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Abstract—In this paper, we propose a method for screening for
the presence of type 2 diabetes by means of the signal obtained
from a pulse oximeter. The screening system consists of two parts;
the first analyses the signal obtained from the pulse oximeter, and
the second consists of a machine-learning module.

The system consists of a front end that extracts a set of features
form the pulse oximeter signal. These features are based on
physiological considerations. The set of features were the input
of a machine-learning algorithm that determined the class of
the input sample, i.e. whether the subject had diabetes or not.
The machine-learning algorithms were random forests, gradient
boosting, and linear discriminant analysis as benchmark. The
system was tested on a database of 1, 157 subjects (two samples
per subject) collected from five community health centres.

The mean receiver operating characteristic (ROC) area found
was 69.4% (median value 71.9% and range [75.4%−61.1%]), with
a specificity=64% for a threshold that gave a sensitivity=65%.

We present a screening method for detecting diabetes that
has a performance comparable to the glycated haemoglobin
(haemoglobin A1c HbA1c) test, does not require blood extraction,
and yields results in less than five minutes.

Index Terms—Type 2 Diabetes; Screening; Machine learning;
Statistical learning, Boosting; Photoplethysmography; Signal pro-
cessing; Noninvasive treatment.

I. INTRODUCTION

The current techniques used to diagnose diabetes are based
on urine, glycated haemoglobin (haemoglobin A1c HbA1c)
and oral glucose tolerance (OGTT) tests [1], [2]. In these
cases, the test depends on variations in the glucose level in
the blood or on the measurement of the alteration of the
structure of haemoglobin cause by long exposure to high levels
of glucose. In this paper, we propose a method for detecting
whether a person has diabetes by means of the signal obtained
from a pulse oximeter. This screening method has several
advantages, in that the diagnosis is done with a non-invasive
measure obtained from pulse oximetry and does not require
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laboratory analysis such as in the case of a urine, glycated
haemoglobin, or glucose tolerance test or a self-test HbA1c
kit that requires a blood sample. Pulse oximetry is done by
means of a photoplethysmogram (PPG), which gives a signal
that is proportional to the perfusion of blood to the dermis.
In this paper, we show that the information given by the PPG
signal allows for a screening method that detects the presence
of diabetes.
This paper is structured as follows: in section II, we discuss the
physiological properties that are reflected in the PPG signal.
In section III, we discuss the signal processing techniques
applied to extract the relevant features for the machine learning
module that does the classification. In section IV, we justify
the selection of the machine-learning algorithms. In section V,
we describe the database on which the system was tested. In
section VII, we present the results, and finally, in section VIII,
we discuss the methodology and results of this work.
Although the diagnosis of diabetes is established by the
measurement of plasma glucose [1], an easy to use screening
method might help to identify patients who are either pre-
diabetics or undiagnosed. According to a survey done from
1988 to 1994 [3], the prevalence of diagnosed diabetes was
estimated to be 5.1% of the U.S. adult population, and the
prevalence of undiagnosed diabetes was 2.7%, which means
that one in every three persons with diabetes is undiagnosed.
However, the trend of prevalence of diabetes is increasing,
and according to [4], the prevalence of diagnosed diabetes
in the US by 2050 will be 7.2% (29 million persons). If the
proportion of diagnosed to undiagnosed diabetes is maintained,
the number of undiagnosed diabetics might be about ten
million. In England [5], the prevalence has grown from 10%
in 2003 to 35% in 2011. Therefore, the actual estimates are
unreliable. In the case of the Spanish population, a national
study [6] to examine the prevalence of diabetes and impaired
glucose regulation conducted at 100 health centres from
2009−10 with 5, 000 participants, found that the prevalence of
diagnosed diabetic patients was 7.8% and that the percentage
of undiagnosed diabetics was 6.0% (in both cases, the CI was
±0.7%). This indicates a total of 2.8 million persons. In the
specific case of the region where the study was conducted, [7]
found that the prevalence rates of known diabetes, unknown
diabetes, and impaired glucose tolerance were 6.4%, 3.9%,
and 11.9% in men and 6.9%, 3.4%, and 11.9% in women,
respectively. The use of a screening device is justified by
the increasing prevalence of type 2 diabetes in the general
population. The diagnosis criteria according to [1], are as
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follows:

• Symptoms of diabetes and causal glucose level greater
than 200mg/dL

• Fasting plasma glucose greater than 126mg/dL
• Plasma glucose level after 2 h in a glucose tolerance test

greater than 200mg/dL

If any of these three criteria is met after several repeated
test, the diagnostic is positive. Early diagnosis of diabetes is
important; according to [8] and [9], half of the people who
meet the diagnostic criteria for diabetes are undiagnosed, and
it might take up to 12 years before clinical recognition, and
when the patients are diagnosed, up to 25% have established
retinopathy, and 50% have clinical evidence of diabetic tissue
damage and additional cardiovascular risk factors.
One of the advantages of the method proposed in this paper is
the reduction in the cost of wide spread screening that might
alert from undiagnosed diabetes or prediabetic states. [10]
found that the cost per identified case between $176 and $236
(US dollars in 2003, comparing different screening methods),
corresponding to medical costs that include laboratory tests,
personnel time, and other material costs but excluding non-
medical costs such as transportation, and time spent traveling.
Interestingly, the authors defined the cost as the total cost of
detection divided by the total number of cases identified.
The test that we propose might improve this ratio because
the test is cost effective and easy to use. The costs consist
of the price of a pulse oximeter, and the software can be run
on a standard PC, which is usually available at the test point
for other purposes. It does not need reagents, and because the
measurement mechanism is simple and involves measuring one
minute of signal, there is no need for a specialised technician.
The clinical implication of the method is that it allows for a
fast and inexpensive way of screening for diabetes. As stated in
[11], shifting from glucose diagnostic criteria to HbA1c, would
have a profound impact on the diagnosis of diabetes because
of the resources, time, and costs needed for the 2-h plasma
glucose and/or fasting plasma glucose diagnostic test. The
method proposed in this paper has slightly lower performance
than the HbA1c test but does not need reagents, allowing for
testing at the point of care (e.g., a doctor’s office or pharmacy),
also does not need blood extraction, the results is known
immediately and the cost of the device is extremely low. This
allows the testing of patients who otherwise would not be
tested, either because of the need for blood extraction, the
costs of the test, or the fact that routine medical checks tend to
be short. Another clinical benefit comes from the fact that the
alternative, based on glycated haemoglobin, gives an indirect
indication through changes in the structure of the haemoglobin,
which depends on the diet that the patient has followed in the
previous three months. Therefore, as the method we propose
does not depend on the diet, it will not give false negatives as
a result of the diet that the patient has followed. In addition, as
explained in section II, the underlying measurement is related
to alterations in the cardiac and arterial system, so the result
of the test that we propose in this paper can give an indirect
indication of the extent to which the diabetic disease has
harmed the cardiac system of the patient.

