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A space-time-frequency dictionary for sparse
cortical source localization

Gundars Korats1,2,?, Steven Le Cam1, Radu Ranta1 and Valérie Louis-Dorr1

Abstract

Cortical source imaging aims at identifying activated cortical areas on the surface of the cortex from the raw EEG data. This
problem is ill-posed, the number of channels being very low compared to the number of possible source positions. In some realistic
physiological situations, the active areas are sparse in space and of short time durations, and the amount of spatio-temporal data
to carry the inversion is then limited. In this work, we propose an original data driven space-time-frequency dictionary which
takes into account simultaneously both spatial and time-frequency sparseness while preserving smoothness in the time-frequency
(i.e., non-stationary smooth time courses in sparse locations). Based moreover on these assumptions, we take benefit of the
Matching Pursuit (MP) framework for selecting the most relevant atoms in this highly redundant dictionary. We apply two recent
MP algorithms, Single Best Replacement (SBR) and Source Deflated Matching Pursuit (SDMP), and we compare the results
using a spatial dictionary and the proposed Spatial-Time-Frequency (STF) dictionary to demonstrate the improvements of our
multidimensional approach. We also provide comparison using well established inversion methods, FOCUSS and RAP-MUSIC,
analysing performances under different degrees of non-stationarity and signal to noise ratio.

Index Terms

EEG, Sparse Source Localization, Time-frequency decomposition, Wavelets, Matching Pursuit, Single Best Replacement,
Source Deflated Matching Pursuit

I. INTRODUCTION

Synchronous firing of large neural populations in the brain can be measured on the scalp using EEG sensors. These potentials
appear to be generated by strong cortical sources involving large patches of neighbouring neurons. Due to the complex nature
of brain sources, and to the smearing effect of the skull, the signal-to-noise ratio is generally low. In addition, the activities of
different brain areas might be temporally synchronized, both during normal and pathological functioning, leading to linearly
dependent measurements polluted with artefact sources such as ocular or muscular movements.

In order to localize the activated brain sources within the brain volume or on the cortical surface, an inverse problem has to
be solved. In general, this implies the resolution of a high-dimensional and badly conditioned linear problem, with an infinite
number of solutions, thus needing regularization. This can be done either on unique time instants or on time windows, the
latter solution naturally imposing a kind of spatial regularization to preserve a spatial coherence of the source location in time.

Two main families of source localization methods exists in the literature. The first one includes the equivalent current dipole
(ECD) fitting and the derived parametric methods that yield an estimation of dipole location, orientation and amplitude [1], [2].
Applied on single time instants, it might yield discontinuous solutions, ”jumping” from one location to another between two
consecutive time instants (moving dipole solution). A regularization is introduced by imposing fixed dipole positions and/or
orientations on a given time window [3].

The second family consists in the linear distributed approaches (LD), based on distributed source models discretizing the
source space into point source locations in the brain volume. The solution is computed by minimizing a cost function such as
overall minimum power or minimum current [4]–[6]. Among the existing regularization techniques, a family of approach comes
rather close to the ECD methods by imposing sparsity, i.e., aiming to find a solution which involves a minimal number of (strong
enough) active brain sources, possibly contaminated by background activity (assumed as noise). Sparse source localization has
gained more and more attention in the last few years, since it is now generally assumed that only a limited number of cortical
areas are indeed active within short windows of time. The scalp measurements are summed up using few point sources, each
standing for the mean activation of a close surrounding area, and providing easy interpretable visual results at destination of
clinicians and neurophysiologists. Besides, such approaches greatly simplify the analysis of the underlying brain networks,
where each identified point source can be considered as a node of a graph of connected structures. The identification of the
interactions between particular cortical areas within networks is widely believed to be a key stone for the understanding of the
functional (memorization, cognition, etc. ) as well as the pathological organization of the brain [7]–[10].

A recent block-sparse method called source deflation matching pursuit (SDMP) [11] was developed to estimate dipole
locations and orientations for every time instant, being thus an LD equivalent of the ECD moving dipole approach. Among
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the sparse distributed models coming close to the ECD approaches on time windows, two of the most well-known methods
are MUltiple SIgnal Classification (MUSIC) and its recursive extension RAP-MUSIC [12]. Both algorithms scan single-dipole
position all over the head volume and compute their projections onto the estimated signal subspace to identify the source
locations.

