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ABSTRACT. While extracting the temporal dynamical features based on the time-frequency
analyses, like the reassignment and synchrosqueezing transform, attracts more and more
interest in bio-medical data analysis, we should be careful about artifacts generated by in-
terpolation schemes, in particular when the sampling rate is not significantly higher than
the frequency of the oscillatory component we are interested in. In this study, we for-
mulate the problem called the reflection effect and provide a theoretical justification of
the statement. We also show examples in the anesthetic depth analysis with clear but un-
desirable artifacts. The results show that the artifact associated with the reflection effect
exists not only theoretically but practically. Its influence is pronounced when we apply the
time-frequency analyses to extract the time-varying dynamics hidden inside the signal. In
conclusion, we have to carefully deal with the artifact associated with the reflection effect
by choosing a proper interpolation scheme.

1. INTRODUCTION

It has been widely accepted that several aspects of the health status could be well ob-
served by analyzing recorded physiological time series. In particular, the time-varying
oscillatory pattern inside the electrocardiogram (ECG) or respiratory signal contains abun-
dant health information, for example, the heart rate variability (HRV) [1, 2, 3] hidden in-
side the R peak to R peak interval (RRI) time series and the instantaneous heart rate (IHR),
the breathing pattern variability (BPV) representing the time varying rate of the respira-
tory signal [4, 5, 6]. It is well known that power spectrum is not a suitable tool when
the time-varying dynamics in the signal is the main target to analyze, as power spectrum
reflects only the global oscillatory information, and hence could not properly extract the
dynamical information, which is local in nature. In general, a popular and powerful way
to study the time-varying oscillatory pattern inside a time series is the time-frequency (TF)
analysis, which allows us to efficiently extract how a signal oscillates at each time instant.
There have been several TF analysis techniques proposed, including linear methods like
short time Fourier transform (STFT), continuous wavelet transform (CWT) [7, 8] and mul-
tiwindow approach [9], the quadratic methods like Wigner-Ville distribution and Cohen
class [8], nonlinear methods like reassignment (RM) technique [10, 11], synchrosqueezing
transform (SST) [12, 13], multi-tapered RM [14], multi-tapered SST [15, 16], ConceFT
[17], empirical model decomposition [18], sparse TF analysis [19], iterative filtering [20],
etc. The potential of the TF analysis has been shown in several different fields, in particular
the medical field; for example, [21, 22, 23, 15], to name but a few.

While there exists a lot of information in the physiological signals we could easily
approach, in some signals, like IHR, there are two particular features that should not be
neglected. First, they are sampled in a non-uniform fashion; second, in many situations,
they are often sampled at a rate which is not significantly high. Typical examples include
the IHR and the ECG-derived respiratory (EDR) signal extracted from the ECG signal, the
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IHR estimated from the photoplethysmography signal [24], etc, in which case the sam-
pling is non-uniform and the sampling rate is determined by the heart rate. In order to
apply the TF analysis to study these observed signals, a common practice is to apply the
digital-to-analogue conversion to recover the original continuous signal [25, 1, 21, 26, 15],
for example, the spline interpolation. Among different choices of the spline interpolation
schemes, the cubic spline interpolation is commonly chosen as it balances between the in-
terpolation property and the overfitting issue raised by the interpolation. On the other hand,
the interpolation is commonly associated with a convolutional kernel. While it is generally
accepted that the quality of recovering the underlying signal is good by a suitably chosen
interpolation scheme, it might cause some undesirable artifacts, for example, by the side
lobe effect inherited in the spline interpolation scheme [27]. Thus, although the TF analy-
sis have been successfully applied to several physiological problems for different purposes,
we should be careful about the analysis results. For example, while the main purpose of
the nonlinear TF analysis techniques like RM and SST is to sharpen/enhance the TF rep-
resentation determined by the linear TF analysis, these techniques might also enhance the
artifact generated by the interpolation scheme and hence mislead the interpretation. This
problem is further complicated by the possible non-uniform sampling scheme.

To demonstrate the potential problem caused by this issue, here we show a real example
in the respiratory signal analysis. The airflow respiratory signal and the ECG signal are
recorded simultaneously, and we obtain the EDR signal from the ECG signal. The EDR
signal is generated by interpolating the amplitudes of detected R peaks via the cubic spline
interpolation, and is influenced by the inevitable sampling effect inherited in the R peak
location, which is not only non-uniform but also with low sampling rate. In Figure 1, the
respiratory signal and the EDR signal are shown together, as well as their TF representa-
tions determined by the multi-tapered RM. Clearly, while these two signals “look” similar
in the sense of the “fast-slow” oscillatory pattern, their TF representations are very differ-
ent. While the TF representation of the respiratory signals show the multiples of the base
respiratory frequency at about 0.5Hz, the TF representation of the EDR signal show “two
different components”, where the component with the higher frequency is not the multiple
of the base respiratory frequency at about 0.5Hz. Clearly, the TF representation of the EDR
signal will mislead the interpretation.

Thus, to extract the correct information from this kind of time series, it is essential
to understand the influence on the analysis results caused by the sampling scheme, the
interpolation scheme and the TF analysis. In this paper, the reflection effect caused by the
interpolation scheme is formalized, how the sampling scheme is involved is discussed, and
a theoretical justification of this effect is provided. In addition, we show several medical
examples where the artifacts might mask the whole interpretation.