II. PHYSIOLOGICAL FACTORS THAT EXPLAIN THE
EXTRACTED FEATURES

In this section, we will justify the use of the signal obtained
from a photoplethysmogram (PPG) to measure indirectly the
hemodynamics and the presence of either hyperglycaemia or
damage produced by diabetes in a given subject. A PPG gives
a signal that is proportional to the pressure pulse of the cardiac
cycle, and the shape of the pulse is influenced by the different
parameters of the arteries and the hemodynamical state of the
person.
One of the physiological parameters that is affected by dia-
betes is heart rate variability (HRV) [12]. Appendix A gives
a summary of HRV and of how it is measured. The HRV
statistics change with the presence and duration of diabetes
and also allows for the characterisation of the severity of the
disease. [12] found a linear relationship between HRV, the
duration of diabetes, and age; i.e., the HRV decreases with
each additional year, and in the case of diabetes, the decrease
is not only larger but also proportional to the duration of the
disease. Figure 1 of [12], listed various examples of HRV and
compared HRV between control individuals and patients with
diabetes, showing the sharp contrast in the variability between
the healthy and the diabetic patients.
One of the assumptions of this work is that HRV can be
derived from the PPG waveform. This assumption is backed
by previous results in the literature. [13] tested the relationship
between HRV measured from electrocardiogram recordings
and the signal obtained with PPG. They also checked the
agreement using various statistical tools and concluded that
the measurement obtained by means of the PPG signal is
accurate enough. For this paper, it is relevant that their tests
showed that the RR interval from the ECG is aligned with
the PP interval. In addition, [14] the authors conducted an
extensive review of the accuracy of the estimate of HRV from
the pulse rate variability (PRV), which is measured from the
PPG. They compared with detail 32 publications, taking into
account various factors, and found that the PRV is accurate
for healthy subjects at rest, with discrepancies appearing as
a result of physical or mental stress, and that the variability
is somewhat overestimated by the PRV, reflecting coupling
effects between respiration and the cardiovascular system.

Another assumption of this work is that features from
the ECG can be inferred from the PPG waveform through
processing of the signal. For instance, [15], simultaneously
measured the ECG and the PPG signals and showed that there
was correspondence between waveforms. As mentioned above,
[14] provided a thorough summary of the literature referring to
the use of the comparison between the PPG technology and
the ECG. Although most of the studies they considered are
related to the reliability of computing the HRV with PPG as a
surrogate for the ECG, they showed the relationship between
the systolic peaks and the diastolic minima with the features
of the pulse wave signal, which allows for the different pulse
intervals to be substituted for the RR interval.
The strong assumption that we are making in this paper, which
is plausible but not supported by the literature, is that, from
the PPG signal, through processing, we can obtain surrogates
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for the Q, R, and T points of the PQRST complex of the
ECG. If these surrogates provide information related to the
different points of the ECG, we can make use of the fact that
the intervals between these points reflect the alterations caused
by the diabetic disease. On the other hand, empirically we have
found that the parameters we propose as surrogates improve
the classification rate.
The usefulness of these parameters are justified by the follow-
ing facts. For instance [16], showed that episodes of hypogly-
caemia induced abnormalities in cardiac repolarisation, includ-
ing lengthening of the QT interval, and QT dispersion and the
normalised QTc, which is defined as the ratio QTc = QT/RR,
so it is the dispersion with respect to the fraction of the RR
interval. In addition [17], showed that Hypoglycaemia creates
electrophysiologic alterations causing PR interval shortening,
ST -segment depression, T -wave flattening, a reduction of the
T -wave area, and QTc-interval prolongation. [18], found that,
in children and adolescents with type 1 diabetes, the QTc is
lengthened (note that, in this paper, the corrected QT interval
is defined as QTc = QT/

√
RR), and an interesting aspect is

that, besides the increase in the length of the QTc, the range
of this interval increased and the maximum value was 4 times
the mean value. In contrast with healthy individuals [19], the
QTc is not prolonged under normal conditions, although, after
eating a carbohydrate-rich meal the effect of hyperglycaemia
temporarily increases the QTc interval. Other ECG parameters
are altered such as a flattening of the T wave, ST -depression,
PQT intervals, the duration of the QRS interval, which justi-
fies the search for surrogate estimators of the PQRST points,
and the characteristic shapes of wave forms in amplitude
and durations. The above findings coincide with those of the
Framingham heart study [20] in that, from the epidemiological
point of view there was an association of hyperglycaemia with
reduced heart rate variability, and this effect was especially
marked in diabetics. In the paper the authors suggested that
the alteration of the heart rate variability is caused by the
presence of abnormalities in neural regulatory mechanisms.
This mechanism is explained, for instance by [21], who stated
that cardiovascular autonomic diabetic neuropathy is one of
the most common diabetes-associated complications and that
changes in heart rate variability are often the earliest symptom,
even before the symptoms of diabetes appear. The two studies
coincide in finding that heart rate variability decreases as
a function of time in the case of patients with diabetes.
Interestingly, the neural regulatory mechanisms affected by the
presence of diabetes also control other parameters that affect
the shape of the PPG signal, such as the blood pressure and
respiration ( [21] and [22]).

