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Abstract

Objectives:We develop a framework for the analysis of synergy and redun-
dancy in the pattern of information flow between subsystefres @mplex net-
work. Methods: The presence of redundancy and/or synergy in multivariate t
series data renders difficult to estimate the neat flow ofrin&gion from each
driver variable to a given target. We show that adopting amoumalized defini-
tion of Granger causality one may put in evidence redundaiftiptets of variables
influencing the target by maximizing the total Granger chtyst a given target,
over all the possible partitions of the set of driving vakésh Consequently we in-
troduce a pairwise index of synergy which is zero when twepahdent sources
additively influence the future state of the system, difidlsefrom previous def-
initions of synergy.Results:We report the application of the proposed approach
to resting state fMRI data from the Human Connectome Proghciwing that re-
dundant pairs of regions arise mainly due to space conyiguid interhemispheric
symmetry, whilst synergy occurs mainly between non-hoigals pairs of regions
in opposite hemisphere€onclusions:Redundancy and synergy, in healthy rest-
ing brains, display characteristic patterns, revealechbyptoposed approacBig-
nificance: The pairwise synergy index, here introduced, maps the rimditional
character of the system at hand into a weighted complex mktvitbe same ap-
proach can be applied to other complex systems whose notatalrresponds
to a balance between redundant and synergetic circuits.

1 Introduction

The inference of dynamical networks from time series datelegted to the estimation
of the information flow between variablés [1]. Granger céitiséGC) [2] has emerged
as a major tool to address this issue. This approach is basgdedliction: if the
prediction error of the first time series is reduced by ingigdneasurements from the
second one in the linear regression model, then the secmedstries is said to have
a Granger causal influence on the first one. An important egigdin of this notion is
neuroscience, see, e.d.l,[3[ 4,5, 6].

Interactions in dynamical networks analysis have also aetied with state space
models[[7], or using Kalman filter§][8] to deal with multivaté system identification.
Other approaches are rooted in information thebiy [9, 1@ laave been applied to
the analysis of complex spatio-temporal systems, e.g.hBactimate [11]. Whilst
these methods are effective in the detection and quaniificaf directed interactions,
they are not suitable to elucidate the informational characf groups of variables,
i.e. whether a group of variables provides information dlzogiven target in a syn-
ergetic, redundant, or independent way. Synergetic heemahat they convey more
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information in their joint responses than the sum of thaiinidual informational con-
tributions; redundant means that they jointly convey lésstthat. Redundancy and
synergy are intuitive yet elusive concepts, which have beeestigated in different
fields, including pure information theorly [112,113,] 14] 15].1Bhe role of synergy and
redundancy has also been investigated in epilépsy [17] soddrs of consciousness
[18]. Those studies suggest that complex systems in noromalittons tend to display
a proper balance between redundant and synergetic cirandspathologies to disrupt
it.

Coming back to Granger causality, it is worth recalling thatpairwise version
consists in assessing influence between each pair of vesiainidependently of the
rest of the system. It is well known that the pairwise analgsinnot disambiguate di-
rect and indirect interactions among variables, neithard=tect synergy. We remark
that the synergetic effects that we consider here, relat¢let analysis of dynamical
influences in multivariate time series, are similar to theseountered in sociolog-
ical and psychological modeling, wheseppressorss the name given to variables
that increase the predictive validity of another varialfteraits inclusion into a lin-
ear regression equatidn]19]. Some information-basecaghes addressing the issue
of collective influence are [20, 14]. The most straightfordvaxtension of pairwise
Granger causality, the conditioning approach, removesdotinfluences by evaluat-
ing to which extent the predictive power of the driver on taget decreases when the
conditioning variable is removed. Sometimes though a futiditioning can encounter
conceptual limitations, on top of the practical and compaiteal ones: in the presence
of redundant variables the application of the standardyaislleads to underestimation
of influences([22]. As a convenient alternative to this suimogl solution, a partially
conditioned approach, consisting in conditioning on a $mahber of variables, cho-
sen as the most informative ones for the driver node, has fre@osed [211].

The purpose of the present work is to show that, taking intmanct the above
mentioned problems encountered by the standard definifi@ranger causality, an
unnormalizedGranger causality index is better suited for the analysisystems of
many variables, in presence of synergy and redundancy,aide information for
the future state of the system. The novel approach preséetedprovides a further
description of complex systems where the informationatattar of multiplets of vari-
ables is highlighted. The proposed method in principle magplied to any system
characterized by complex regulatory mechanisms.