This paper is organized in the following way. In Section 2, the adaptive harmonic model
is introduced to model the commonly encountered oscillatory signals. The notion instan-
taneous Nyquist rate is introduced to quantify the nonuniform sampling that serves as a
framework for our analysis. In Section 3, the reflection effect is formalized and a theoret-
ical justification is provided. In addition, a solution to this artificial effect is proposed. A
series of numerical evidences, as well as real examples from the anesthesia are provided in
Sections 4 and 5. In Section 7, we conclude the paper with a series of discussions.

2. THE ADAPTIVE HARMONIC MODEL AND INSTANTANEOUS NYQUIST RATE

Among different features of time series, oscillatory pattern is the main target of several
TF analysis techniques. When it comes to the oscillation, Fourier analysis is commonly



WHEN INTERPOLATION-INDUCED REFLECTION ARTIFACT MEETS TIME-FREQUENCY ANALYSIS 3

FIGURE 1. The time-frequency representations of the ECG derived res-
piratory (EDR) signal and the airflow signal determined by the multi-
taper reassignment (RM). The signals are recorded simultaneously. Top:
the EDR signal based on the cubic spline interpolation from the R peaks
amplitudes determined from the lead II ECG signal. The mean of the
EDR signal is removed. Middle top: the multi-taper RM of the EDR.
The instantaneous Nyquist frequency (INF) is superimposed as a red
dashed curve. Middle bottom: the airflow signal recorded simultane-
ously. At around 150 second, an automatic calibration happens, which
leads to a short zero period. Bottom: the multi-taper RM of the airflow
signal. Note that the breathing rate is below 0.5 Hz in the beginning and
increases gradually. It is clear that the base component with instanta-
neous frequency (IF) about 0.5 Hz in the airflow signal is well captured
by the EDR signal, while in the EDR signal there is an artificial compo-
nent with IF higher than INF, which mirrors the base component IF via
the INF.

the first choice among others. However, in general, the oscillatory pattern might change
according to time, and its momentary behavior might not be easily captured by the Fourier
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technique and new techniques are needed. While the time-varying oscillatory pattern might
be as complicated as one could imagine, in medical applications it is commonly controlled
by the physiological constraints. For example, the heart rate could not be as fast as possible,
and the amplitude of the respiratory signal is limited by the lung capacity. Thus, to quantify
the oscillatory pattern inside an observed time series, we consider the following adaptive
harmonic model [12, 13]:

Definition 2.1. Fix 0< ε� 1, ε� c1 < c2. The functional class, A c1,c2
ε ⊂C1(R)∩L∞(R),

contains functions of the form a(t)cos(2πφ(t)), where a ∈ C1(R)∩ L∞(R), φ ∈ C2(R),
c1 ≤ a(t)≤ c2, c1 ≤ φ ′(t)≤ c2 |a′(t)| ≤ εφ ′(t) and |φ ′′(t)| ≤ εφ ′(t) for all time t ∈ R.

For f (t)= a(t)cos(2πφ(t))∈A c1,c2
ε , we call φ ′(t) the instantaneous frequency (IF) and

a(t) the amplitude modulation (AM) of f (t). In the adaptive harmonic model, locally all
functions in A c1,c2

ε behave like a harmonic function (or sine wave), and the deviation from
being a harmonic function is controlled by ε . We call a function in A c1,c2

ε an intrinsic mode
type (IMT) function. A more general model consisting of functions with multiple IMT
functions and more theoretical discussions could be found in [12, 13]; the identifiability
issue of the adaptive harmonic model and the noise and trend model issue have been studied
and discussed in [13]. While the following discussion carries over into to the more general
model, in this paper, to simplify the discussion, we focus on A c1,c2

ε , where there is only
one IMF inside the signal. The adaptive harmonic model has been applied to study the
“non-stationary” physiological dynamics [6, 15, 28, 29, 23, 16]. Before proceeding, we
comment that most time series we could acquire in the real world are real, so we consider
only real model but not the exponential complex model. We mention that obtaining the
imaginary part of a given real signal to recover its exponential complex form is not a trivial
problem [30, 31, 32].

Next we discuss the sampling effect. Take f (t) = a(t)cos(2πφ(t))∈A c1,c2
ε . Consider a

monotonic increasing function ψ ∈C1(R). Define a sequence of sampling points {tm}m∈Z
so that tm =ψ−1(m). With this sampling scheme, we obtain samples X := {tm, f (tm)}m∈Z.
Note that if ψ(t) = kt, where k > 0, then the sampling is uniform and we get a sample every
1/k second. To study how much information about f we could obtain from the sampled
dataset, when ψ is a linear function and f is a band-limited function, we could consider
the Nyquist-Shannon theory. However, the application of Nyquist-Shannon theory is not
efficient in our case, since a generic function in A c1,c2

ε has a non-compact support1 in the
Fourier domain. The application of the Nyquist-Shannon theory is more difficult in the
case when ψ is nonlinear; that is, when the sampling is non-uniform. Thus, we consider
another definition to describe the sampling scheme which reflects the momentary nature of
dynamical analysis.

Definition 2.2. Fix c > 0 and 0≤ ε� c. Take ψ ∈C2(R) so that c≤ ψ ′(t) and |ψ ′′(t)| ≤
εψ ′(t) for all t ∈ R. We call ψ ′(t) the instantaneous sampling rate (ISR) and ψ ′(t)/2 the
instantaneous Nyquist frequency (INF).

