube 1 Tube 2

Section 1 Section 1 Section 2

Example 1 Length (mm) 100 17 100

Curvature (mm−1) 1/60 0.0 1/60

Bending Stiffness 1 1 1

Torsional Stiffness 1/1.3 1/1.3 1/1.3

ai (mm) 0 −17

bi (mm) 100 100

Example 2 Length (mm) 100 17 100

Curvature (mm−1) 1/79 0.0 1/79

Bending Stiffness 1 1 1

Torsional Stiffness 1/1.3 1/1.3 1/1.3

ai (mm) 0 −17

bi (mm) 100 100

kfe (mm−4) 1.0 × 10−7

kFe (mm−3) 1.0 × 10−5

Example 3 Length (mm) 100 17 100

Curvature (mm−1) 1/60 0.0 1/60

Bending Stiffness 1 1 1

Torsional Stiffness 1/1.3 1/1.3 1/1.3

ai (mm) 0 −17

bi (mm) 100 100

u(s) (mm−3) −[5.0 5.0 5.0]T × 10−7

U (mm−2) -[5.0 5.0 5.0]7 × 10−5

km (mm−2) 2.5 × 10−5

kM (mm−1) 2.5 × 10−3

v(s) [1 0 0]T

V [1 0 0]T
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TABLE II

EXAMPLE 4 PARAMETERS. NOTE THAT (a3,b3) VARY WITH TRANSLATION LENGTH OF THE INNERMOST TUBE.

Tube 1 Tube 2 Tube 3

Section 1 Section 1 Section 2 Section 1 Section 2

Length (mm) 100 17 150 184 100

Curvature (mm−1) 1/120 0.0 1/120 0.0 1/60

Bending Stiffness 1 1 1 0.5 0.5

Torsional Stiffness 1/1.3 1/1.3 1/1.3 0.5/1.3 0.5/1.3

ai (mm) 0 −17 −134 ~ −34

bi (mm) 100 150 150 ~ 250

Initial conf. (θ2(b3), θ3(b3), b3) = (360°, 0°, 170mm)

Goal conf. (θ2(b3), θ3(b3), b3) = (200°, 200°, 170mm)
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TABLE III

Collision Function

COLLISION_CHECK(x* ,λ* ,u*, ϵ)

1 Compute X(s) over s ∈; [an, bn] for the given stationary
solution (x*, λ* , u*), using Equation (53).

2 If det(X(s)) > ϵ for s ϵ [an, bn],
  return false.
Else,
  return true.
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