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Abstract

Objectives:We develop a framework for the analysis of synergy and redun-
dancy in the pattern of information flow between subsystems of a complex net-
work. Methods:The presence of redundancy and/or synergy in multivariate time
series data renders difficult to estimate the neat flow of information from each
driver variable to a given target. We show that adopting an unnormalized defini-
tion of Granger causality one may put in evidence redundant multiplets of variables
influencing the target by maximizing the total Granger causality to a given target,
over all the possible partitions of the set of driving variables. Consequently we in-
troduce a pairwise index of synergy which is zero when two independent sources
additively influence the future state of the system, differently from previous def-
initions of synergy.Results:We report the application of the proposed approach
to resting state fMRI data from the Human Connectome Project, showing that re-
dundant pairs of regions arise mainly due to space contiguity and interhemispheric
symmetry, whilst synergy occurs mainly between non-homologous pairs of regions
in opposite hemispheres.Conclusions:Redundancy and synergy, in healthy rest-
ing brains, display characteristic patterns, revealed by the proposed approach.Sig-
nificance: The pairwise synergy index, here introduced, maps the informational
character of the system at hand into a weighted complex network: the same ap-
proach can be applied to other complex systems whose normal state corresponds
to a balance between redundant and synergetic circuits.

1 Introduction

The inference of dynamical networks from time series data isrelated to the estimation
of the information flow between variables [1]. Granger causality (GC) [2] has emerged
as a major tool to address this issue. This approach is based on prediction: if the
prediction error of the first time series is reduced by including measurements from the
second one in the linear regression model, then the second time series is said to have
a Granger causal influence on the first one. An important application of this notion is
neuroscience, see, e.g., [3, 4, 5, 6].

Interactions in dynamical networks analysis have also beenstudied with state space
models [7], or using Kalman filters [8] to deal with multivariate system identification.
Other approaches are rooted in information theory [9, 10] and have been applied to
the analysis of complex spatio-temporal systems, e.g. Earth’s climate [11]. Whilst
these methods are effective in the detection and quantification of directed interactions,
they are not suitable to elucidate the informational character of groups of variables,
i.e. whether a group of variables provides information about a given target in a syn-
ergetic, redundant, or independent way. Synergetic here means that they convey more
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information in their joint responses than the sum of their individual informational con-
tributions; redundant means that they jointly convey less than that. Redundancy and
synergy are intuitive yet elusive concepts, which have beeninvestigated in different
fields, including pure information theory [12, 13, 14, 15, 16]. The role of synergy and
redundancy has also been investigated in epilepsy [17] and disorders of consciousness
[18]. Those studies suggest that complex systems in normal conditions tend to display
a proper balance between redundant and synergetic circuits, and pathologies to disrupt
it.

Coming back to Granger causality, it is worth recalling thatits pairwise version
consists in assessing influence between each pair of variables, independently of the
rest of the system. It is well known that the pairwise analysis cannot disambiguate di-
rect and indirect interactions among variables, neither can detect synergy. We remark
that the synergetic effects that we consider here, related to the analysis of dynamical
influences in multivariate time series, are similar to thoseencountered in sociolog-
ical and psychological modeling, wheresuppressorsis the name given to variables
that increase the predictive validity of another variable after its inclusion into a lin-
ear regression equation [19]. Some information-based approaches addressing the issue
of collective influence are [20, 14]. The most straightforward extension of pairwise
Granger causality, the conditioning approach, removes indirect influences by evaluat-
ing to which extent the predictive power of the driver on the target decreases when the
conditioning variable is removed. Sometimes though a full conditioning can encounter
conceptual limitations, on top of the practical and computational ones: in the presence
of redundant variables the application of the standard analysis leads to underestimation
of influences [22]. As a convenient alternative to this suboptimal solution, a partially
conditioned approach, consisting in conditioning on a small number of variables, cho-
sen as the most informative ones for the driver node, has beenproposed [21].

The purpose of the present work is to show that, taking into account the above
mentioned problems encountered by the standard definition of Granger causality, an
unnormalizedGranger causality index is better suited for the analysis ofsystems of
many variables, in presence of synergy and redundancy, to provide information for
the future state of the system. The novel approach presentedhere provides a further
description of complex systems where the informational character of multiplets of vari-
ables is highlighted. The proposed method in principle may be applied to any system
characterized by complex regulatory mechanisms.