Note that ISR and INF naturally generalize the notion of sampling rate and Nyquist
frequency – the higher the ISR is at a moment, the higher the sampling rate is around
this moment. The condition |ψ ′′(t)| ≤ εψ ′(t) says that locally the sampling is close to a
uniform sampling. A natural problem regarding the above definition of ISR and INF is
the identifiability issue. Precisely, given a sampling points {tm}m∈Z, we could find many
different functions ψ which leads to the same sampling points. We claim that under the
provided condition of ISR and INF, they are well-defined up to an error of order ε .

1For the definition of support, we refer the reader to [33, P. 284].



WHEN INTERPOLATION-INDUCED REFLECTION ARTIFACT MEETS TIME-FREQUENCY ANALYSIS 5

Theorem 2.1. Fix c > 0. If ψ, ψ̃ ∈C2(R) both satisfy the conditions for ISR and generate
the same sampling points {tm}m∈Z, then we have |ψ ′(t)− ψ̃ ′(t)| ≤ 2ε and |ψ(t)− ψ̃(t)| ≤
2ε(tm+1− tm) for all time t ∈ [tm, tm+1]. Globally, we have |ψ ′(t)− ψ̃ ′(t)| ≤ 2ε and |ψ(t)−
ψ̃(t)| ≤ 2ε/c for all time t ∈ R.

Proof. Note that we have ψ(tm) = ψ̃(tm) = t for all m ∈ Z. Consider t ∈ [tm, tm+1). By a
direct calculation, we have

|ψ ′(t)− ψ̃
′(t)| ≤

∫ t

tm
|ψ ′′(s)− ψ̃

′′(s)|ds(1)

≤ ε

∫ t

tm
(ψ ′(s)+ ψ̃

′(s))ds

= ε[(ψ(t)−ψ(tm))+(ψ̃(t)− ψ̃(tm))]

≤ 2ε(ψ(tm+1)−ψ(tm)) = 2ε,

where the second inequality holds by the assumption that |ψ ′′(t)| ≤ εψ ′(t) and |ψ̃ ′′(t)| ≤
εψ̃ ′(t) both hold, and the last inequality holds by the monotonic assumption of ψ and
ψ̃ . To finish the proof, note that by the mean value theorem, we have ψ(tm+1)−ψ(tm) =
ψ ′(t ′)(tm+1− tm) for some t ′ ∈ [tm, tm+1], which leads to

(2) tm+1− tm =
ψ(tm+1)−ψ(tm)

ψ ′(t ′)
=

1
ψ ′(t ′)

≤ 1
c
,

where the last inequality holds by the assumption that ψ ′(t) ≥ c and ψ̃ ′(t) ≥ c. Thus, we
have

|ψ(t)− ψ̃(t)| ≤
∫ t

tm
|ψ ′(s)− ψ̃

′(s)|ds(3)

≤ 2ε(t− tm)≤ 2ε(tm+1− tm)≤ 2ε/c

and hence the proof is done. �

This theorem essentially says that the ISR for a given sampling points {tm}m∈Z is well
defined up to the error of order ε . We mention that for a randomly given sampling points
{tm}m∈Z so that tm+1 > tm, we may not be able to define a ISR function which satisfies the
condition in Definition 2.2. In this paper, we focus on sampling scheme which satisfies
Definition 2.2.

In addition to ISR and INF, note that we could also naively generalize the notion of
Nyquist rate to its instantaneous version.

Definition 2.3. Take a signal f (t) = a(t)cos(2πφ(t)) ∈A c1,c2
ε . We call 2φ ′(t) the instan-

taneous Nyquist rate (INR) of the function f (t).

Note that the INR reduces to the notion of Nyquist rate when φ(t) is linear and a(t)
is constant. We will always assume that ψ ′(t) > 2φ ′(t); that is, at each time instant, we
have at least two sampling points from an oscillation, otherwise the oscillatory information
might be lost. Thus, this is again a natural generalization of the sampling theory under the
uniform sampling scheme and the band-limited assumption.

3. THE REFLECTION EFFECT

With the adaptive harmonic model and the samples, we would like to study the underly-
ing dynamical features, like the IF and AM of the signal. A common practice to convert the
discretized sampling X to a continuous function is via an interpolation scheme. We now
show the structured artifacts caused by the commonly applied spline interpolation scheme.
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In particular, the IF of an artificial component in the interpolated signal is a reflection of
φ ′ associated with the INF. Further, while the INF is closer to the IF, this artifact is more
severe, which is the case we encounter when we study the IHR or EDR signals.

Theorem 3.1. Take f (t)= a(t)cos(2πφ(t))∈A c1,c2
ε and sample f (t) with the ISR ψ ′(t)>

2φ ′(t). Fix a n-th order spline interpolation, where n≥ 1, and denote the interpolated signal
as f̃n(t). Then, we have

f̃n(t) = a(t) ∑
k∈Z

cn(k)cos[2π(kψ(t)−φ(t))]+O(
√

ε),(4)

where cn(k) ∈ R depends on n.

Proof. The proof is divided into three steps. First, we show the proof when the signal is
harmonic and the sampling is uniform; second, we show the result when the signal is in the
adaptive harmonic model and the sampling is uniform; third, we show the general proof.