III. SIGNAL PROCESSING OF THE PPG WAVEFORM

The recordings were made by means of a CONTEC
CMS50D+ pulsi oximeter with a USB connection to a standard
desktop computer (for more details, see Appendix B). The
total duration of the recording was one minute following the
stabilisation of the signal.
The signal processing module consisted of two submodules:
the first was the activity detection module, the purpose of

which is to ensure the quality of the signal, in the sense that
it rejects recordings where the signal has a low amplitude or
bad quality, caused either by the movement of the subject
or by incorrect placement of the pulse oximeter. The second
processes the signal to extract the features that are relevant for
discrimination between diabetics and non-diabetics subjects.
The initial version of the system had a high number of
candidate feature sets (about 110), which were reduced after
an exploratory phase. To avoid introduce significant biases,
the author decided to do the feature selection by training the
machine-learning module (see section IV) with the first three
community health centres, and testing with the fourth and fifth.
For a description of the demography of the community health
centres see section V. As shown in the results section VII, this
selection of the features did not introduce a strong bias in the
results. Among the various possible validation strategies, the
author considered that the natural unit partitioning the data is
the community health centre, because the strategy does not
mix unknown confounding variables and is more similar to
a real-world situation. The criterion for selecting the relevant
features was the ranking given by the random forest algorithm
[23] and the backward feature selection technique [24] using
as a classifier the random forest algorithm and the gradient
boosting algorithm (see section IV for the justification of
the selection of these classification algorithms). Note that,
although the random forest is common to both methods, the
criterion for the ranking is different; the internal ranking in the
random forest algorithm is based on the permutation of values
of the input features, while the backward feature selection is a
greedy search that tries combinations of features. The results
and rankings were consistent, and the set of selected subset
of features is presented in subsection III-B. The selected sets
of features are described in section III-B, and consisted of
nine sets, which added up to a total of 69 features for the
input vector for the machine-learning algorithm. As there had
already been a filtering phase for the candidate features, the
relative ranking of the selected features was more or less flat,
which resulted in the fact that, when doing a ranking by taking
each feature by itself, the members of each set of features
appeared mixed and did not coincide with the ranking done
by the class of features. In addition, the ranking changed by
CHC when a cross validation was done.

A. Activity detection algorithm

An activity detection module (ADM) based on a finite
state automaton was implemented. The activity detection
algorithm was used to guarantee that the recorded signal
was of sufficient quality. The details of the activity detection
module are described in [22]. The criterion for selecting
a one-minute analysis window is a trade-off between the
fact that the short-term HRV can be roughly estimated from
a recording of a few minutes (see Apendix A) and the
operational restrictions (the time slots for the recordings)
on the normal functioning of the community health centres
where the samples were collected. The total number of
samples in the analysis window was 3, 600, corresponding to
a minute at a sampling rate of 60 samples/second. The ADM
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consisted of a local classifier that operated on frames of five
seconds (300 samples) that made a local decision on the
classes ’signal’/’not signal’. This classifier made the decision
using as features the Kaiser Teager energy, Qi-Zheng energy,
spectral entropy, and zero crossing rate. This local decision
used finite state-automaton with three states and simple rules
for deciding whether the signal was correct or the recording
should be discarded.

B. Feature extraction

The features extracted from the PPG signal obtained after
the ADM, which was a vector 3, 600 in length. We will denote
this signal x[n]. The extracted features are related to the
general shape of the of the PPG signal and to the heart rate
variability statistics.
Before processing to extract the features, the PPG signal was
first filtered by means of a median 1D filter of length 5
to remove spurious peaks. Then it was low-pass filtered by
means of a Chebyshev filter of type 2 of the order 7, which
had a cut-off normalised frequency of 1/8, with 40dB in the
stopband, and subsequently the signal was filtered by a simple
pre-emphasis high-pass filter with impulsional response:

hpreemp[n] = δ[n]− 0.98δ[n− 1] (1)

This pre-processing not only gave a cleaner signal but also
made clearer the systolic peaks, the diastolic minima (which
denote the onset of the systole, the slope between the two
points) and the presence of the dicrotic notch [14]. These
features will be useful for the processing done in subsection
III-B2.

1) Cepstral analysis: In this section, we describe the
features obtained from the cepstral analysis of the general
shape of the PPG signal. The cepstral analysis has been used
to characterise the HRV [25] and [26], specifically for the
case of diabetics. The use of the cepstral analysis allows
us to better distinguish the LF and HF components in a
representation that has fewer parameters. Another advantage
of using cepstral analysis is that it transforms a convolution
into an addition [27], which allows for a rough separation of
some of the information concerning the state of the arteries
from the cardiac excitation. Note that we emphasise that
it is partial information, because the PPG signal gives an
incomplete representation of the state of the circulatory
system.

Short-term cepstrum. The use of the short-term cepstrum
is justified by the fact that it will capture the specific traits of
the shape of the PPG signal by means of a few coefficients. To
compute the short-term cepstrum of the signal [27], and the
signal x[n] was divided into frames xi of length Lframe =
240, with an overlap of 50%, giving a sequence of Nf frames,
where the index i indicates the frame number

xi =
[
x [(i− 1)× Lframe] , x [(i− 1)× Lframe + 1] ,

. . . , x [i× Lframe]
]

(2)

For each frame, the cepstrum was computed as follows:

csti = ifft (log (fft (xi))) (3)

As the channel component of the cepstrum corresponded to
the first cepstral coefficients, we retained the first Nst

ceps = 10
coefficients of the mean cesptrum, which we will denote the
reduced cepstral vector cri ← ci[1 : Nst

ceps]. Finally, the input
feature corresponding to the cepstrum was defined as the
mean value of the frame cepstrum vector.

cstMean =
1

Nf

Nf∑
i=1

cri (4)

The computation of the mean cepstrum is justified by the
fact that we can characterise the state of the arteries of the
patient by means of an approximation of the impulsional
response of the system that relates the heart signal to the
final observation. Given that each xi can be understood as a
varying excitation convolved by a channel and the cepstrum
transforms a convolutional mix into an addition, the mean
value will be the unvarying part, which corresponds to the
channel. This idea has been used in speech processing to
determine the spectral characteristics of channels [28].