A common characteristic of time-window based methods is the assumption of stationarity, at least spatially (for ECD
approaches), but also temporally (for statistic based MUSIC methods). However the dynamics of the sources are most of the
time transient and are known to lie within particular time-frequency subspaces. It is in particular the case when studying
the dynamic of epileptic seizures [13] or of steady-state evoked potential [14]. In this context of MP localization, the only
approach to our knowledge taking benefit of such time-frequency features in the EEG signal was proposed by [15] as a sparse
representation of EEG/MEG data using spatio-temporal atoms. Each atom is formed as a combination of wavelet coefficients
of scalp observations together with the forward model (lead-field).

Inspired by this work, we propose in this paper an optimal time-frequency-space dictionary to be combined with efficient
optimization approaches ensuring sparsity. Unlike in [16], where we assumed stationary data and we extracted a PCA based
time dictionary, we compute a wavelet dictionary by applying a threshold strategy on the wavelet coefficients [17], [18].
We then introduce the spatial constraint by forming spatio-temporal atoms using a realistic forward BEM model [19]. The
stationarity constraint is indeed relaxed, but we still enforce a spatial coherence on short time windows. We keep the size of
the dictionary reasonable by extracting the temporal atoms from the data, and the decomposition is directly carried out in the
wavelet domain, thus resulting in an acceptable computational burden. We evaluate the advantage of using such dictionaries
on two recent MP algorithms: the Single Best Replacement (SBR) and the Source Deflated Matching Pursuit (SDMP), that
we modified to adapt to the proposed dictionary.

The structure of the paper is following: in section II-A we provide the forward model to invert. The principles of sparse
approximation are then introduced in section II-B, along with brief overviews of both SBR and SDMP algorithms. Section II-C1
explains the details of the wavelet-based dictionary design, which is used to construct the complete space-time-frequency
dictionary as presented in section II-C2. Next, in II-D, the concept of sparse space-time-frequency approximation is explained
and the pseudo-code of the MP-based localization methods is provided. In section III we provide details of simulation set-
up and performance measures. Finally, we discuss the results (section III-C) and demonstrate the advantages as well as the
drawbacks of using such dictionaries. We also emphasize the strengths and weakness of SBR and SDMP as functions of the
number of underlying sources, the non-stationarity of the data and the power of the noise.

II. METHODS

A. Forward model

Consider the following classical forward model:
V = AS+E (1)

where scalp EEG recordings VN×T (N the number of EEG channels and T the number of time samples) are a linear
combination of M time-varying dipole magnitudes SM×T driven by the lead-field matrix AN×M . Each column of this matrix
corresponds to the projection of a unit amplitude dipole, considered here orthogonal to the inner skull surface (this is a common
assumption in EEG problems, based in the parallel organization of the cortical pyramidal neurons). An important characteristic
of the A matrix is that its neighbouring columns are highly correlated among them, as they stand for close spatial positions
with similar orientations. Finally the matrix E denotes noise with the same dimensions as V.

B. Sparse approximation

Sparse signal decomposition of V requires finding a limited number of elements from the dictionary A such that their
weighted sum best describes the observation data V. The popularity of sparse approximation algorithms relies on their ability
to provide efficient sparse approximations of a signal for under-determined problems [20].

In the spatial domain, sparse signal approximation of some arbitrary chosen data vector Vt (one time instance of multichannel
data) can be formulated as the minimization of the penalized least-square cost function:

min
St

J (St, λ) = ||Vt −ASt||22 + λ||St||0 (2)

where the l0 pseudo-norm of the weight column vector St, defined as the number of its non-zero entries, is lower than a given
number k �M . By this equation we are trying to find a sparse representation of the data (parametrized by the sparsity penalty
parameter λ) meaning that only a few sources are active at a time. The l0 norm is a natural measure of sparsity but it leads
to optimization related problem, which is NP-complete. This means that all possible combinations of the dictionary elements
should be considered, yielding exhaustive search algorithms with high computational cost.