We start from the harmonic signal f (t) = cos(2παt), where 0 < α < 1/2. Without loss
of generality, we assume that the sampling rate is 1 Hz; that is, ψ(t) = t and the ISR is 1.
If not, for example, ψ(t) = kt, where k > 1, we could upwrap the time axis by s = kt, and
get ψ(s) = s and f (s) = cos(2π(α/k)s), and the argument holds. Note that f is a band-
limited harmonic function which is also in A c1,c2

ε . Note that the IF of f (t) is α , which is
less than ψ ′(t)/2. The uniform sampling scheme corresponds to the weighted Dirac train,
which is a tempered distribution fδ := ∑l∈Z f (l)δl , where δl is the Dirac delta measure
supported at l ∈ Z. The n-th order spline interpolation scheme, where n ∈ N, is performed
as a convolution of fδ with the n-th order fundamental cardinal spline function η(n), which
satisfies

(5) η̂(n)(ξ ) =

[
∑
l∈Z

(
sin(π(ξ − l))

π(ξ − l)

)n+1
]−1(

sin(πξ )

πξ

)n+1

,

where η̂(n) means the Fourier transform of η(n). See [34, (2.14)] or [35, (4.6.9)] for exam-
ple. Precisely, the interpolated signal based on the n-th order spline interpolation, denoted
as f̃ , satisfies f̃ = η(n) ? fδ , where ? is the convolution. Note that it is an interpolation and
we have f̃ (l)= f (l) for all l ∈Z. By a direct calculation, we have f̂δ (ξ )=∑k∈Z f̂ (k+ξ )=
1
2 ∑k∈Z[δk+α +δk−α ], which leads to ̂̃f (ξ ) = 1

2 ∑k∈Z η̂(n)(ξ )[δk+α +δk−α ]. As a result, we
have

f̃ (t) = ∑
k∈Z

η̂(n)(k−α)cos(2π(k−α)t)(6)

We thus finish the proof when the signal is harmonic and the sampling is uniform. Indeed,
the main reflection component associated with INF, 1/2, is η̂(n)(1−α)cos(2π(1−α)t).

Second, without loss of generality, we consider a general function f (t)= a(t)cos(2πφ(t))∈
A c1,c2

ε , where φ ′(t)< 1/2. Again, we consider a uniform sampling scheme at the sampling
rate 1 Hz; that is, ψ(t) = t. Take l0 ∈ Z. Consider a local harmonic approximation of f
around l0, denoted as f (l0)(t) = a(l0)cos[2π(φ(l0)− l0φ ′(l0)+φ ′(l0)t)]. By the adaptive
harmonic model and the same argument as that in [12], we have the control between f and
f (l0) for all s ∈ R

(7) f (l0 + s) = f (l0)(l0 + s)+C|s|ε,

where C depends on c2 in the definition of A c1,c2
ε and is uniformly bounded for all l0. Also

recall the fact that the n-th order cardinal spline decays exponentially [35, (4.6.2)]. By
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taking the facts of exponential decay of η(n) and the Taylor expansion (7), we know that
for t ∈ [l0−1/2, l0 +1/2],

(8)

∣∣∣∣∣∑l∈Z( f (l)− f (l0)(l))η(n)(t− l)

∣∣∣∣∣≤ 2Cε ∑
k∈N

ke−ck =C′ε

for some constant c,C′ > 0. Hence, by (6) we have for all t ∈ [l0−1/2, l0 +1/2)

f̃ (t) = (η(n) ? fδ )(t) = (η(n) ? f (l0)
δ

)(t)+O(ε)

= ∑
k∈Z

η̂(n)(k−φ
′(l0))a(t)cos[2π(kt−φ(t))]+O(ε),(9)

where we use the fact that a(t0)cos[2π(φ(l0)−l0φ ′(l0)+(k+φ ′(l0))t)]= a(t)cos[2π(φ(t)+
kt)]+O(ε). As a result, we have the proof when f ∈A c1,c2

ε and the sampling is uniform.
Indeed, the main reflection component associated with INF, 1/2, is η̂(n)(1−φ ′(l0))a(t)cos[2π(t−
φ(t))], which has the IF 1−φ ′(t).

Third, we consider the case when the sampling is non-uniform and the signal satisfies
the adaptive harmonic model. We consider f (t) = a(t)cos(2πφ(t)) ∈A c1,c2

ε and the ISR
ψ so that ψ ′(t) > 2φ ′(t) for all t. Denote the sampling points as T := {ti}i∈Z, where
ψ(ti) = i. Without loss of generality, we focus on τ so that φ ′(τ) < 1/2 and ψ ′(τ) = 1 >
2φ ′(τ); the other cases could be proved by scaling. To simplify the notation, we assume
that τ = N/2, where N = 2d1/

√
εe. By the assumption of ψ , we know that over the

interval [0,N], |ψ ′(s)−1| ≤
√

ε for all s ∈ [0,N]. Denote I = {i ∈ Z|0≤ ti ≤ N} ⊂ Z and
J = {0,1, . . . ,N} ⊂ Z. Note that |tl − l| ≤ C′|l− τ|ε for all l ∈ I, where C′ is a constant
depending on ψ , so |tl− l| is bounded by

√
ε and we know that |I|= |J|= N +1. Denote

Nn, j to be the B-spline of order n defined on T [36, (10.2.32)]; that is,

(10) Nn, j(x) := (t j+n+1− t j)
j+n+1

∑
k= j

(x− tk)n
+

Π
j+n+1
k 6=l= j (tl− tk)

,

where xn
+ is the truncated power defined as xn

+ = xn when x ≥ 0 and xn
+ = 0 when x < 0.