Long-term cepstrum. The use of the long-term cepstrum is
justified by the fact that it will capture information about the
evolution of the shape of the PPG signal and the excitation,
which reflects the periodicities in the repetition of the basic
shape of the signal. Note that, in contrast to the short-term
cepstrum, for the long term we do not average the cepstrum
values. The cepstrum of a given time series consists of the
addition of the convolutive terms that generate the observed
signal x[n]. Because the excitation and channel correspond to
different cepstral coefficients, we used as a feature the first
N lt

ceps = 20 coefficients of the cepstrum computed on all the
observation vectors x[n].

cltglob = ifft (log (fft (x))) [1 : N lt
ceps] (5)

The number of coefficients retained in both cases was
decided by the author after the inspection of a few examples.
Zero crossing rate cepstrum. Another way of capturing
HRV is to compute the cepstral coefficients of the zero
crossing points of x[n]. These coefficients will give the
general shape of the evolution of the periodical component
of the signal. We will denote this feature czc, it corresponds
to the first Nzc

ceps = 10 cepstral coefficients of the distances
of the zero crossing points of x−mean(x).
General comments about the cepstrum analysis. In
the initial experiments, to determine which features were
relevant, we found that the use of LPC-cepstrum gave worse
performance than the fast Fourier transform (FFT) based
cepstrum, so it was discarded. Something similar occurred
with the raw LPC coefficients and the line spectrum pairs
(LSP) coefficients, which were also discarded. Note also that
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the selection of the number of coefficients corresponds to
an implicit cepstral liftering, i.e., to multiplying the cepstral
sequence by a pulse of shorter duration. The use of an
additional liftering function, such as a ramp, did not improve
performance, which we explain by the fact that the base
classifiers are decision trees (see section IV), which make
local decisions at each node by means of a comparison, so
the scaling of an individual coefficient does not affect the
result.

2) Surrogate parameters : In section II, we justified the
usefulness of the parameters of the ECG for determining
whether a subject had diabetes. In this section, we present
features (indirectly related to the ECG signal) that allow us to
distinguish between subjects with and without diabetes. It is
important to remember that we posit that some features of the
ECG are reflected in the PPG signal.
The first feature of the ECG is the RR distance, which in the
PPG signal x[n] corresponds to the distance between systolic
peaks. From the RR distance between the peaks of x[n], we
created a new vector that we will denote xRR[n]. The elements
of xRR[n] are the distances (in samples) between the peaks of
x[n]. In addition, to determine other features of interest from
the PPG signal, we recorded the positions of the peaks, which
we will denote xpos[n].
Ratio of low-frequency to high-frequency (HF ) energies.
To find the ratio of low-frequency to high-frequency energies
of the HRV, we computed the FFT of length Nfft (greater
than the length of the signal xRR[n]) as follows;

XRR = FFTNfft(xRR[n]) (6)

From XRR, we computed the energy in the HF and LF
bands. These bands in our case were defined in the normalised
frequency (i.e., a sampling frequency corresponding to 1.0) 1

as follows: LF = [0.0, 0.1] and HF = [0.1, 0.2]. As feature,
we took the ratio between the sum of the absolute values of
the bins at LH and HF intervals of XRR,

RatioLH2HF =

∑⌊0.1×Nfft⌋
k=0 | XRR[k] |∑⌊0.2×Nfft⌋

k=⌈0.1×Nfft⌉ | XRR[k] |
(7)

Position of the highest peak of the RR and cepstrum
of the RR Two other features were extracted from the
vector xRR[n], the normalised frequency corresponding to
the highest peak of XRR and the first five coefficients of
the cepstrum of the xRR[n] signal. These features will be
denoted as follows: PosPeak

RR and CepsRR.
Surrogate features Next, to find the surrogates of the
PQRST points of the ECG signal, we created a vector that
contained information about the critical points of the PPG
signal. This vector was generated from the pre-processed
signal x[n] by two filtering steps. First, x[n] was filtered
by means of a high-pass filter that emphasised the points’
maximal slope and the maxima and minima of the signal.

1Note that there is ambiguity in the definition, we have followed the
definition given by [29], which differs, for instance, from that of Matlab,
where the normalised frequency is defined as half the sampling frequency. In
contrast [27] uses normalised radian frequencies.

The filter was hder[n] = δ[n] − δ[n − 2], which yielded
xhpass[n] = x[n] ∗ hder[n]. Next, the sequence xhpass[n]
was filtered by a zero-phase [29] low-pass filter with a
cut-off frequency at 0.05, (Chebyshev filter of type 2 of the
order 8). This low-pass filter was designed to preserve the
maxima/minima of xhpass[n] which are the critical/turning
points of x[n]. This new signal will be denoted as xCrtPnts[n].
As the low-pass filter was zero phase, the relative delay
between x[n] and xCrtPnts[n] is of two samples. Therefore,
from the vector xpos[n], one can infer the position of the R
peak in the vector xCrtPnts[n]. This alignment with the R
points allows consideration of the neighbouring peaks. We
will take these maxima/minima as surrogates for the real set
of points PQRST .
Note that, although the distances of the peaks obtained are
roughly consistent with the distances of the ECG, we are
not claiming that they correspond to these points. Our claim
is that they are either plausible explanations or surrogates
that allow for the discrimination between subjects with and
without diabetes. We have found that the statistics derived
from these points are informative, in the sense that they
contribute to the discrimination between classes. As discussed
in section II, it is known that the statistics related to the
intervals QT and QTc are relevant to the problem at hand.
We determined two categories of critical points in xCrtPnts[n].
The first was obtained from the immediately preceding
minimum peak of xCrtPnts[n] aligned with the R points
given by xpos[n], which we posit corresponds to the surrogate
for the Q point, and the second was obtained from the
immediate following maximum which we posit corresponds
to the surrogate for the T point. The statistics related to the
peak immediately following the R peak, which would be the
surrogate for the S, also give discriminative information.
The set of features elaborated from these distances were the
statistics of the surrogate intervals QT , QTc = QT/