Greedy iterative approaches such as Matching Pursuit (MP) provide the easiest way to find an approximate solution of the
original l0 pseudo-norm problem by finding g dictionary elements and their corresponding weighting coefficients, i.e., non
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zero elements of St in (2). The approximation of the observation Vt found by MP can be written as the following linear
expansion [21], [22]:

Vt =

g∑
n=1

ansn (3)

with an the n-th column of the leadfield matrix A and sn its weight, corresponding to the amplitude of the n-th dipole.
Matching pursuit suffers from the drawback that a particular atom can be picked multiple times. This issue is being solved
in Orthogonal Matching Pursuit (OMP) proposed in [23] where each atom can be picked only once. A more effective and
also more computationally expensive method is Orthogonal Least Squares (OLS), where in each iteration step a least squares
problem is solved instead of a simple product calculation as it is in the standard MP case. Nevertheless, for highly correlated
dictionaries, OLS together with OMP does not guarantee to find an optimal solution [20].

An improved way to solve the equation (2) is to use forward-backward greedy algorithms, as for example proposed by Zhang
in [24], which is a forward-backward OMP extension. The advantage comes from its ability to eliminate the errors made in
previous iterations. The limitation of this method is that it works well only if the basis functions are nearly or completely
orthogonal.

1) Sparse approximation using SBR: As mentioned in section II-A, in our case the data are noisy and dictionary elements
can be highly correlated. A recent method dealing with this situation is the Single Best Replacement (SBR) algorithm proposed
in [20], where equation (2) is seen as a subset or feature selection problem. SBR is an Ordinary Least Squares (OLS) forward-
backward extension based on successive updates of the sparse signal support (dictionary element indices) by one element: at
each step, the support Q is updated (insert ”∪” a new element with index ij inside the support or remove ”\” an existing
support element) [20]. The forward-backward rule shown in equation (4) ensures that only the most significant columns of A
weighted by St are chosen.

Q • i =

{
Q ∪ {i} if i /∈ Q
Q \ {i} otherwise

(4)

This leads to the construction of an active set AQ, where Q contains the selected column indexes (active source locations).
Basically SBR is designed to solve discrete NP-complete problem and, in fact, is a deterministic descent algorithm that
minimizes J from (2) with a fixed parameter λ. Each iteration is based on the computation of Q • i for all i and the selection
of the replacement Q • l yielding the minimal value of JQ•i(St, λ) [20]:

l ∈ arg min
i∈{1,...,n}

JQ•i(St, λ) (5)

Then if JQ•l(λ) < JQ(λ), the subset Q is updated with the new element Q = Q • l. Finally SBR stops when no replacement
decreases the cost function or some predefined stopping condition is met, e.g. the residual is significantly small or the maximum
size of the subset is reached. If λ > 0, SBR stops after a finite number of iterations.

2) Sparse approximation using SDMP: The SDMP algorithm, as presented in [11], start by initializing a set of eligible
source positions using a BMP or ORMP algorithm. The number of sources has to be given as a prior and can be extracted
from a noise/source subspace analysis like in the case of the RAP-MUSIC algorithm.

In a second step, each of the selected source positions p are iteratively reconsidered along with the set of unselected positions.
This is done by suppressing from both the data and the lead-field the contributions of the selected positions minus the current
refined position p, using the following projection matrix:

P⊥p = I−A\p[(A\p)
TA\p]

−1(A\p)
T . (6)

A\p being the current set of selected lead-field columns minus the one corresponding to the position p. It has to be
emphasized that we only consider fixed orientation of the dipoles orthogonal to the cortical surface, thus we do not consider
the post re-estimation of the dipoles orientation/moment (the Source Deflated MUSIC (SDMUSIC) algorithm) described in the
paper of Wu et al. [11].