The paper is organized as follows. The next section is de\tota brief account on
Granger causality, with particular attention to the prafdevhich arise due to redun-
dancy and synergy. In Section Ill we describe our definitibormormalizedsranger
causality, providing some examples to show that the prapossrics disentangles in-
dependent sources of information. In Section IV we intradtie Pairwise Synergy
Index, a weighted network associated to the informatiohalacter of a set of vari-
ables, which allows to use methods of complex networks ttyaaahe informational
pattern of large data sets; we will show the application ef phoposed approach to
resting state fMRI data. Some conclusions will be drawn gtiea V.

2 Granger causality

Granger causality is a powerful and widespread data-dramproach to determine
whether and how two time series exert direct dynamical imites on each other [23].
A convenient nonlinear generalization of GC has been implaed in[[24], exploiting



the kernel trick, which makes computation of dot productsigh-dimensional feature
spaces possible using simple functions (kernels) defin@évs of input patterns. This
trick allows the formulation of nonlinear variants of angatithm that can be cast in
terms of dot products, for example Support Vector Machi2&3.[Hence in[[24] the
idea is still to perform linear GC, but in a space defined bynthelinear features of the
data. This projection is conveniently and implicitly perfeed through kernel functions
[26] and a statistical procedure is used to avoid overfitting

Quantitatively, let us considertime seriegXq4(t) }o=1,...n; the lagged state vectors
are denoted

Xa(t) = Xa(t—m),... . Xa(t—1)),

m being the order of the model (window length). L&txy|X) be the mean squared
error prediction of«y on the basis of all the vectods = {XB}?;zl (corresponding to
the kernel approach described in][27]). The fully condi@drGC indexdn(3 — o)
is defined as follows: consider the problem of predictiggon the basis of all the
variables buXg and the problem of predicting, using all the variables, then the GC
is the logarithm variation of the prediction error in the taanditions, i.e.

£ (Xa| X\ Xg)
ECalX) @)

In [28] it has been shown that not all the kernels are suitédlestimate GC. Two
important classes of kernels which can be used to constardinear GC measures
are theinhomogeneous polynomial kerr{alhose features are all the monomials in the
input variables up to the-th degree;p = 1 corresponds to linear Granger causality)
and theGaussian kernelWe also remark that the complexity of the regression model
can be controlled as explained In]27], hence the causadityes may be assumed to
be not affected by overfitting.

The pairwise Granger causality is given by:

& (Xa|Xa)
i —a)=log————.
The following examples show that conditioned GC tends todaRiced in pres-

ence of redundancy and increased in presence of synerdgftieoccurrence being a
problem for pairwise GC, seg [15.129].

dmv(B — a) =log

)

2.1 Redundancy due to a hidden source

We show here how redundancy constitutes a problem for fullyd@ioned GC. Let
h(t) be a zero mean and unit variance hidden Gaussian variafileenicingn vari-
ablesxi(t) = h(t — 1) +sni(t), and letw(t) = h(t — 2) + sno(t) be another variable
which is influenced by but with a larger delay. Thén} variables are unit variance
Gaussian noise and s controls the noise level. In figdre (1dlepict both the linear
fully connected and pairwise GC from one of the x’s to w (nbi h is not used in the
regression model). Agincreases, the fully conditioned GC vanishes as a conseguen
of redundancy, whilst the GC relation is found for ani the pairwise analysis.

2.2 Synergetic contributions
Let us consider three unit variance iid Gaussian noise t&fms andxs. Let

X4(t) =010 (t — 1) + x(t — 1)+ n(t)) + pxa(t — L)xs(t — 1).
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Figure 1: Fully conditioned and pairwise Granger causaligyplotted versus the num-
ber of variables for the example regarding redundancy. dbsality displayed is from
one of variablex to the targetv. Results are averaged over 100 runs of 1000 time
points. In both cases the regression model is linear.

Considering the influence-3 4, the fully conditioned GC reveals that 3 is influencing
4, whilst pairwise GC fails to detect this causal relatidpskee figure[{2), where we
use the method described in[22] with the inhomogeneouspotyal kernel of degree
two; X; is a suppressor variable fag w.r.t. the influence omxy. This example shows
that pairwise analysis fails to detect synergetic contiilms. We also remark that use
of nonlinear GC is mandatory in this case to evidence thergyr@etween, andxs.