√
RR,

and QS, which each consisted of a vector with the mean,
median, inter-quantile range, absolute mean deviation,
standard deviation, and range. These two features will be
denoted, respectively as QTc Stats, and QS Stats.
Demographic features. We generated a vector with the set of
several demographic features, such as weight (W), height (H),
age (A), gender (G), body mass index (BMI), and body fat
percentage (BF). The use of the body fat percentage is justified
by the fact that the body fat is a predictor of non-insulin
dependent diabetes mellitus (see [30]). The BF variable was
computed from the formula for adults given in [31]. The
formula is BF% = 1.20 ·BMI+0.23 ·age− 10.8 · sex− 54.
The information on whether the subject smoked or not was
not used because, in the database, this information was
missing in about the 20% of records. The vector with the
demographic information was constructed as follows:

XDemo = [W,H,A,G,BMI,BF ] (8)

3) Final feature vector : The final feature vector consisted
of the aggregation of the partial features, which we define as
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follows:

GlobalFea = [cstMean, c
lt
glob, czc, CepsRR,

RatioLH2HF,PosPeak
RR , QT,

QTc Stats,QS Stats,XDemo]
(9)

This vector is the input of the machine-learning module.

C. Feature importance

As stated at the beginning of this section, the initial set of
variables was much higher than the one that was finally used.
Note that as there are 9 different categories of features, the
ranking of the 69 individual features was partially mixed, i.e.
the ranking did not cluster the variables by specific categories.
On the other hand, the information about the real impact of
each category of features is important for the reproducing or
improving the method.
A side product of the Random Forest method is a score associ-
ated to each feature, that is proportional to the degradation of
the performance when the data of a given input is permuted,
maintaining the other features intact. This degradation of the
performance is computed from the ’out of bag errors’. This
allows for ranking the variables, and also for obtaining a
ranking score per category. We decided to use as performance
index per category the mean value of this score of each
variable of a given category. The ranking per category was
the following:

1) Short term cepstrum
2) Long term cepstrum
3) Zero crossing rate cepstrum
4) Ratio Low frequency to High frequency (HF) ratio of

energies
5) Position of the highest peak of the RR and cepstrum of

the RR
6) Surrogate features
7) Demographic features

The feature importance was computed for each of the initial
69 features, which means that we are not discounting the total
effect of category of variables.
The fact that the demographic features were the least important
at the level of each single feature, was confirmed empirically
by an experiment were we did not use this category of features.
The degradation of the performance was in a range of 2% to
4% of the ROC, depending on the CHC.
Also, we believe that a better estimate of the ’Surrogate
features’ by increasing the duration of the recordings, should
improve the performance of the system and the ranking of this
category of features. The reason is justified in section II.

IV. MACHINE LEARNING MODULE

The system was tested with two different machine-learning
algorithms: random forests (RF ) [32] and gradient boosting
(GB) [33]. As a benchmark, we took the linear discriminant
analysis classifier (LDA) (see [23] chapter 4). The reason
for selecting as classifiers the RF and GB, is that the base
classifier of each technique is a classification and regression
tree (CART), which allows us to use the raw features without

specific rescaling or transformation of the features [23]. This
robustness to the heterogeneity of the type of feature is due
to the way in which the CART algorithm decides the output
class. The algorithm makes local decisions by comparing the
value of a given feature to a threshold, and each comparison
is done independently of the other nodes or features. As
the feature vector we are using is composed of features
of different origin, with different statistical properties, the
use of the CART technique as a base classifier is justified.
In contrast, linear discriminant analysis, logistic regression,
neural nets, and support vector machines are sensitive to the
coding/scaling of the features.
Another common characteristic of RF and GB is their
robustness to the collinearity of the input features. In contrast
with RF and GB for other machine-learning algorithms,
such as those mentioned above, the input data must be either
normalized or whitened because of the sensitivity of these
learning algorithms to correlated data or unbalanced ranges.
This can give rise to ever-increasing values of the parameters
unless regularisation steps are taken (see discussions in
[24] and [23]). Extreme values of the parameters give
poor performance in generalisation. In addition, numerical
algorithms are prone to instabilities when inputs vary in a
correlated way.

• In the case of neural networks (multilayer perceptron) or
LDA, collinearity can give rise to extreme values of the
weights unless regularisation techniques are applied.

• In the case of radial basis functions (neural networks) or
support vector machines based on radial basis functions,
collinearity gives rise to the need for a high number of
units, as there is the need to model the dispersion of the
data along certain directions.

Related to the collinearity effect is the fact that some of the
features might have information in common, being in some
cases nearly repetitions. The decision trees are fairly immune
to degradation caused by both effects, simply because the
algorithm in this case selects at each node the variable that
locally gives the best improvement on the Gini factor. By
creating a scatter plot of all the input features, it was detected
empirically that this effect was present in our database.

A. Random forest comments

The algorithm was programed by the author in Matlab.
This algorithm has different hyper-parameters, such as: 1) the
number of samples per leaf, 2) the number of features tested
per node, and 3) the number of trees in the forest.
Different combinations of these parameters were explored
by cross validation on the training database for each testing
CHC, and we found that the best results coincided with the
recommendations of Breiman [32], which were a few samples
per leaf, in our case one, and the number of features tested per
node, equal to the square root of the total number of features
(using the base 10 logarithm gave very similar results). The
performance stabilised at 600 trees, and increasing the number
of trees did not improve the performance of the algorithm.
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B. Gradient boosting comments

The algorithm was programed by the author in Matlab
by taking as a base classifier a decision tree algorithm and
following the description in [33]. The free parameters of the
algorithm were set by cross validation. As there was little
difference between the values of the hyperparameters between
different experiments, they were set as follows. The cost
function was the MSE, and the sub-sampling of the training
database was done with a fraction of 0.75, which improved
the performance in comparison to not doing the sub-sampling.
The regularisation parameter (shrinkage factor) was set at
v = 0.005. The size of the trees was selected to be J = 10
and the number of iterations was M = 1500.