Note that when the sampling is uniform, that is, when t j = j, then Nn, j(x) = Nn(x− j),
where Nn is the cardinal B-spline of order n [36, Theorem 10.2.7] satisfying

(11) Nn(x) :=
1
n!

n+1

∑
k=0

(−1)k
(

m+1
k

)
(x− k)n

+.

To prove the theorem, note that the technique of using the Fourier transform of the fun-
damental cardinal spline function does not work here, due to the non-uniform sampling.
However, due to the condition of ψ , we could control the difference between the non-
uniform sampling case we discuss here and the uniform sampling case. Recall that the n-th
order spline interpolation for the non-uniform sampling is finding the unique [36, Theorem
10.2.2(d)] n-th order spline f̄ such that

(12) f̄ (x) =
N−n

∑
j=−n

c jNn, j(x)

where {c−n,c−n+1, . . . ,cN−n−1,cN−n} ⊂ R satisfies the conditions

(13)
N−n

∑
j=−n

c jNn, j(ti) = f (ti)
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for all i = 0, . . . ,N [36, (10.3.7)]. By the Schoenberg-Whitney Theorem [36, Theorem
10.3.2], the interpolation is solved by finding c j by

(14) c = A−1f,

where A is a (N +1)× (N +1) matrix

A =


Nn,−n(t0) Nn,−n+1(t0) . . . Nn,N−n(t0)
Nn,−n(t1) Nn,−n+1(t1) . . . Nn,N−n(t1)

...
...

...
...

Nn,−n(tN) Nn,−n+1(tN) . . . Nn,N−n(tN)

 ,
c= [c−n,c−n+1, . . . ,cN−n−1,cN−n]

T ∈RN+1 and f= [ f (t0), f (t1), . . . , f (tN−n−1), f (tN−n)]
T ∈

RN+1. Similarly, denote the n-th order spline interpolation from the uniform sample
{(i, f (i))}i∈Z to be f̃ , which satisfies

(15) f̃ (x) =
N−n

∑
j=−n

d jNn(x− j)

where {d−m,d−m+1, . . . ,dn−m−1,dn−m} ⊂ R satisfies the conditions

(16)
N−n

∑
j=−n

d jNn(i− j) = f (i)

for all i = 0, . . . ,N. The d j is again solved by applying the Schoenberg-Whitney Theorem.
By the assumption of ψ , we know that | f (tl)− f (l)| ≤C|l− τ|ε for all l ∈ I by (7), where
C′ depends on ‖ f ′‖∞. Also, we have |Nn, j(x)−Nn(x− j)| ≤ C′′| j− τ|ε = O(

√
ε) for all

j ∈ I, where C′′ is another constant depending on n. Hence, c j = d j +O(
√

ε) by the
√

ε-
perturbation of A. Also note that Nn, j(x) and Nn(x) are all compactly supported. As a
result, over [0,N], the n-th order spline interpolation over the non-uniform sampling T
satisfies

f̄ (x) =
N−n

∑
j=−n

c jNn, j(x) =
N−n

∑
j=−n

d jNn(x− j)+O(
√

ε)

= f̃ (x)+O(
√

ε).(17)

Thus, by the above argument, we know that f̃ (x) satisfies the reflection property (9), and
hence we obtain the proof.

�

4. REFLECTION EFFECT AND TIME-FREQUENCY ANALYSIS

In practice, the reflection effect discussed in Section 3 is pronounced when we apply the
TF analysis techniques to study the time-varying dynamics hidden inside the signal, and the
effect is even worsened when we apply the sharpening technique in the TF analysis. In this
section and the next, we demonstrate how the interpolation induced reflection effect is pro-
nounced by two TF analysis techniques, the RM [37, 10, 11] or the SST [12, 13]. Similar
phenomena could be found in other TF analysis methods, ranging from the linear to qua-
dratic methods [8]. Note that the SST is a variation of the RM, and these techniques could
be carried out to sharpen the TF representation determined by a chosen linear TF analy-
sis, for example, the short time Fourier transform (STFT) or continuous wavelet transform
(CWT). In a nutshell, RM and SST are nonlinear TF techniques aiming to alleviate the
spreading effect in the TF representation determined by the linear TF analysis, which is
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caused by the inevitable Heisenberg uncertainty principle. These techniques sharpen the
TF representation by taking the phase information hidden inside the linear TF analysis into
account. For details, we refer the reader with interest to [38, 17] for the review material.

FIGURE 2. The time-frequency (TF) representation of f1(t) =
cos(2π2.5t) and different interpolations from the sampling scheme ψ1.
The instantaneous frequency (IF) of f1 is φ ′ = 2.5. Left: the SST-STFT
result of f1(t). Middle left: the SST-STFT result of the cubic spline (CS)
interpolation. The instantaneous Nyquist frequency (INF), ψ ′1/2, is su-
perimposed as a red dashed curve on it. Here we could see components
with IF ψ ′1−φ ′ marked as (1) and ψ ′1 +φ ′ marked as (2). Middle right:
the reassigned STFT result of the CS interpolation, where we could only
see an extra component with IF ψ ′1−φ ′ marked as (1). Note that the ar-
tificial component with IF ψ ′1−φ ′ is the reflection of φ ′ associated with
the INF. Right: from top to bottom we show the 40-th second slice of the
TF representations shown in left, middle left, middle and middle right.
The unit of the y-axis is arbitrary (a.u.).