3 Methods

3.1 Unnormalized Granger Causality

As the two examples at the end of last section show, the ptesgfirelevant synergy
and/or redundancy in the data influences the output of stdi@gtanger causal analysis,
thus calling for effective methods to deal with those cases.

Firstly, we remark that interaction information is a classimeasure of the amount
of information (redundancy or synergy) bound up in a set idatvariables [30, 31]. In
[32] a generalization of the interaction information, te itase of lagged interactions,
has been proposed together with an expansion that allowséadthe definition to
any number of variables. As the sign of the interaction imfation corresponds to syn-
ergy or redundancy, this interpretation implies that sggi@nd redundancy are taken
to be mutually exclusive qualities of the interactions tegw variables [33]. Other
approaches instead regard synergy and redundancy astsepatities, for example
in [34] a partial information decompositio(PID) was proposed: the information that
two ’'source’ variables Y and Z hold about a third 'target’ iedole X can be decom-
posed into four parts: (i)the unique information that onlyoat of Y and Z) holds
about X; (ii) the unique information that only Z holds about(Xi) the redundant in-
formation that both Y and Z hold about X; and (iv) the syneiigisformation about
X that only arises from knowing both Y and Z. These quantitiage been evaluated
analytically for Gaussian systenms [35], and lead to somesinable results, e.g., re-
dundancy reduces to the minimum information provided byegisource variable, and
hence is independent of correlation between sources. Agested in[[3b], this occur-
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Figure 2: For the example dealing with synergy, CGC and PWe&(botted versus
the couplingp, for the causalitys — x4. Results are averaged over 100 runs of 1000
time points. The regression model here corresponds to tlyagmial kernel of order
two in the approach[27], i.e. the features are all the moatin the input variables
up to the second order.

rence may be related to the fact that Shannon informatiomd®st continuous random
variables is more precisely based on differential, andith# to the continuum is not
straightforward([[36]. Therefore in the case of continucaisables we propose here to
describe the informational character of a subset of vagglnl terms of the reduction
of variance of residuals of the target due to inclusion of@rivariables, along the lines
described in[[22]. The informational character of each iplét will be associated to
a single number, which may be seen as the difference of reshaycand synergy in
every formalism where these two notions are separatelyetifisee the discussion in
[33)).

First of all we note that the straightforward generalizatdd Granger causality for
driving sets of variables is

(B — a):Ioge(XO"X\B) 3)

€ (Xa|X)
whereB are is a subset of variables; is the target variable and \ B means the set
of all variables except for thos& with 3 € B. Note that we have isolated the variable
Xq, 1.6. the present state of the target. The subseétipias been included to put in
evidence the conditioning variables used to evaluate GC.
On the other hand, an unnormalized version of it, i.e.

% (B— a) = € (xa|X\B) — & (Xa|X), (4)

can be easily shown to satisfy the following interestingpemy: if {Xg}gcp are sta-
tistically independent and their contributions in the middex, are additive, then

HBa)= (B a) (5)
BeB

We remark that this property does not hold for the standafthitlen of Granger
causality neither for entropy-rooted quantities][33], doehe presence of the loga-
rithm.



In order to identify the informational character of a set afiablesB, concerning
the causal relationshiB — a, we remind that, in general, synergy occur8iton-
tributes toa with more information than the sum of all its variables, whiedundancy
corresponds to situations with the same information belraged by the variables iR
. We can render quantitative these notions and define thablas inB synergetidf
o(B—a)>Ygen 5)%\5,;3(5 — @), andredundanif o3 (B— a) < Y gcp 6;‘\8‘5([3 —
a). If GC is computed conditioning on the whole set of time seXiethe condition for
synergy becomegy (B — a) < ypcgdy (B — a) , and that for redundancy becomes
&(B—a)>73ypepdi(B— a). All these conditions are exemplified graphically in
fig.(@) for the simple case of two sourcBs= {X1, X,}. Note that the case of indepen-
dent variables (and additive contributions) does not fathie redundancy case neither
in the synergetic case, due 4 (5), as it should be.