V. DESCRIPTION OF THE DATA

The data were collected in five Community Health centres
(CHCs) around Barcelona during the spring of 2013, when
the flu season had ended [34]. At each CHC, the samples
were collected from approximately 250 patients, who gave
informed consent. For most of the patients, two recordings
(i.e., two PPG measurements) were done. The participants in
our study were patients who had routine blood extractions at
a CHC. Although there were no explicit exclusion criteria,
in very busy moments, some samples for the study were not
taken.
Uniformity of the CHC
We will describe the composition of the CHC regarding the
demographics and the possible confounding variables. This is
justified by the fact that, to evaluate the system (see section
VII), we decided to take the CHC as the unit of validation.
By taking the CHC as the unit for partitioning training,
validation, and testing, the possible biases and confounding
factors specific to each CHC are not mixed. To ensure that
the partitioning is valid, we will show in this section that the
demographic distribution between CHCs is uniform.
Total number of patients was 1, 170, of whom 340, (29.06%)
were diabetic and 830 (70.94%) were not diabetic. The
proportion of diabetics to non-diabetics was very different
between CHCs, as shown in Table II, with two groups of
similar CHCs i.e., (1,2, 3, and 4) and an outlier with a
higher proportion of diabetics, i.e., CHC 5. With regard to
gender differences, the occurrence of diabetes was higher
among men; see Table I. The fact that a subject was a
type II diabetic was established from the medical record.
Note that, in the sample, there are a number of cases of
non-diagnosed diabetic and pre-diabetic patients. This will
introduce bias to the rate of false negatives because a certain
number of samples will have the wrong label. The fact that
there are wrongly labelled ’not diabetic’ patients means that
the sensitivity and specificity of our test, when trained with
a perfectly labelled database, should perform better. The
design of the database guaranteed that the diagnosed diabetics
were truly diabetics and that the proportion of diabetics to
non-diabetics would be representative of a real situation in
a CHC. In contrast, as the number of recruited patients was
high and the diagnosis is expensive, we accepted a number of
non-diagnosed diabetics. The uncertainty about the number

of wrongly labelled cases will be in the range of 49 out of
830 (6% prevalence in the general population). However as
the data were collected in community health centres from
patients who had routine blood extractions, it is expected that
the rate of undiagnosed diabetics and pre-diabetics should
be low because undiagnosed diabetics correspond to patients
who had the blood extraction because they had previously
visited the doctor for other medical problems. Therefore, if
the diabetic symptomatology were evident, the doctor would
have taken action.

The body mass index for diabetics and non-diabetics
was also similar between CHCs as shown in Table IV. The
histograms of the BMI are shown in Figure 2, which shows
that the mean value and inter-quantile range are higher in
the case of diabetic patients. The general weight histogram is
shown in Figure 3, which shows that both distributions are
similar, with a difference caused by a few exceptional outliers
in the case of the non-diabetics.

In Table III, we show the percentage of smokers. The
global mean is 16.18% and the proportion of diabetic subjects
who smoke was lower than the case of non-diabetics. The
proportions are not broken down by centres because this
information was lacking in one of the CHCs. The distribution
of smokers (diabetics or non-diabetic) was almost equal in
all CHCs with about one point of difference.
The fasting distribution of the glucose level in mg/dl is
shown in Figure 1, which shows that, although the mean of
the histogram of the diabetic subjects was a 25% higher,
interestingly, the mode (i.e., the most likely value) was
almost the same in both populations, about 90 mg/dl 2.
The difference in the mean comes from the fact that the
tails of the distribution in the case of diabetic subjects is
much longer. The inter-quantile range (IQR, i.e., the values
between the lower 25% and the upper 75%), in the case of
the histogram of diabetic subjects, is double compared to the
case of non-diabetics.

The age distribution between the diabetic population and
the non-diabetic population was similar; as shown in Figure
4, the mean and the inter-quantile ranges are almost the same.
Perhaps the only difference is that the mode is higher in the
case of the non-diabetic histogram.

In this section, we have shown that the only significant
demographic difference between the diabetic and non-diabetic
groups is related to the fasting level of glucose and that the
CHCs have similar demographic structures.

VI. METHODOLOGICAL ISSUES

In designing experiments (see, for instance, [35]), a key
point for obtaining reliable statistics is dealing with con-
founding factors that are not controlled in the experiment. If
the confounding factors are common to the different natural

2Note that the abscissa is not in the same scale.
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divisions of the experiment (in this case the CHC), then a
10-fold cross-validation is correct, in the sense that it reduces
the variability caused by non-controlled confounders, so the
means and confidence margins are more accurate. In our study,
if we aggregate all the individuals regardless of the CHC
and test in a set of individuals from a mix of the CHCs
the results with the 10-fold cross-validation are much better,
yielding an upward bias of the ROC by several points, i.e.,
a mean ROC area of 77.3%, with a standard deviation of
3.4%, which is 7 points better than the results obtained when
factoring by CHC (for comparison purposes, see Table V). In
our case, the confounding factors that we think that were not
uniform between CHCs were the profession, age distribution
and national origin of the patient. This information was not
available and therefore could not be used for computing the
performance taking into account the different factors.
Therefore, instead of a random partition in a 10-fold cross-
validation, we decided to take each CHC as the unit for
computing the mean and variability, i.e., doing a rotation of
training with four CHCs, and testing with the remainder. This
partition of the database allowed us to determine the range of
the mean caused by specific confounding factors in the test
database that were not present in the training database. The
results are shown in Table V and in Figures 5 ,6 and 7.
The adjustment of the parameters of the classifier was done
with a 10-fold cross-validation on the four CHCs used as the
training database (i.e., the validation database was extracted
from the training data). Note that the use of cross validation for
determining the parameters of the classifiers does not mix the
confounding factors that might be present in the test database.
This partition of the database allowed us to determine the
range of the mean due to specific confounding factors of the
test database that were not present in the training database.
Note also that as there were two samples from most of the
subjects, the allocation of samples between the train and
validation databases was based on the subject index, i.e., we
did not mix samples from the same individual in different
databases.
We explain these findings by the fact that although the CHCs
are very similar in terms of the different aspects discussed in
section V, there might be other conditions that are specific to
each CHC that biased the results. We believe that the testing
on different CHCs gives a better (more realistic) estimate of
the performance on an unseen population, and a better estimate
of the variability.