To demonstrate this reflection effect, we start from a harmonic function f1(t)= cos(2π2.5t)

and sample it with the ISR ψ ′1(t) = 6+ (t−80/π)2

800 . Note that obviously the ISR is greater
than the INR of f . Then, we demonstrate the reflection effect by applying different com-
mon interpolation schemes. We then run SST-STFT and reassigned STFT on the interpo-
lated signal, where the interpolated signal is sampled uniformly at 64 Hz. To avoid possible
boundary effects, we sample the signal for 80 seconds. The results are shown in Figure 2.
In this study, the TF representation R ∈ Cn×m is displayed in the log scale. Precisely, we
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plot R̃ ∈ Rn×m, where R̃i, j = max{10−2, log(1+min{|Ri, j|,q)})}, where q is the 99.8%
quantile of all entries of |R|.

We next consider the same procedure on a non-harmonic function f2(t)= (0.7+t1.1)cos(2π(πt+
0.2cos(t))), whose AM and IF are a(t) = 0.7+ t1.1 and φ ′(t) = π−0.2sin(t), respectively,
and we take another ISR, ψ ′2(t) = 8+0.5cos(πt/10). Note that ψ ′2 is greater than INR of
f2. The result is shown in Figure 3. Note that we could see a clear reflected component
associated with the INF in all the above cases, and the behavior depends on the setup.

FIGURE 3. The time-frequency representation of f2(t) = (0.7 +
t1.1)cos(2π(πt + 0.2cos(t))) and the interpolation from the sampling
dataset associated with ψ2(t). The instantaneous frequency (IF) of f2
is φ ′(t) = π − 0.2sin(t). Left: f2(t) is shown as a gray curve with the
non-uniform samples superimposed as black circles. The cubic spline
(CS) interpolation is shown as the black curve. The unit of the y-axis is
arbitrary (a.u.). Middle left: the SST-STFT result of f2(t). Middle right:
the SST-STFT result of the CS interpolation. Right: the reassigned STFT
result of the CS interpolation. Note that in the middle, middle right and
right subfigures, in addition to f2(t), we could see components with IF
ψ ′2− φ ′ marked as (1), 2ψ ′2− φ ′ marked as (2) and ψ ′2 + φ ′ marked as
(3). Note that the artificial component with IF ψ ′2− φ ′ is the reflection
of φ ′ associated with the INF.

5. REAL SIGNAL FROM ANESTHESIA

General anesthesia is usually inevitable for a patient receiving major surgery. For
the short term and long term well-being of the patient, the anesthetic agent dose should
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be dynamically adjusted to achieve an adequate level of anesthesia. It has been shown
that the oscillatory patterns in the R-to-R peak interval (RRI) time series of electrocar-
diography and the respiration contain a lot of information regarding anesthesia dynamics
[21, 39, 15, 40, 16, 26]. It has been shown in [39, 15, 40, 16] that the adaptive harmonic
model, the multi-taper reassigned STFT [14, 41] and the multi-taper SST-STFT [15, 16]
serve as a good framework toward the goal, especially when noise is inevitable. Precisely,
the oscillatory behavior of the RRI during anesthesia could be modeled by the adaptive
harmonic model, and how strong the component is related directly to the anesthetic depth.
We would extract stable features by the multi-taper reassigned STFT and the multi-taper
SST-STFT to better quantify the anesthetic depth. While its clinical value has been shown
in different problems, its sampling theory issue is left unanswered to the best of our knowl-
edge. We mention that the sampling issue for the power spectrum approach to study HRV
based on the stationarity assumption has been widely studied; see for example [42, 43].
It could be argued that reassigned STFT and SST-STFT add complications on the top of
a spectrum approach, but note the difference between the underlying models which are
aiming to capture different phenomena.

Here we demonstrate two examples regarding this direction which might generate po-
tential artifact in the TF representation – IHR analysis and EDR analysis. The IHR and
EDR are acquired from the recorded ECG signal in the following way. Denote the recorded
lead II ECG signal as E(t) which is digitalized at the sampling rate 1000Hz. The R peak
detection was automatically determined from E(t). The ECG signal is clean without sig-
nificant noise contamination, and no ectopic beats nor electro-cauterization happen in the
recorded signal. The collected RRI time series is denoted as X = {ti, ti+1− ti}N

i=1, where
ti ∈ R is the time stamp of the i-th R peak. Then, we follow the common practice and
approximate the IHR from X by the cubic spline interpolation [2], and denote the approx-
imated IHR as r̃m. Next, r̃m is resampled to be equally spaced at 8 Hz for the multi-taper
SST-STFT and multi-taper reassigned STFT analysis [43], as it is commonly believed that
most useful information inside IHR is below 0.5 Hz under the stationary assumption. In
addition to the time stamps of the R peaks, we also have a non-uniform sampling dataset
{ti,E(ti)}N

i=1, where E(ti) is the amplitude of the i-th R peak. The EDR signal, a surrogate
of the respiratory signal denoted as R̃(t), is built up by applying the cubic spline interpo-
lation on {ti,E(ti)}N