C. Dictionary design

When it comes to brain source localization, MP methods are usually applied using the columns of the lead-field as the
dictionary, without considering temporal constraints. Imposing simultaneously temporal shapes and spatial patterns will help
in regularizing the localization problem. We first present how time-frequency atoms are extracted from the data, and we then
combine them to the spatial lead-field atoms to form our Spatial-Time-Frequency (STF) dictionary.
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1) Time-frequency dictionary: Using Principal Component Analysis (PCA), the K principal components can be extracted
from the data, forming a basis of the source space in the time domain. Under the assumption of stationarity, the basis vectors
SPCA can be used directly as a temporal dictionary DPCA [16]. A common criteria for solving this problem is the MDL
(minimum description length) rule, as proposed and explained in [25], [26]. To avoid such criteria, we thus address in this
work the more general case of non-stationary sources by constructing our dictionary in the wavelet domain, more precisely
by using orthogonal real wavelets. The advantage of such approach is that wavelet coefficients can be used individually to
efficiently capture specific time-frequency characteristics of the sources, while preserving smoothness. Indeed, the compression
ability of the wavelets leads to sparse time-frequency representations of the signal of interest and thus to less computationally
expensive solutions. Moreover, fast algorithms exist for both wavelet decomposition and reconstruction. In the following, we
assume that every signal of length T is decomposed up to the depth J (the number of detail scales) and thus that on every
scale j we have T/2j wavelet coefficients.

To generate sparse wavelet dictionary Dw, we apply the wavelet threshold directly to the noisy data. In fact the projection
of the original data on its principal components is not needed as the denoising is done by wavelets. This allows us to avoid
the major difficulty of selecting the most significant eigenvalues.

A lot of thresholding techniques exist in the literature (see for example [27] for a review). We tested only the classical
solutions proposed by Donoho and Johnstone [28] (universal and SURE thresholding), as well as a combination of them,
suggested under the name of hysteresis thresholding in [29] and slightly modified here, as explained further.

By its construction (aiming to preserve as much signal as possible even if some noise remains present), the SURE threshold
is rather low and preserves a lot of coefficients, increasing thus the size of the wavelet dictionary. On the other hand, the
universal threshold aims to completely eliminate the noise and keeps only the strong coefficients with big amplitudes. It yields
a very sparse temporal approximation, in principle less accurate than the SURE threshold but almost noise-free (for details see
[27] and [28]).

Hysteresis threshold aims to exploit the advantages of both: it preserves all the coefficients selected by the universal
threshold and adds all the SURE-selected coefficients that are connected, in the time-frequency plane, with one of the universal
coefficients. Taking into account that each universal coefficient is also preserved by SURE threshold, this technique simply
consists in labeling the connected components in a 2-dimensional binary image. At first we label each isolated coefficient or
isolated connected group of coefficients in time-frequency scale. Once binary images of both universal and SURE thresholds
are labeled, one can detect the hysteresis coefficients by a simple subtraction where each individual labeled coefficient group
from universal threshold is being subtracted from the SURE labeled coefficients. Those groups of coefficient in the SURE
labeled image impacted by the subtraction are preserved as Hysteresis coefficients (see Fig. 1).

Let vi
w be the vector of ”clean” wavelet coefficients after applying wavelet threshold to the noisy data channel vi. Depending

on the threshold, this vector will be more or less sparse. Each non-null coefficient represents the time-frequency support of
a wavelet coding a significant feature of the analysed signal vi, and we can construct a binary mask corresponding to these
supports (see Fig. 1). A logical OR among all masks (obtained for all channels) yields a complete mask, where the non-null
elements designate all the necessary wavelets for the approximate noise free reconstruction of the complete measurements
matrix V. Each individual coefficient corresponds in fact to a time-frequency dictionary element wj

pj
, which is a wavelet

on scale (frequency band) j at time-shift pj . The complete time-frequency dictionary is then the family of selected wavelets
Dw = {wj

pj
}, with scales j ∈ {1, · · · , J} and time shifts pj ∈ {1, · · · , T/2j}.

2) STF dictionary: The obtained time-frequency dictionary Dw imposes time-frequency constraints which needs to be
combined with the spatial dictionary formed by the columns of the lead-field matrix A, before it can be used for minimizing
the criterion of equation (2). Let this space-time-frequency dictionary be H = {hipjj}, where each element hipjj of dimension
N × T j (T j being the support size of the wavelets on scale j) is a rank one matrix obtained by:

hipjj = aiw
j
pj

(7)

In the EEG application addressed in this work, H can be seen as a set of time-varying scalp-maps shifted in time and frequency.