VII. RESULTS

The data were processed as explained in section III, and
tested with three different classifiers: RF, GB, and LDA.
The criterion for determining the quality of the results was
the receiver operating characteristic (ROC) area [23], which
allows for assessing the trade-off between sensitivity and
specificity. The ROC area is defined as the lower area of the
curve that relates the sensitivity (true positive rate) to the
false positive rate (true negative rate or 1.0-specificity), as
we vary the decision threshold of the classifier. That is, a
given threshold determines the sensitivity and specificity of

the classifier. 3

The results corresponding to the ROC area obtained by each
classifier are presented in Table V, and the ROC figures for
the RF and GB algorithms are shown in Figures 6, 5 and 7.
The algorithms RF and GB yield similar results; i.e., ROC
areas and the shapes of the ROC figures are similar, and the
performance for each CHC vary within a few percentage
points. Note also that the LDA classifier gave a systematically
lower value for the classification results. The results for CHC
3 and 5 were lower due to the fact that the demographics
were different from the other CHCs.

VIII. CONCLUSION

In this paper, we have presented a method of screening for
the diagnosis of diabetes based on the signal obtained from a
PPG. One of the advantages of this method is that it is a fast
test, the results can be obtained in two or three minutes, and
the price is low because it needs only a PPG sensor and the
computation can be done using either a low-cost computer or
a smart phone. Note that the procedure consists of obtaining
a sample of the pulse oximeter signal of one minute in
duration, which does not require of qualified personnel, and the
whole process (including the computation of the results) takes
less than five minutes (including possible repetitions of the
measure). This is in contrast to plasma glucose measurements
or glycated haemoglobin tests, which require the extraction
of a blood sample, and laboratory measurements. Although
the measurement of glycated haemoglobin is faster than the
oral glucose tolerance test (OGTT), the cost is about 13 times
higher [36]. Another issue related to the use of glycated
haemoglobin is the fact that low values of HbA1c do not
exclude diabetes [37], which means that the specificity of the
method is increased by being tested in a population already at
risk that has already had a two-hour OGTT text instead of a
full OGTT [37].
In contrast, the ROC area of the method we propose in this
paper is 70% (mean for all the CHCs), which, depending on
the threshold (see Figures 6, 5 and 7), would give a sensitivity
(true positive rate), of 80% and a specificity (1-false positive
rate) of 48%. These results are slightly lower than the results
obtained by using glycated haemoglobin such as the values
reported in [38] [39], and [40] 4.
Next, we compare the sensitivity and specificity obtained by
means of the glycated haemoglobin tests reported in the before
mentioned studies with the specificity that we would have with
our method if the decision threshold were set at the same
sensitivity point (note that in our results the percentages have
been rounded down).

3Note that the ROC area is independent of the proportion of samples in
each class. As the number of samples of non-diabetics class, was much higher
than the diabetics class, we did the experiment of assigning the label ’non-
diabetic’ to all patients. The results were a sensitivity of a 100%, a specificity
of 0% (100% rate of false positives), a ROC area of 50%, and a precision
(positive predictive value of the class diabetic) of 30%.

4Note that these studies were done with different populations from different
continents.
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• [39], reported for a level of HbA1c ≥ 7.0% a sensitivity
of 36% and a specificity of 100%. Our method for the
same sensitivity of 36.0% gave a specificity of 84%.

• [38], reported for a level of HbA1c ≥ 6.1% a sensitivity
of 65% and a specificity of 88%. Our method for the same
sensitivity 65% gave a specificity of 64%.

• [40], reported for a level of HbA1c ≥ 6.5% a sensitivity
of 72% and a specificity of 66.5%. Our method for the
same sensitivity 72% gave a specificity of 57%.

The above comparison between performances is indicative
because the performance depends on the prevalence of the
disease in the underlying population. Note that the specificity
and sensitivity of a screening method depends not only on
the specific technique used but also on the prior probability
that the tested individual has the disease. The sensitivity and
specificity of a given test differ if the test is done on the general
population or at a hospital or medical office. In one case, the
prior probability is over the whole population, and in the other
the probability is biased towards the case of disease.
In the [38] study, the size of the study sample was 1, 972
subjects, which is nearly twice the size of our sample, of which
15.4% had diabetes (in our study, the prevalence was 35.72%
for men and 23.81% for women). This lower prevalence of
diabetes explains the fact that, with the same sensitivity, the
specificity with HbA1c is better. However, the study is com-
parable to ours in the sense that the population was sampled
in a CHC in a city in north India. [39] conducted a meta-
analysis of 34 different studies, and the population consisted
of 8, 984 subjects. In this case, the studies are not directly
comparable in relation to the underlying population. [40] was
conducted with 315 patients; the population is comparable to
the one presented in this study, though the number of patients
is a third of the number of patients of the present study.

Although the results are comparable, the performance of
our method is slightly lower. This could be explained by the
fact that the target population in our study was patients who
had routine blood extractions at a CHC and therefore were not
expected to be tested for the presence of diabetes. The result
is that the prior probability in our study of a patient being
diabetic is lower than in studies where the target population
has been selected based on the risk of diabetes.
There are two possible explanations for the low specificity.

• One is the fact that the prior probability of the reported
diabetics is 28%, which increases that rate of false posi-
tives. In epidemiology, it is known that the performance
of a screening technique depends greatly on the prior
probability of the target class and that the sensitivity and
specificity of a test degrades greatly, as the target class
to be detected has a low frequency of occurrence.

• The other is the fact that there is a percentage of
undetected diabetics in the general population, and our
labeling of the diabetic cases were given by the clini-
cal records of the CHCs, which only report previously
diagnosed cases. The 2014 National Diabetes Statistics
Report [41], stated that, in the USA 27% of the population
with diabetes is undiagnosed. If the proportion is similar
in Spain, this might explain in part the fact that there

is a higher percentage of false positives in our method.
This also indicates that the performance of the screening
method could be improved by using a database that is
more accurately labelled.

The variability of the screening method can be inferred from
Table V, with a mean ROC value of 70% and a standard
deviation of 6%. As the statistics come from only five CHC,
a better measure of the performance is the median value of
72.9% and the range [78.7% − 59.5%], which is 19.2%. We
believe that this variability is representative in the sense that,
as the five CHCs are similar with respect to age, BMI, weight,
and smoking habits (see section V), the observed variability
corresponds to other underlying factors, that are more difficult
to measure in a standard setting.