The paper is organized as follows. The next section is devoted to a brief account on
Granger causality, with particular attention to the problems which arise due to redun-
dancy and synergy. In Section III we describe our definition of unnormalizedGranger
causality, providing some examples to show that the proposed metrics disentangles in-
dependent sources of information. In Section IV we introduce the Pairwise Synergy
Index, a weighted network associated to the informational character of a set of vari-
ables, which allows to use methods of complex networks to analyze the informational
pattern of large data sets; we will show the application of the proposed approach to
resting state fMRI data. Some conclusions will be drawn in section V.

2 Granger causality

Granger causality is a powerful and widespread data-drivenapproach to determine
whether and how two time series exert direct dynamical influences on each other [23].
A convenient nonlinear generalization of GC has been implemented in [24], exploiting
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the kernel trick, which makes computation of dot products inhigh-dimensional feature
spaces possible using simple functions (kernels) defined onpairs of input patterns. This
trick allows the formulation of nonlinear variants of any algorithm that can be cast in
terms of dot products, for example Support Vector Machines [25]. Hence in [24] the
idea is still to perform linear GC, but in a space defined by thenonlinear features of the
data. This projection is conveniently and implicitly performed through kernel functions
[26] and a statistical procedure is used to avoid overfitting.

Quantitatively, let us considern time series{xα(t)}α=1,...,n; the lagged state vectors
are denoted

Xα(t) = (xα(t −m), . . . ,xα(t −1)) ,

m being the order of the model (window length). Letε (xα |X) be the mean squared
error prediction ofxα on the basis of all the vectorsX = {Xβ}

n
β=1 (corresponding to

the kernel approach described in [27]). The fully conditioned GC indexδmv(β → α)
is defined as follows: consider the problem of predictingxα on the basis of all the
variables butXβ and the problem of predictingxα using all the variables, then the GC
is the logarithm variation of the prediction error in the twoconditions, i.e.

δmv(β → α) = log
ε
(

xα |X \Xβ
)

ε (xα |X)
. (1)

In [28] it has been shown that not all the kernels are suitableto estimate GC. Two
important classes of kernels which can be used to construct nonlinear GC measures
are theinhomogeneous polynomial kernel(whose features are all the monomials in the
input variables up to thep-th degree;p = 1 corresponds to linear Granger causality)
and theGaussian kernel. We also remark that the complexity of the regression model
can be controlled as explained in [27], hence the causality values may be assumed to
be not affected by overfitting.

The pairwise Granger causality is given by:

δbv(β → α) = log
ε (xα |Xα)

ε
(

xα |Xα ,Xβ
) . (2)

The following examples show that conditioned GC tends to be reduced in pres-
ence of redundancy and increased in presence of synergy, thelatter occurrence being a
problem for pairwise GC, see [15, 29].

2.1 Redundancy due to a hidden source

We show here how redundancy constitutes a problem for fully conditioned GC. Let
h(t) be a zero mean and unit variance hidden Gaussian variable, influencingn vari-
ablesxi(t) = h(t − 1) + sηi(t), and letw(t) = h(t − 2) + sη0(t) be another variable
which is influenced byh but with a larger delay. The{η} variables are unit variance
Gaussian noise and s controls the noise level. In figure (1) wedepict both the linear
fully connected and pairwise GC from one of the x’s to w (note that h is not used in the
regression model). Asn increases, the fully conditioned GC vanishes as a consequence
of redundancy, whilst the GC relation is found for anyn in the pairwise analysis.

2.2 Synergetic contributions

Let us consider three unit variance iid Gaussian noise termsx1, x2 andx3. Let

x4(t) = 0.1(x1(t −1)+ x2(t −1)+η(t))+ρx2(t −1)x3(t −1).
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Figure 1: Fully conditioned and pairwise Granger causalityare plotted versus the num-
ber of variables for the example regarding redundancy. The causality displayed is from
one of variablesx to the targetw. Results are averaged over 100 runs of 1000 time
points. In both cases the regression model is linear.

Considering the influence 3→ 4, the fully conditioned GC reveals that 3 is influencing
4, whilst pairwise GC fails to detect this causal relationship, see figure (2), where we
use the method described in [22] with the inhomogeneous polynomial kernel of degree
two; x2 is a suppressor variable forx3 w.r.t. the influence onx4. This example shows
that pairwise analysis fails to detect synergetic contributions. We also remark that use
of nonlinear GC is mandatory in this case to evidence the synergy betweenx2 andx3.