Two analytically tractable cases are now reported as exasnpFirst, consider
two stationary and Gaussian time sers andy(t) with (x?(t)) = (y(t)) = 1 and
(x(t)y(t)) = &; they correspond, e.g., to the asymptotic regime of theragtessive
system

Vi1 =bx+ay+ o0&,

where¢ () are i.i.d. unit variance Gaussian variablgs= 2ab/(1— a?—b?) ando? =
1—a?—b? — 2ab%. Considering the time serigs, 1 = A(X + ) + G’Etf)l with o’ =
1-2A%(1+ %), we obtain fom= 1:

& ({xy} —2) = &(x—2) — &y — 2) = A(¢ +67). ()

Hencex andy are redundant (synergetic) foif ¢ is positive (negative).

Let’s then consider a nonlinear case, i.e. a target vectengdyw;,1 = B % -\t +
O'”ft(f)l with 0” = /1 — B?(1+ 2%’)2, and using the polynomial kernel with= 2, we
have

&K ({xy} —2) — &(x—2) - &(y — 2) = B*(467 - 1); ®)

x andy are synergetic (redundant) farif |¢’| < 0.5 (|¢’| > 0.5).

The presence of redundant variables leads to under-egiimaft their Granger
causality when the standard multivariate approach is agiiéis it is clear from the dis-
cussion above, this is not the case for synergetic variptiResiundant variables should
then be grouped to get a reliable measure of Granger caysali to characterize in-
teractions in a more compact way. As it is clear from the dismn above, grouping
redundantvariables is connected to maximization of theamalized Granger causal-
ity index (4) and, in the general setting, can be made asviislid-or a given target,
we callB the set of the remaining— 1 variables. The partitiofiA,;} of B, maximizing

the total Granger causality
A == ;&(J(Ag — X(;()7

consists of groups of redundant variables.

As an example, we consider a redundant doublet of variallesh(t) be a zero
mean and unit variance hidden Gaussian variable, influgnew variablesx(t) =
h(t—1)+0.5ni(t), i = 1,2; letx3 = n3(t) andw(t) = h(t — 2) + 0.1no(t) be another
variable which is influenced bly but with a larger delay. Thén} variables are unit
variance Gaussian noise terms. In table 1 we report the \ailtiee total Granger



Table 1: Total Granger causality in the redundant example

| partition || A |
{123f | 0.88
{12}{3} | 0.88
(13/{2} | 0.18
{23/{1} | 0.18
{11{21{3] |[0.18

causality (tow) for all the partitions of the three variablrg x,, x3. We note that in this
example the correct partitiofi12} {3}, is the maximizer of the total Granger causality;
however{123} has the same value & We note, however, that merging variables is
justified only if the total Granger causality increasesréfi@re, in case of degeneracy,
the partition that must be chosen, among the maximizerggi®he with the highest
number of sets.

3.2 Pairwise synergy index

The discussion in the previous section suggests to quawveitadescribe the informa-
tional character of two variablésand j, providing information for the future state of
the variablex,, by the following pairwise index:

Waliyj) = 5>L(1\j(i —a)-o(i—a)
= &{i,j} = a)=&(i —a)-&(j—a),
whereX is the set of conditioning variableg! is negative for increased unnormalized
causalityi — a due to the inclusion of in the conditioning variables (positive PSI
corresponds to redundancy), see figlile (3) for a graphitaddretation ofyy. Note
that if i and j are statistically independent and they causalditively then PSI is zero,
differently from interaction information, where a commadfeet of two causes induces

a dependency among the causes that did not formerly exist [37
Another interpretation ofy is given by the cumulant expansion of the prediction

error ofxg:
€ (Xa|Xa) — € (Xa|X) = ZKS(B)- )
BC
An important formula in combinatorics is the Moebius invensformula [38], which

allows to reconstruc®(B) from equationd(9) and (4). Callirjgg| and|nr | the number
of variables in the subseBsandl” respectively, and exploiting also the relation:

;B(,l)\nr\ =0,

leads to the cumulant expansion:
S(B) = rEB(—l)‘”B‘*‘”r‘ (M — a). (10)
C
The first order cumulant is then

S(i) = §'(i — a), (11)
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Figure 3: Venn diagrams depicting the informational chimaof two source® =
{X1,X2} influencing a targetr. Top: redundant source interactiop & 0); bottom:
synergetic source interactiogy (< 0). In both cases, the overall unnormalized Granger
causality fromB to a is decomposed agi{ (B — a) = oy (X1 — a) + & (Xo — o) +