D. Spatio-Temporal Matching Pursuit

The observation data are approximated with a weighted sum of the {hipjj} dictionary elements:

V̂ =
∑
i

∑
pj

∑
j

bipjjhipjj (8)

where bipjj are scalar amplitudes/weights which can be grouped in a vector b. The minimization problem for SBR is formulated
as follows:

minb {J (b, λ) = ||V − V̂||22 + λ||b||0} (9)

with the term λ||b||0 balancing the number of nonzero weighting elements in b (i.e., selected rank one matrices hipjj),
regularizing the sparsity in simultaneously in space and time-frequency.
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(a) SURE (b) Universal

(c) Hysteresis

Fig. 1: Binary image of coefficients obtained using (a) SURE and (b) universal wavelet threshold. The SURE coefficients
connected to the universal group of coefficients are preserved to give the (c) Hysteresis wavelet threshold. In all images the
horizontal axis represents time, and the vertical axis represents the scale (frequency band).

The choice of an optimal sparsity parameter λ is a difficult task. As this parameter is used for selecting the significant atoms
explaining the signal of interest (source projections) but not the noise components, it should be proportional to a fraction of
the noise energy En. A more detailed analysis of the influence of this parameter is given in the results section.

The general structure of our proposed Spatio-Temporal SBR (ST SBR) decomposition procedure is shown in Algorithm 1.

Algorithm 1 Spatio-Temporal SBR

1: procedure ST SBR()
2: Give or estimate the noise energy En
3: Compute λ: Equation (16).
4: Construct D: Wavelet threshold (section II-C1).
5: Compute H: Equation (7).
6: Decompose data: Solve equation (9) using SBR.
7: end procedure

In case of SDMP the number of sources Ns is assumed to be known or estimated and thus writes:

min||V −
Ns∑
i

∑
pj

∑
j

bipjjhipjj ||22 (10)
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The residual is minimized considering the given fixed number of locations for each individual wavelet support. Similarly as
the estimation of the parameter λ in the case of the SBR algorithm, the estimation of the number of sources is difficult. Both
issues are actually connected because they both rely on a source/noise subspace analysis and they will be analyzed in the
Results section. The global structure of the algorithm is given in Algorithm 2.

Algorithm 2 Spatio-Temporal SDMP

1: procedure ST SDMP()
2: Give or estimate Ns

3: Construct D: Wavelet threshold (section II-C1).
4: Compute H: Equation (7).
5: Decompose data: Solve equation (10) using SDMP.
6: end procedure

III. SIMULATIONS AND RESULTS

A. Data simulation

The aim of this work is to evaluate the performance of cortical source localization and data reconstruction in the context
of non-stationary sources, by use of the proposed spatio-temporal dictionary. We start by simulating a quasi-continuous brain
surface by a dense discrete layer of 1200 dipoles placed 5mm under the inner skull surface. The dipoles have fixed orientation
normal to the inner skull layer. For realistic simulations, we randomly choose a subset of 8 or 16 dipoles to be active among the
1200 positions. We assign real time-courses to the selected dipoles, taken from an intracranial Stereo-EEG (SEEG) recording
of an epileptic patient. Namely, we choose 2 seconds (512 points using 256Hz sampling frequency) of 8 or 16 SEEG signals
to simulate the activated dipoles. Non-stationarity is obtained by considering that each of these dipoles is active during only
one epoch within these 2 seconds, with two simultaneous active sources per epoch, i.e., 4 (respectively 8) epochs of 500ms
(respectively 250ms) for the 8 (respectively 16) dipoles case. We use further a realistic three layer (Colin27) head model
extracted from BRAINSTORM [19]. Potentials at 128 simulated BIOSEMI scalp sensors are computed using a BEM forward
model from the Helsinki toolbox [30]. Physiological background activity was simulated by adding spatially colored Gaussian
noise (random co+variance matrix), with two signal to noise ratios (SNR) of 10dB and 3dB. We provide mean results over
100 simulations for each of the simulated configurations.

Fig.2 shows and example of such non-stationary set-up for the 8 sources configuration.

B. Performance measure

In the following, we will consider as a True Positive (TP) an estimated dipole located within 1cm from a simulated dipole.
All estimated components that are farther than 1cm are False Positives (FP).