APPENDICES

A. Heart rate variability

Heart rate variability (HRV) is considered a marker that
reflects the sympathetic or vagal function of the autonomic
nervous system. The following summary is based on [42] and
[43]. HRV is defined as the variation in the instantaneous heart
rate and RR intervals. The measure corresponds to the interval
between consecutive beats and can be characterised in the time
domain or in the frequency domain. Alterations in the HRV
have been related to autonomic neuropathy in diabetic patients,
foetal distress, and a higher risk of post-infarction mortality.
The HRV also is affected by other factors such as age
(diminishing with age), medication, circadian rhythm, etc. The
most common options for measuring HRV variation are ’five-
minute’ recordings for the short term variability measurement
and a ’24 − hour’ recording for long-term variability. The
time domain measurements are the square root of the mean
squared differences of successive RR intervals, the number
of interval differences of successive RR intervals greater than
50ms, and the proportion of the intervals greater than 50ms to
the total number of intervals, along with measurements related
to the histogram of the RR interval. The frequency domain
measurements are related to the relative energy of the signal
at different bands: very low frequency (VLF), low frequency
(LF), and high frequency (HF). The relationship between the
LF and the HF components is related to changes in autonomic
modulations of the heart period. The VLF component has not
been used in this study because this component can only be
estimated reliably from long recordings (24 hours), while the
HF and LF components can be estimated from recordings of a
few minutes. These frequency components are computed from
the Fourier transform of the time series created from the RR
intervals and from the absolute value of the Fourier transform
at each frequency bin. A common way of characterising the
HRV from the frequency domain measurements is to present
the ratio of LF/HF power.

B. Pulse oximeter

The Pulse oximeter that was used to record the signals was
a CONTEC CMS50D+ with a USB connection. The recording
of the signal from the USB connection was programmed
for the recording software, which runs on a standard PC
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with Windows 7. The technical characteristics of the pulse
oximeter are shown in the Table B.
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Fig. 1. Histogram of glucose. Left non-diabetics (mean 93.53 mg/dl, iqr
17.3), right diabetics (mean 144.88 mg/dl, iqr 6.31)

15 25 35 45

kg/m2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
e
q
.

BMI   NoDiab

15 25 35 45 55

kg/m2

BMI   Diab

Fig. 2. Histogram of BMI. Left non-diabetics (mean 27.60 kg/m2, iqr 5.8),
right diabetics (mean 30.36 kg/m2, iqr 6.3)

40 59 78 97 116 135

kg.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Fr
e
q
.

Weight  NoDiab

40 59 78 97 116 135

kg.

Weight. Diab

Fig. 3. Histogram of weight. Left non-diabetic (mean 72.7 kg., iqr 18.0),
right diabetic (mean 80.1 kg., iqr 19.5)

10 30 50 70 90

years

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Fr
e
q
.

Age. NoDiab

30 50 70 90

years

Age. Diab

Fig. 4. Histogram of age. Left non-diabetic (mean 52.54 years, iqr 28), right
diabetic (mean 66.48 years, iqr 14)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC CHC:1 Clasifier:GB

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC CHC:2 Clasifier:GB

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC CHC:3 Clasifier:GB

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC CHC:4 Clasifier:GB

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

Fig. 5. ROC (false postive rate vs. true positive rate) for the community
health centres number 1, 2 3 and 4. Results with gradient boosting.
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Fig. 6. ROC (false postive rate vs. true positive rate) for the community
health centres number 1, 2 3 and 4. Results with random forest
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Fig. 7. ROC for the community health center number 5. Left: results with
random forest, Right: results with gradient boosting.
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Gender Men Women
Diabetic 184 156
Non-Diabetic 331 499
Diabetic( % by gender) 35.72% 23.81 %

TABLE I
DISTRIBUTION BY GENDER

CHC-1 CHC-2 CHC-3 CHC-4 CHC-5
Diabetic subjects 23.07 % 24.13 % 30.55 % 30.45% 34.45%

TABLE II
PERCENTAGE OF DIABETICS AT EACH COMMUNITY HEALTH CENTER

Smokers Total Diabetic Non-Diabetic
Percentage 16.18% 11.8% 17.71%

TABLE III
DISTRIBUTION OF SMOKERS

CHC-1 CHC-2 CHC-3 CHC-4 CHC-5
Diabetics 29.3 kg/m2 29.6 kg/m2 30.0 kg/m2 30.3 kg/m2 33.1 kg/m2

Non-diabetics 26.5 kg/m2 27.8 kg/m2 28.1 kg/m2 28.3 kg/m2 27.6 kg/m2

TABLE IV
DISTRIBUTION OF THE BMI (kg/m2) AT EACH COMMUNITY HEALTH CENTER

CHC-1 CHC-2 CHC-3 CHC-4 CHC-5
ROC RF 78.15 % 71.7 % 59.6 % 71.9% 61.8%
ROC GB 75.4 % 73.9 % 61.1 % 71.8% 64.6%
ROC LDA 56.3 % 57.2 % 53.2 % 55.2% 53.7 %

TABLE V
ROC AREA AT EACH COMMUNITY HEALTH CENTER, RF: MEAN VALUE OF 68.6% AND STD OF 7.27% AND GB: MEAN VALUE OF 69.3% AND STD OF

6.2%

SpO2 Measuring Range 0% ∼ 100%, (the resolution is 1%).
Accuracy 70% ∼ 100%: ±2% ,Below 70% unspecified

PR Measuring Range 30bpm ∼ 250bpm, (the resolution is 1bpm)
Accuracy ±2bpm or ±2%

Measurement Performance
in Weak Filling Condition:

SpO2 and pulse rate can be shown
correctly when pulse-filling ratio
is 0.4%. SpO2 error is ±4%,
pulse rate error is ±2 bpm or ±2%

Sampling rate 60 samples/second

TABLE VI
FEATURES OF THE CONTEC CMS50D+ PULSE OXIMETER