Y=0 X1 —a)+ 8 (X—a)—y.
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Figure 4: For the fMRI application, the matrices containthg values of redundant
and synergetic duplets, and respective dendrograms, aieteld Top left (A):W,,
redundant values for each pair; Bottom left (C): dendrogodthe redundant matrix.
Top right (B):Ws, synergetic values for each pair; Bottom right (D): dendamgof the
synergetic matrix.

the second cumulant is
Si,))=aj({ij} = a)-&j(i—a)-§j(j—a), (12)
the third cumulant is

S(i, J, k) = g ({ijk} = a) = ({ij } = a)
—0jk ({ik} = a) — & ({ik} — a)
+85 (i = a) + &5 (| — a) + i (k—a), (13)

and so on. The indew may then be seen as the order two cumulant of the expansion of
the prediction error of the target variable; equatiod (1@ves also the generalization
to higher order terms. Obviously also depends also on the choice of the kernel, i.e.
on the choice of the regression model.

In order to go a step beyond, we observe that the pairwisergymedex, as well
as the cumulant expansion described above, is dependdm tertyetr. To get rid of
this dependency, we make the assumption that the esseatiatés of the dynamics of
the system under consideration are captured using justlaramaber of characteristic
modes, and use principal components analysis to obtain pressed representation of
the future state of the system. Callifg) (t)})—1...n, the time courses of the largest
n, principal components of the whole system, we define the figéraynergy index:

i) = 3 i), 14)
A=1

obtained summing over the finsf principal components taken as targets.

The matrixP may be seen as a weighted network describing the infornedtion
character of pairs of variables influencing the future stdtthe system, zero entries
meaning that the corresponding variables provide indepmtridformation for the fu-
ture. The introduction o¥ allows to describe redundancy and synergy in terms of a
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Figure 5: The strengths, sum of the redundant (top) and gegtier(bottom) contribu-
tions for each of the 116 brain regions, represented assphentered in the respective
MNI coordinates. The size of the spheres is proportionai¢éodepicted value.

weighted complex network. In principle this makes comple&works measures (e.g.,
modular decomposition) suitable to analyze these pattedasge systems.

4 Redundancy and synergy in resting state fMRI

We now turn to investigate synergetic and redundant cantabs in large scale brain
networks at rest. To this aim we consider resting state fonat magnetic resonance
imaging (fMRI) recordings from the Human Connectome Prigj@evw.humanconnectome.org).
Data are acquired with a repetition time (TR) of 0.72 secpslise thickness 2 mm,
72 slices, 2 mm isotropic voxels, 1200 frames. All the paranseare reported in the
project documentation. In this study, the first 93 subjectthe 500 subjects release
were used. Data were preprocessed as describedlin [39]vélliknown [40] that the
hemodynamic response function (HRF) can confound the teshpoecedence when
lag-based methods are used to infer directed connectiviiylRI data, characterized
by a slow sampling rate. In order to address this issue imgestate data, for which the
onset of the HRF is not explicit, we used the blind deconvotuapproach described
in [41]. The resulting deconvolved BOLD signal was then aged according to the
116 anatomical regions of the Automated Anatomical Lalge{ihAL) template [42].
Many choices of the parcellation are possible, each oneitsifiros and cons, here we
stick to this widely used one.

The matrix¥, averaged over all the subjects, has been split in two: the>nat
positive values, corresponding to redundancy and definéé} as 0 (W), 8 being the
Heaviside function, and the matrix of negative values, esponding to synergy and
defined asVs = 6 (—W). In figure [4) we depict the two matrices and the correspond-
ing dendrograms. A very small number of pairs are charadrby synergy, whilst
the matrix of redundant pairs is much more dense, and thesmonding dendrogram
(differently from the dendrogram of synergetic pairs) shdigh values of modularity:
it follows that the modular decomposition of the redundamayrix (obtained consid-
ering the positive entries 8P) provides correlated sets of variables acting as sources

10



of information for the dynamics of the system (modularitg baen evaluated, varying
the resolution of the dendrogram, as described’ih [43]).