We are interested in both data reconstruction quality and localization accuracy. A Goodness-of-fit (GOF) is used to measure
the quality of scalp potential reconstruction:

GOF = 1− ||Vclean − V̂||2

||Vclean||2
(11)

where Vclean corresponds to the noise-free source projection on the scalp, whereas V̂ stands for the reconstructed scalp
potentials. We also compute GOFs replacing in (11) V̂ by VTP , that is the reconstruction of the scalp potentials using only
TP dipoles. This is done in order to evaluate if the resulting TP indeed explain the original data. The GOF is far from a
sufficient statistic to evaluate the accuracy of the source reconstruction. Indeed the problem is under-determined and several
configuration of sources might lead to the same scalp map. We thus propose additional criteria assessing the quality of the
results.

The Distance Localization Error (DLE), as proposed in [31], gives an estimate of the localization accuracy taking into
account both the missed simulated sources (FN) as well as the introduction of spurious sources (FP):

DLE =
1

2Q

∑
k∈I

minl∈Î ||rk − rl||+
1

2Q̂

∑
l∈Î

mink∈I ||rk − rl|| (12)

Here, the I and Î denote the original and estimated sets of dipole index. rk denotes the position of the k-th simulated source
while rl denotes the position of the l-th estimated dipole. This DLE equally penalize too sparse solutions with missed sources
(first member of the criterion), as well as less sparse solutions introducing spurious dipoles far from the true sources (second
member of the criterion), and this even when the whole set of true sources are indeed localized. This statistic must be read
along with the rate of false discovery (FDR):

FDR =
FP

(TP + FP)
(13)
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Fig. 2: An example of 2 seconds simulated EEG on 16 channels, chosen from the 128 Biosemi cap and closely matching the
10-20 system. The signals are issued from 8 non-stationary sources over 4 epochs, 2 sources active per epoch (top), with a
10dB SNR. As time goes, different locations are active, yielding distinct scalp maps (bottom).

where the number of false positives FP is divided by the total number of estimated source locations, and with the rate of true
positives (TPR):

TPR =
TP

(TP + FN)
(14)

where the number of true positives TP is divided by the total number of simulated sources.
To measure the impact of estimated FP on overall performance, we use the relative power of the projected FP on the scalp

map with respect to the power of the full estimated scalp map, computed as:

FDP =
PFP

(PFP + PTP)
(15)

where PTP and PFP are respectively true positive and false positive projection powers. This helps in measuring the relative
strength of FP values with regards to the TP source power.

We emphasize that none of the proposed metric taken individually are sufficient to evaluate the quality of the localization,
e.g., a low DLE might not be significant if the number of sources is over-estimated and/or if the contribution of the false
positives to the estimated scalp map (FDP) is high. The localization methods will be evaluated considering these criteria
altogether.
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C. Results
To evaluate the advantage of using our STF dictionary, we compare with the results when using a spatial dictionary made

of columns of the lead-field. SBRw and SDMPw denote the STF versions trying to explain the data on each individual wavelet
support, while SBRt and SDMPt stand for those fitting the lead-field atoms on the full 2 seconds temporal windows. We also
provide comparisons with two standard methods of the literature: RAP-MUSIC and FOCUSS where the same lead-field with
fixed orientations is considered.

Different dictionaries were extracted after using Universal, Hysteresis and SURE threshold. The performance of SURE
in terms of data reconstruction quality (GOF) was the best while Hysteresis proves to be a strong equivalent but with less
coefficients.

1) Parameter sensitivity: As mentioned earlier, the two evaluated sparse algorithms have user chosen parameters, and a
first brief analysis was made in order to asses their robustness to variations in these parameters. The sensitivity of the SBR
method to the sparsity parameter λ is analyzed by varying it between 1% and 10% of the noise energy En, i.e., choosing a
multiplicative factor αn in the range [0.01 0.1] such as:

λ = αnEn (16)

For the different SDMP versions, the key parameter is the number of desired sources Ns. As for λ, we tested different
values of Ns around its true value, used in simulation.