i=1. We mention that although the amplitude scales of R(t) and R̃(t)
are different, they share the same oscillatory information inside the respiratory signal, in
particular the IF. We refer readers with interest in EDR to [25, 26] for details. To confirm
the existence of the reflection effect as an artifact in the EDR signal, when we record the
ECG signal, we simultaneously record the airway flow signal, which is denoted as R(t). To
avoid any possible artifacts, the airway flow signal is uniformly sampled at the sampling
rate 25 Hz. As R peaks are viewed as the non-uniform sampling of the IHR and EDR, the
ISR, denoted as ψ ′(t), could be estimated by the cubic spline interpolated function from{

ti,(ti+1− ti)−1
}N

i=1.
As we have the airflow signal serving as the ground truth for the respiratory signal,

we start from showing the result of the EDR signal. The results of multi-taper SST-STFT
and the multi-taper reassigned STFT on R̃(t) based on the cubic spline interpolation and
the airway flow signal are shown in Figure 4. Here the multiples of the base oscillatory
component with the IF at about 0.5Hz are associated with the notion called “wave-shape
function”, for which we refer reader with interest to [44].

The analysis results of the IHR signal based on multi-taper SST-STFT and multi-taper
reassigned STFT are shown in Figures 5 and 6. In Figure 5, the whole 30 minutes analysis
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FIGURE 4. The results of the ECG-derived respiration (EDR) signal and
the airflow signal recorded simultaneously. The signals here are the same
as those shown in Figure 1, while we show here the whole 280 second
signal. The instantaneous Nyquist frequency (INF) is superimposed as
a red dashed curve. Left: the multi-taper synchrosqueezed STFT (SST-
STFT) result of the EDR based on the cubic spline (CS) interpolation.
Right: the multi-taper SST-STFT of the airflow signal. It is clear that
the base component with IF about 0.5 Hz in the airflow signal is well
captured by the EDR signal, while in the EDR signal there is an artifi-
cial reflected component associated with the INF. Also note the temporal
reassignment effect in the multi-taper reassigned STFT around 100-th
second in in Figure 1 – the TF resolution of the multi-taper reassignment
STFT is sharper than that of the multi-taper SST-STFT shown, so the
reflection effect is more visible.

result is shown, while in Figure 6 we illustrate a zoom-in results of a 6 minutes sub-interval.
The TF representation provides several informations, in particular the time-varying fre-
quency of the IHR signal. Note that there is a dominant curve near 0.5 Hz, denoted as x1,
which is associated with the well-known phenomena of respiratory sinus arrhythmia (the
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respiratory signal is not shown), which oscillates at frequency about 0.5 Hz. It is clear
that we can see the reflected effect in the interpolated IHR r̃m. Indeed, the dominant curve
around 0.7 Hz is the reflection of the component x1 which is related to the INF ψ ′(t)/2.

FIGURE 5. The time-frequency representation of the IHR signal, r̃m(t),
over the whole 30 minutes period. The instantaneous Nyquist frequency
is superimposed as a red dashed curve on it; the IHR signal is super-
imposed as a blue curve. Top: the multi-taper SST-STFT result of the
IHR based on the cubic spline (CS) interpolation; bottom: the multi-
taper reassigned-STFT result of the IHR based on the CS interpolation.
The signal and the TF representation in the red box are zoomed in and
displayed in Figure 6.

To close this section, we demonstrate one more example with a different interpolation
scheme, the shape-preserving piecewise cubic interpolation (PCHIP). The TF representa-
tion of the EDR signal generated via the PCHIP interpolation scheme determined by the
multitaper SST is shown in Figure 7. It is clear that in the PCHIP interpolation scheme,
the reflection effect still exists. This demonstration shows that the reflection effect is not
specialized to the spline interpolation. In Figure 7, we also show the TF representation
of the EDR signal generated via the PCHIP interpolation scheme determined by STFT.
The STFT is carried out with the Gaussian window. It is also clear that we could see the
reflection effect.

6. POSSIBLE SOLUTIONS TO THE REFLECTION EFFECT

A naive solution to the reflection effect is by the hard threshold. Precisely, given a TF
representation R : R×R+→ C, we could define a new TF representation R̃ by setting the
TF representation coefficients with frequency larger than INF to zero; that is,

(18) R̃(t,ξ ) =
{

R(t,ξ ) when ξ ≤ ψ ′(t)/2
0 when ξ > ψ ′(t)/2 .

This will directly remove the reflection artifact induced by the spline interpolation. Al-
though such an adaptive filtering could mitigate the problem, due to the nonstationarity,
this approach might also remove the possible information hidden inside the signal. Another
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FIGURE 6. The time-frequency (TF) representation of the IHR signal,
r̃m(t), over a 6 minutes period. This is a zoom-in illustration of Fig-
ure 5 for the sake of showing the relationship between the IHR signal
and the time-frequency representation. The instantaneous Nyquist fre-
quency is superimposed as a red dashed curve on it; the IHR signal is
superimposed as a blue curve. Top: the multi-taper SST-STFT result of
the IHR based on the cubic spline (CS) interpolation; bottom: the multi-
taper reassigned-STFT result of the IHR based on the CS interpolation.
Note that the temporal reassignment in the multi-taper reassigned-STFT
sharpen the reflected component around the period around the 1350-th
second. It is clear that the IHR oscillates faster after 1350-sec, which
leads to a higher instantaneous frequency.