3 Methods

3.1 Unnormalized Granger Causality

As the two examples at the end of last section show, the presence of relevant synergy
and/or redundancy in the data influences the output of standard Granger causal analysis,
thus calling for effective methods to deal with those cases.

Firstly, we remark that interaction information is a classical measure of the amount
of information (redundancy or synergy) bound up in a set of three variables [30, 31]. In
[32] a generalization of the interaction information, to the case of lagged interactions,
has been proposed together with an expansion that allows to extend the definition to
any number of variables. As the sign of the interaction information corresponds to syn-
ergy or redundancy, this interpretation implies that synergy and redundancy are taken
to be mutually exclusive qualities of the interactions between variables [33]. Other
approaches instead regard synergy and redundancy as separate entities, for example
in [34] a partial information decomposition(PID) was proposed: the information that
two ’source’ variables Y and Z hold about a third ’target’ variable X can be decom-
posed into four parts: (i)the unique information that only Y(out of Y and Z) holds
about X; (ii) the unique information that only Z holds about X; (iii) the redundant in-
formation that both Y and Z hold about X; and (iv) the synergistic information about
X that only arises from knowing both Y and Z. These quantitieshave been evaluated
analytically for Gaussian systems [35], and lead to some undesirable results, e.g., re-
dundancy reduces to the minimum information provided by either source variable, and
hence is independent of correlation between sources. As suggested in [35], this occur-
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Figure 2: For the example dealing with synergy, CGC and PWGC are plotted versus
the couplingρ , for the causalityx3 → x4. Results are averaged over 100 runs of 1000
time points. The regression model here corresponds to the polynomial kernel of order
two in the approach[27], i.e. the features are all the monomials in the input variables
up to the second order.

rence may be related to the fact that Shannon information between continuous random
variables is more precisely based on differential, and the limit to the continuum is not
straightforward [36]. Therefore in the case of continuous variables we propose here to
describe the informational character of a subset of variables in terms of the reduction
of variance of residuals of the target due to inclusion of driver variables, along the lines
described in [22]. The informational character of each multiplet will be associated to
a single number, which may be seen as the difference of redundancy and synergy in
every formalism where these two notions are separately defined (see the discussion in
[33]).

First of all we note that the straightforward generalization of Granger causality for
driving sets of variables is

δX(B→ α) = log
ε (xα |X \B)

ε (xα |X)
, (3)

whereB are is a subset of variables,xα is the target variable andX \B means the set
of all variables except for thoseXβ with β ∈ B. Note that we have isolated the variable
Xα , i.e. the present state of the target. The subscriptX has been included to put in
evidence the conditioning variables used to evaluate GC.

On the other hand, an unnormalized version of it, i.e.

δ u
X(B→ α) = ε (xα |X \B)− ε (xα |X) , (4)

can be easily shown to satisfy the following interesting property: if {Xβ}β∈B are sta-
tistically independent and their contributions in the model for xα are additive, then

δ u
X(B→ α) = ∑

β∈B

δ u
X(β → α). (5)

We remark that this property does not hold for the standard definition of Granger
causality neither for entropy-rooted quantities [33], dueto the presence of the loga-
rithm.
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In order to identify the informational character of a set of variablesB, concerning
the causal relationshipB → α, we remind that, in general, synergy occurs ifB con-
tributes toα with more information than the sum of all its variables, whilst redundancy
corresponds to situations with the same information being shared by the variables inB
. We can render quantitative these notions and define the variables inB synergeticif
δ u

X(B→ α)> ∑β∈Bδ u
X\B,β (β → α), andredundantif δ u

X(B→ α)< ∑β∈Bδ u
X\B,β (β →

α). If GC is computed conditioning on the whole set of time seriesX, the condition for
synergy becomesδ u

X(B→ α) < ∑β∈Bδ u
X(β → α) , and that for redundancy becomes

δ u
X(B → α) > ∑β∈Bδ u

X(β → α). All these conditions are exemplified graphically in
fig.(3) for the simple case of two sourcesB= {X1,X2}. Note that the case of indepen-
dent variables (and additive contributions) does not fall in the redundancy case neither
in the synergetic case, due to (5), as it should be.