As shown figure 3, SBRw proves to be highly robust to the choice of λ (using equation (16)), with no significant variations
of both DLE and FDP criteria with the variation of αn. SBRt shows a similar behavior with λ in terms of DLE, but the FDP is
higher for low λ and it is consistently outperformed by SBRw, proving the advantage of using our wavelet-based dictionary with
this MP approach. When it comes to SDMPt, an under-estimation of the number of sources highly degrades the performance in
terms of localization accuracy (DLE), while an over-estimation penalizes the spurious source power (FDP). Once again one can
see that for highly non-stationary sources (16 sources over 4 epochs), SBRw constantly provides better localization accuracies
while keeping low the relative power of the false detections. The SDMPw performances are not presented here, because they
are systematically much lower than those of the other three approaches, as it will be explained in the next subsection.

This analysis shows that main drawback when considering SDMP methods is that they require the number of sources as an
input. Usually this parameter is deduced from a source/noise subspace analysis based on the Akaike Information Criterion or
on the Minimum Description Length criterion [25]. In case of critically low SNR, synchronized sources or correlated noise, the
size of the source space can be either over or under-estimated, thus considerably decreasing the performance of such methods.
It is noteworthy that the same analysis applies to (RAP-)MUSIC [12]. On the other hand, SBR is much less sensitive to the
choice of its λ parameter, especially when working in the wavelet domain. Indeed, by focusing on the main time-frequency
components of the sources, SBRw can easily distinguish between activities of interest and background noise.

2) Dictionary evaluation: In this section, we evaluate the performances of the different algorithms/dictionaries under their
most favorable parameter choice (see previous subsection). More precisely, SDMPt is informed with the total number of sources
while SDMPw is informed with the true number of active sources per epoch. SBRw is applied with λw = 0.02En. For SBRt,
we have chosen a value of λ = 0.05En, which is a compromise among the λ values yielding the best results on an extended
number of source and noise configurations. Besides it should be highlighted that the RAP-MUSIC is informed correctly with
the true number of sources, while FOCUSS is given the true noise standard deviation.

The metrics for the two configurations are given in tables II and I. Analysing the performance per algorithm (SBR and
SDMP respectively), the benefit of using such spatial-time dictionary is clearly visible for the SBR approach, where the results
using the SBRw version are consistently better. The conclusions are however the opposite for the SDMP algorithm. The bad
performance of SDMPw is due to the inherent strategy of this approach, which is forced to find a given number of sources
for each wavelet support. Some sources can have negligible amplitudes for some support even in their respective active epoch,
the informed number of sources being then over-estimated. More detailed analysis of the results show that SDMP indeed
yields a high number of spurious sources (high FDR values), having a strong contribution on the estimated scalp map (high
FDP values). Comparing the algorithms, the better performance of SDMPt over SBRt (already emphasized in [11]) can be
explained by the post-processing step in the SDMP strategy, where each source position is iteratively refined. The strengths of
each dictionary are revealed when used with the appropriate MP approach. In the following, we will then be comparing the
STF dictionary and the spatial dictionary through the comparison of SBRw with SDMPt.

When it comes to highly non-stationary data with high number of sources, i.e., 16 sources on 8 epochs, the SBRw approach
outperforms SDMPt. This is especially the case when the SNR is low (3dB). Because of the thresholding, the wavelet dictionary
favors the most significant temporal elements and help in distinguishing between source and noise space. SBRw yields TDR
values very close to 1, meaning that all the sources are indeed retrieved, while the FDR and the FDP values remain of the
order of 0.01. Under ideal parametrization (correct Ns) SDMPt becomes more efficient than SBRw as the number of sources
is reduced and their stationarity increases, as well as when the SNR increases. For 8 sources over 4 epochs with a SNR of
10dB, both methods are competing with a noticeable advantage for SDMPt when looking to the DLE. This trend is further
confirmed over all the simulated configurations with less sources and epochs (i.e., with more stationary and less sources, not
presented here). Still, one must recall that SDMPt performances depend on the right choice of the Ns parameter.
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(c) FDP - 8 sources in 4 epochs
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(d) FDP - 16 sources in 8 epochs

Fig. 3: Sensitivity of SBRw, SBRt and SDMPt to parameter initialization, respectively to αn fixing the λ parameter (upper
axis, for SBR versions) and to the number of sources (bottom axis, for SDMP).