naive solution is to take a higher order spline interpolation so that in the Fourier domain the
spectrum of the fundamental cardinal spline is closer to the step function. Indeed, it is well
known that when n→ ∞, η̃(n) converges to χ[−1,1] in the Lp sense [27, (16)]. See Figure
8 for an example of the EDR signal generated by the 12-th order spline interpolation. It
is clear that compared with the cubic spline interpolation result shown in Figures 1 and 4,
the reflection effect is alleviated. While this approach seems to work, however, it is well
known that the higher the order of spline interpolation is, the more severe the overfitting
is. This fact might limit its application. Depending on the application, we could consider
different penalty to determine the optimal order of spline interpolation. Yet another naive
solution is to pre-process the signal by a low pass filter to the interpolated signal to reduce
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FIGURE 7. The time-frequency representation of the ECG-derived res-
piration (EDR) signal generated via the piecewise cubic interpolation
(PCHIP) interpolation scheme. The underlying ECG signal for the EDR
signal is the same as that shown in Figure 4. The instantaneous Nyquist
frequency (INF) is superimposed as a red dashed curve. Left: the multi-
taper reassigned short time Fourier transform (STFT) result of the EDR
based on the PCHIP interpolation. Right: the STFT of the EDR based
on the PCHIP interpolation. It is clear that the reflection effect exists.
Also note that the multi-taper reassigned STFT is sharper than the STFT.

the reflection artifact. However, this approach only works when the signal is band-limited
– in general, for example the adaptive harmonic model, the structured artifact might not
be removed but perturbed by the low pass filter, which leads to more complicated artifacts.
These findings suggest that we should consider to design a different interpolation scheme
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FIGURE 8. The time-frequency representation of the ECG-derived res-
piratory (EDR) signal determined by the 12-th order spline interpolation.
The ECG signal we use to construct the EDR signal here is the same
as that used for the EDR signal shown in Figure 1. The instantaneous
Nyquist frequency is superimposed as a red dashed curve on it. Left:
the multi-taper reassigned-STFT result of the EDR signal determined by
the 8-th order spline interpolation; right: the multi-taper SST-STFT re-
sult of the EDR signal determined by the 8-th order spline interpolation.
Clearly, compared with Figures 1 and 4, the reflection effect is reduced.

to balance between the the reflection effect and the interpolation purpose. This opens a
future research direction in the TF analysis.
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7. DISCUSSION

While extracting oscillatory features from a given time series via TF analysis is at-
tracting more interest in bio-medical field, in particular when people want to study the
dynamics, the artifacts are enhanced, in particular the reflection effect we discuss in this
paper. Thus, when apply the TF analysis to study the bio-medical signal, in addition to
search for features inside the TF representation, it is important to pay attention not only
to the sampling effect but also to the interpolation scheme, which might generate artifacts
and introduce misleading interpretations.

The evidence of the reflection effect is shown clearly in the simulated results in Section
4. In addition, it is clear that a reflection component exists in the EDR signal, as is shown
in Figure 4 in Section 5, while the reflection component does not exist in the airflow signal.
While the reflection component has a quite different IF behavior compared with the base
component, if not being careful, these observations might lead to a misinterpretation that
there is a possible hidden structure inside the respiratory signal. The same comment holds
for the IHR signal. The reflective component shown in Figure 5 might lead to a misinter-
pretation that there are two oscillatory components inside the IHR; however, it is actually
originated from the numerical interpretation. In order to get the correct information, few
possible methods to alleviate the reflection effect is proposed in Section 6.

In addition to designing a different interpolation scheme raised in Section 6, there are
several open problems and their importances have been indicated in this paper. First, while
there are several different interpolation schemes available for reconstructing the signal
from the (non-)uniform sampling points, depending on the application, it is important to
pay attention to the interplay between the TF analysis and the artifact generated by the in-
terpolation scheme, so that the results are not misled by these artifacts. Second, it raises a
question specific to the HRV or BRV – as the sampling scheme is limited by the physiolog-
ical facts, it is not possible to sample the instantaneous heart rate as fast as possible. Thus,
is it possible to evaluated the dynamical spectral information directly from the sampled
time series, so that we could avoid the need of the interpolation? One possible direction is
the following. For a given non-uniform sampled time series, the Lomb periodogram [42]
or the spectrum of counts [45] are commonly applied methods if we want to estimate the
power spectrum directly from the non-uniform sampled time series. While they allow us
to avoid the interpolation, however, the necessary phase information for the reassignment
technique and SST is missed in these methods. Thus, it deserves a further study to explore
the possibility to combine the benefits of the Lomb periodogram or the spectrum of counts
and the reassignment technique.

8. CONCLUSION

We report a potential artifact shown in the interaction of the interpolation and the TF
analysis. This artifact is theoretically studied under the spline interpolation scheme, and
is referred to as the reflection effect. A solution as well as the future directions are pro-
vided. While in this paper we demonstrate the evidence based on the bio-medical signals,
including the IHR signal and the EDR signal, this theoretical phenomena might happen in
other fields. In conclusion, when we apply the TF analysis techniques to study the time-
varying dynamics hidden inside a time series, it is important to pay attention to avoid any
mis-interpretation, in particular when the sampling rate is not significantly higher than the
spectrum we are interested in.
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