Two analytically tractable cases are now reported as examples. First, consider
two stationary and Gaussian time seriesx(t) andy(t) with 〈x2(t)〉 = 〈y2(t)〉 = 1 and
〈x(t)y(t)〉 = C ; they correspond, e.g., to the asymptotic regime of the autoregressive
system

xt+1 = axt +byt +σξ (1)
t+1

yt+1 = bxt +ayt +σξ (2)
t+1,

(6)

whereξ (i) are i.i.d. unit variance Gaussian variables,C = 2ab/(1−a2−b2) andσ2 =

1−a2−b2−2abC . Considering the time serieszt+1 = A(xt + yt)+σ ′ξ (3)
t+1 with σ ′ =

√

1−2A2(1+C ), we obtain form= 1:

δ u
X({x,y}→ z)− δ u

X(x→ z)− δ u
X(y→ z) = A2(C +C

2). (7)

Hencex andy are redundant (synergetic) forz if C is positive (negative).
Let’s then consider a nonlinear case, i.e. a target vector given bywt+1 = B xt ·yt +

σ ′′ξ (4)
t+1 with σ ′′ =

√

1−B2(1+2C )2, and using the polynomial kernel withp= 2, we
have

δ u
X({x,y}→ z)− δ u

X(x→ z)− δ u
X(y→ z) = B2(4C

2−1); (8)

x andy are synergetic (redundant) forw if |C |< 0.5 (|C |> 0.5).
The presence of redundant variables leads to under-estimation of their Granger

causality when the standard multivariate approach is applied (as it is clear from the dis-
cussion above, this is not the case for synergetic variables). Redundant variables should
then be grouped to get a reliable measure of Granger causality, and to characterize in-
teractions in a more compact way. As it is clear from the discussion above, grouping
redundant variables is connected to maximization of the un-normalized Granger causal-
ity index (4) and, in the general setting, can be made as follows. For a given targetα,
we callB the set of the remainingn−1 variables. The partition{Aℓ} of B, maximizing
the total Granger causality

∆ = ∑
ℓ

δ u
X(Aℓ → xα),

consists of groups of redundant variables.
As an example, we consider a redundant doublet of variables.Let h(t) be a zero

mean and unit variance hidden Gaussian variable, influencing two variablesxi(t) =
h(t −1)+0.5ηi(t), i = 1,2; let x3 = η3(t) andw(t) = h(t −2)+0.1η0(t) be another
variable which is influenced byh but with a larger delay. The{η} variables are unit
variance Gaussian noise terms. In table 1 we report the valueof the total Granger
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Table 1: Total Granger causality in the redundant example

partition ∆
{123} 0.88

{12}{3} 0.88
{13}{2} 0.18
{23}{1} 0.18
{1}{2}{3} 0.18

causality (tow) for all the partitions of the three variablesx1,x2,x3. We note that in this
example the correct partition,{12}{3}, is the maximizer of the total Granger causality;
however{123} has the same value of∆. We note, however, that merging variables is
justified only if the total Granger causality increases; therefore, in case of degeneracy,
the partition that must be chosen, among the maximizers, is the one with the highest
number of sets.

3.2 Pairwise synergy index

The discussion in the previous section suggests to quantitatively describe the informa-
tional character of two variablesi and j, providing information for the future state of
the variablexα , by the following pairwise index:

ψα(i, j) = δ u
X\j (i → α)− δ u

X(i → α)

= δ u
X({i, j} → α)− δ u

X(i → α)− δ u
X( j → α),

whereX is the set of conditioning variables.ψ is negative for increased unnormalized
causalityi → α due to the inclusion ofj in the conditioning variables (positive PSI
corresponds to redundancy), see figure (3) for a graphical interpretation ofψ . Note
that if i and j are statistically independent and they causeα additively then PSI is zero,
differently from interaction information, where a common effect of two causes induces
a dependency among the causes that did not formerly exist [37].

Another interpretation ofψ is given by the cumulant expansion of the prediction
error ofxα :

ε (xα |Xα)− ε (xα |X) = ∑
B⊂X

S(B). (9)

An important formula in combinatorics is the Moebius inversion formula [38], which
allows to reconstructS(B) from equations (9) and (4). Calling|nB| and|nΓ| the number
of variables in the subsetsB andΓ respectively, and exploiting also the relation:

∑
Γ⊂B

(−1)|nΓ| = 0,

leads to the cumulant expansion:

S(B) = ∑
Γ⊂B

(−1)|nB|+|nΓ| δ u
B(Γ → α). (10)

The first order cumulant is then

S(i) = δ u
i (i → α), (11)
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Figure 3: Venn diagrams depicting the informational character of two sourcesB =
{X1,X2} influencing a targetα. Top: redundant source interaction (ψ > 0); bottom:
synergetic source interaction (ψ < 0). In both cases, the overall unnormalized Granger
causality fromB to α is decomposed as:δ u