From an implementation point of view, the computation burden for each method show that SDMP is the most consuming
method, being between 100 to 1000 times slower than SBR depending on the configurations and the dictionary used. SBRw

proves to be very robust and fast, allowing to estimate the cortical map for 2 seconds of data within about 100ms.
When it comes to standard methods of the literature, FOCUSS is less accurate when facing such non-stationary data especially

for low SNR. This algorithm is to be used on longer time windows containing stationary sources, as confirmed by additional
simulations. RAP-MUSIC however shows strong robustness over all the configurations.

IV. CONCLUSION

This paper proposes a formulation of the sparse EEG inverse problem using a data-driven space-time-frequency wavelet based
dictionary. Among the optimization strategies, SBR proves to be very efficient in decomposing the data on such atoms, with
high robustness to noise and to user chosen parameters while providing enhanced localization results when the non-stationarity
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TABLE I: 8 sources in 4 epochs. αnw = 0.01, αnt = 0.05.

TF DOMAIN TIME DOMAIN
10dB SBRw SDMPw SBRt SDMPt FOCUSS RMUSIC
GOF 0.97 0.89 0.92 0.97 0.96 0.94
DLE 4.23 11.99 6.05 3.59 6.88 6.42
FDP 0.02 0.13 0.23 0.01 0.04 0.03
TPR 1.00 1.00 0.99 0.99 0.97 0.92
FDR 0.01 0.38 0.14 0.01 0.06 0.07
Time 0.10 67.77 0.03 13.77 0.85 0.73

3dB SBRw SDMPw SBRt SDMPt FOCUSS RMUSIC
GOF 0.90 0.86 0.72 0.78 0.75 0.88
DLE 5.95 11.87 7.58 7.04 14.77 6.63
FDP 0.01 0.15 0.27 0.16 0.16 0.05
TPR 0.92 1.00 0.95 0.88 0.62 0.91
FDR 0.01 0.41 0.17 0.09 0.22 0.08
Time 0.03 81.47 0.03 13.63 0.75 0.73

TABLE II: 16 sources in 8 epochs. αnw = 0.01, αnt = 0.05.

TF DOMAIN TIME DOMAIN
10dB SBRw SDMPw SBRt SDMPt FOCUSS RMUSIC
GOF 0.96 0.92 0.91 0.92 0.94 0.95
DLE 4.37 8.70 6.49 5.62 7.89 4.49
FDP 0.01 0.19 0.27 0.17 0.06 0.01
TPR 1.00 1.00 0.97 0.95 0.93 0.97
FDR 0.01 0.23 0.09 0.05 0.09 0.02
Time 0.19 31.25 0.05 26.03 0.80 2.39

3dB SBRw SDMPw SBRt SDMPt FOCUSS RMUSIC
GOF 0.86 0.46 0.57 0.56 0.65 0.81
DLE 4.87 11.17 10.25 8.22 19.13 4.92
FDP 0.01 0.19 0.30 0.34 0.25 0.05
TPR 0.95 1.00 0.72 0.85 0.46 0.96
FDR 0.01 0.45 0.13 0.13 0.35 0.03
Time 0.05 95.01 0.04 32.04 0.76 2.65

of the sources increases. As emphasized in [11], SDMP applied with a spatial dictionary is efficient when the sources are
rather stationary, and if the expected number of sources is known. However it fails in decomposing the data on the proposed
STF dictionary, as it requires the number of sources as an input. Sufficiently large time windows with significant activations
of these sources is then needed, which is not the case when considering short time supports. Among classical approaches,
RAP-MUSIC [12] provides the best accuracies, while FOCUSS needs longer time windows to provide accurate performances.
This contributes to the idea that no universal localization method can cover the full spectrum of applications. Our proposed
STF dictionary combined with the SBR strategy might be favored when trying to localize highly transient phenomena like
epileptic spikes or cognitive evoked potential.

Using a space-time-frequency dictionary might also open interesting perspectives, as using other techniques for selecting
physiologically relevant atoms instead of the wavelet denoising approach proposed in this work. For example, these atoms
could be selected based on some a priori user knowledge, such as the frequency content for epileptic high-frequency activities
[13]. Targeting the frequency band where the relevant features of the epileptic signal are lying is likely to provide enhanced
localization of the epileptic sources, thus facilitating the subsequent connectivity analysis of the underlying epileptic network
[9].
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