In figure [8) we depict the strength of the two matrices, theesyy and the redun-
dancy ones, on the brain. We see that the pattern of redupdshaghly symmetric
w.r.t. the two hemispheres, whilst this is not the case foesgy, the highest source of
synergy being localized in the cerebellum.

In figure [6) we show some examples of redundant and synerggtis of regions.
In panel A we consider the cerebrum area with highest recunydstrength, and plot
the corresponding absolute valueww.r.t. all the other regions, showing that homol-
ogous regions in the two hemispheres are redundant; thimfgimed in panel B where
a cerebellar region is considered. We remark that the AAlitiar allows to have ho-
mologous areas, thus putting in evidence synergy-redwyddifierences in the brain
localization. Redundancy is thus governed by contiguitgpace as well as by inter-
hemispheric symmetry. In panel C and D, instead, we consisesynergy between
two given regions and all the others, and observe that, dowly, synergetic pairs are
not homologous, and pairs of regions with highest synergyespond to a cerebrum
region and a cerebellar one on the opposite hemisphere. fdap# the regions are
reported in the supplementary material.

5 Conclusions

In this paper we have considered the inference, from timesdata, of the information
flow between subsystems of a complex network, an importattiem in medicine and
biology. In particular we have analyzed the effects thaesgm and redundancy induce
on the Granger causal analysis of time series. On one sidbawe shown that the
presence of redundancy and synergy degrades the perfoeno&ri@C methods; on
the other side, we have introduced a frame for data analgsiedon unnormalized
Granger causality, i.e. the reduction of variance of thelteds of each target variables
when candidate driver variables are included in the regmessodel. Maximizing the
total unnormalized Granger causality leads to groups afmdent variables. We have
introduced a novel pairwise index of synergy, which for ejaain of variables measures
how much they interact to provide better predictions of theirfe state of the system,
assumed to be synthesized in terms of a small number of paghcomponents. Such
index can be seen as the second cumulant in the expansioa pfaHiction error of
the target variables, to be compared with the expansioneotrémsfer entropy in[32]
which provides the interaction information as the seconuddant. The advantages
provided by the present cumulant expansion are (i) coneéptoblems found in the
Gaussian casé [35] are avoided, and (ii) the nonlinearity ofin be easily controlled
by varying the kernel in the regression model. A disadvamt#fginnormalized GC is
the occurrence that the connection with information thestgst, but the aim of the
present approach is to identify redundant and synergetigits rather than quantifying
the information flow in the system. Our approach can be apptieany multivariate
time series data, here we have shown the efficacy of the pedpustwork approach to
resting state fMRI data. Redundancy appears to be moretzldahan synergy, whilst
the modular decomposition of the redundancy matrix leadteelated components
of the system under study. We have shown that redundancynisected with space
contiguity of regions and interhemispheric symmetry, sthdynergy occurs mainly
between non-homologous pairs of regions in opposite hdmaigs.

Summarizing, we have addressed a novel framework to studydiependencies

11
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Figure 6: Regions which form redundant and synergetic dsipléh representative re-
gions, separately selected among cerebrum and cereleglans as those maximizing
the overall informational contributions (see f[d. 5). Rewi@re indicated by spheres
centered in the MNI coordinates. The size of the spheresoiggstional to the value
of the duplet formed by the region and the representative degicted in black. A:
values of the redundant duplets involving the Left Postegiyrus B: values of the
redundant duplets involving the Right Middle Temporal Gy values of the syner-
getic duplets involving the Left Postcentral Gyrus D: valwé the synergetic duplets
involving the Left Cerebellar Crus Il. All the displayed vak are significant as as-
sessed using the closed form available for Gaussian preseBgyures for all regions
are available @bt t ps: // dx. doi . org/ 10. 6084/ nB. fi gshare. 3101947
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among subcomponents of complex systems from time seriéshwm at highlighting
redundant and synergetic interactions. Whilst many exasmfiredundant interactions
have been reported in the literature, less attention has &@ent so far to synergetic
interactions between variables whose joint state influémeéuture of the system. Us-
ing the pairwise synergy matrix we have shown that redungdand synergy display
characteristic patterns in healthy brains at rest; sudieipest provide information about
the system which are complementary to those provided bygatdmmultivariate analy-
sis tools, such as correlations and multivariate Grangesaldy. A further step will be
the assessment of alterations of these patterns in patbslagd different brain states.
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