X(B→ α) = δ u
X(X1 → α)+ δ u

X(X2 → α)+
ψ = δ u

X1
(X1 → α)+ δ u

X2
(X2 → α)−ψ .
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Figure 4: For the fMRI application, the matrices containingthe values of redundant
and synergetic duplets, and respective dendrograms, are depicted. Top left (A):Ψr ,
redundant values for each pair; Bottom left (C): dendrogramof the redundant matrix.
Top right (B):Ψs, synergetic values for each pair; Bottom right (D): dendrogram of the
synergetic matrix.

the second cumulant is

S(i, j) = δ u
i j ({i j}→ α)− δ u

i j (i → α)− δ u
i j ( j → α) , (12)

the third cumulant is

S(i, j,k) = δ u
i jk ({i jk} → α)− δ u

i jk ({i j}→ α)

−δ u
i jk ({ jk}→ α)− δ u

i jk ({ik}→ α)

+δ u
i jk (i → α)+ δ u

i jk ( j → α)+ δ u
i jk (k→ α) , (13)

and so on. The indexψ may then be seen as the order two cumulant of the expansion of
the prediction error of the target variable; equation (10) allows also the generalization
to higher order terms. Obviouslyψ also depends also on the choice of the kernel, i.e.
on the choice of the regression model.

In order to go a step beyond, we observe that the pairwise synergy index, as well
as the cumulant expansion described above, is dependent on the targetα. To get rid of
this dependency, we make the assumption that the essential features of the dynamics of
the system under consideration are captured using just a small number of characteristic
modes, and use principal components analysis to obtain a compressed representation of
the future state of the system. Calling{ξλ (t)}λ=1,...,nλ

the time courses of the largest
nλ principal components of the whole system, we define the pairwise synergy index:

Ψ(i, j) =
nλ

∑
λ=1

ψλ (i, j), (14)

obtained summing over the firstnλ principal components taken as targets.
The matrixΨ may be seen as a weighted network describing the informational

character of pairs of variables influencing the future stateof the system, zero entries
meaning that the corresponding variables provide independent information for the fu-
ture. The introduction ofΨ allows to describe redundancy and synergy in terms of a

9



Figure 5: The strengths, sum of the redundant (top) and synergetic (bottom) contribu-
tions for each of the 116 brain regions, represented as spheres centered in the respective
MNI coordinates. The size of the spheres is proportional to the depicted value.

weighted complex network. In principle this makes complex networks measures (e.g.,
modular decomposition) suitable to analyze these patternsin large systems.

4 Redundancy and synergy in resting state fMRI

We now turn to investigate synergetic and redundant contributions in large scale brain
networks at rest. To this aim we consider resting state functional magnetic resonance
imaging (fMRI) recordings from the Human Connectome Project (www.humanconnectome.org).
Data are acquired with a repetition time (TR) of 0.72 seconds, slice thickness 2 mm,
72 slices, 2 mm isotropic voxels, 1200 frames. All the parameters are reported in the
project documentation. In this study, the first 93 subjects in the 500 subjects release
were used. Data were preprocessed as described in [39]. It iswell known [40] that the
hemodynamic response function (HRF) can confound the temporal precedence when
lag-based methods are used to infer directed connectivity in fMRI data, characterized
by a slow sampling rate. In order to address this issue in resting state data, for which the
onset of the HRF is not explicit, we used the blind deconvolution approach described
in [41]. The resulting deconvolved BOLD signal was then averaged according to the
116 anatomical regions of the Automated Anatomical Labeling (AAL) template [42].
Many choices of the parcellation are possible, each one withits pros and cons, here we
stick to this widely used one.

The matrixΨ, averaged over all the subjects, has been split in two: the matrix of
positive values, corresponding to redundancy and defined asΨr = θ (Ψ), θ being the
Heaviside function, and the matrix of negative values, corresponding to synergy and
defined asΨs = θ (−Ψ). In figure (4) we depict the two matrices and the correspond-
ing dendrograms. A very small number of pairs are characterized by synergy, whilst
the matrix of redundant pairs is much more dense, and the corresponding dendrogram
(differently from the dendrogram of synergetic pairs) shows high values of modularity:
it follows that the modular decomposition of the redundancymatrix (obtained consid-
ering the positive entries ofΨ) provides correlated sets of variables acting as sources
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of information for the dynamics of the system (modularity has been evaluated, varying
the resolution of the dendrogram, as described in [43]).

In figure (5) we depict the strength of the two matrices, the synergy and the redun-
dancy ones, on the brain. We see that the pattern of redundancy is highly symmetric
w.r.t. the two hemispheres, whilst this is not the case for synergy, the highest source of
synergy being localized in the cerebellum.

In figure (6) we show some examples of redundant and synergetic pairs of regions.
In panel A we consider the cerebrum area with highest redundancy strength, and plot
the corresponding absolute value ofΨ w.r.t. all the other regions, showing that homol-
ogous regions in the two hemispheres are redundant; this is confirmed in panel B where
a cerebellar region is considered. We remark that the AAL partition allows to have ho-
mologous areas, thus putting in evidence synergy-redundancy differences in the brain
localization. Redundancy is thus governed by contiguity inspace as well as by inter-
hemispheric symmetry. In panel C and D, instead, we considerthe synergy between
two given regions and all the others, and observe that, accordingly, synergetic pairs are
not homologous, and pairs of regions with highest synergy correspond to a cerebrum
region and a cerebellar one on the opposite hemisphere. Mapsfor all the regions are
reported in the supplementary material.

5 Conclusions

In this paper we have considered the inference, from time series data, of the information
flow between subsystems of a complex network, an important problem in medicine and
biology. In particular we have analyzed the effects that synergy and redundancy induce
on the Granger causal analysis of time series. On one side, wehave shown that the
presence of redundancy and synergy degrades the performance of GC methods; on
the other side, we have introduced a frame for data analysis based on unnormalized
Granger causality, i.e. the reduction of variance of the residuals of each target variables
when candidate driver variables are included in the regression model. Maximizing the
total unnormalized Granger causality leads to groups of redundant variables. We have
introduced a novel pairwise index of synergy, which for eachpair of variables measures
how much they interact to provide better predictions of the future state of the system,
assumed to be synthesized in terms of a small number of principal components. Such
index can be seen as the second cumulant in the expansion of the prediction error of
the target variables, to be compared with the expansion of the transfer entropy in [32]
which provides the interaction information as the second cumulant. The advantages
provided by the present cumulant expansion are (i) conceptual problems found in the
Gaussian case [35] are avoided, and (ii) the nonlinearity ofΨ can be easily controlled
by varying the kernel in the regression model. A disadvantage of unnormalized GC is
the occurrence that the connection with information theoryis lost, but the aim of the
present approach is to identify redundant and synergetic circuits rather than quantifying
the information flow in the system. Our approach can be applied to any multivariate
time series data, here we have shown the efficacy of the proposed network approach to
resting state fMRI data. Redundancy appears to be more bilateral than synergy, whilst
the modular decomposition of the redundancy matrix leads tocorrelated components
of the system under study. We have shown that redundancy is connected with space
contiguity of regions and interhemispheric symmetry, whilst synergy occurs mainly
between non-homologous pairs of regions in opposite hemispheres.

Summarizing, we have addressed a novel framework to study interdependencies
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Figure 6: Regions which form redundant and synergetic duplets with representative re-
gions, separately selected among cerebrum and cerebellar regions as those maximizing
the overall informational contributions (see fig. 5). Regions are indicated by spheres
centered in the MNI coordinates. The size of the spheres is proportional to the value
of the duplet formed by the region and the representative one, depicted in black. A:
values of the redundant duplets involving the Left Postcentral Gyrus B: values of the
redundant duplets involving the Right Middle Temporal Gyrus C: values of the syner-
getic duplets involving the Left Postcentral Gyrus D: values of the synergetic duplets
involving the Left Cerebellar Crus II. All the displayed values are significant as as-
sessed using the closed form available for Gaussian processes. Figures for all regions
are available athttps://dx.doi.org/10.6084/m9.figshare.3101947
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among subcomponents of complex systems from time series, which aim at highlighting
redundant and synergetic interactions. Whilst many examples of redundant interactions
have been reported in the literature, less attention has been spent so far to synergetic
interactions between variables whose joint state influencethe future of the system. Us-
ing the pairwise synergy matrix we have shown that redundancy and synergy display
characteristic patterns in healthy brains at rest; such patterns provide information about
the system which are complementary to those provided by standard multivariate analy-
sis tools, such as correlations and multivariate Granger causality. A further step will be
the assessment of alterations of these patterns in pathologies and different brain states.
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