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Abstract

Objective—We describe and evaluate an automated software tool for nerve fibre detection and 

quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve-fibre 

detection with morphological descriptors.

Method—We have evaluated the tool for quantification of Diabetic Sensorimotor Polyneuropathy 

(DSPN) using both new and previously published morphological features. The evaluation used 888 

images from 176 subjects (84 controls and 92 patients with Type 1 diabetes). The patient group 

was further subdivided into those with (n=63) and without (n=29) DSPN.

Results—We achieve improved nerve-fibre detection over previous results (91.7% sensitivity and 

specificity in identifying nerve-fibre pixels). Automatic quantification of nerve morphology shows 

a high correlation with previously reported, manually measured, features. ROC analysis of both 

manual and automatic measurement regimes resulted in similar results in distinguishing patients 

with DSPN from those without: AUC of about 0.77 and 72% sensitivity-specificity at the equal 

error rate point.

Conclusion—Automated quantification of corneal nerves in CCM images provides a sensitive 

tool for identification of DSPN. Its performance is equivalent to manual quantification, while 

improving speed and repeatability.

Significance—Corneal confocal microscopy is a novel in-vivo imaging modality that has the 

potential to be a non-invasive and objective image biomarker for peripheral neuropathy. Automatic 

quantification of nerve morphology is a major step forward in the early diagnosis and assessment 
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of progression, and, in particular, for use in clinical trials to establish therapeutic benefit in 

diabetic and other peripheral neuropathies.

Index Terms

Diabetic Sensorimotor Polyneuropathy; Computer Aided Diagnosis; Corneal Confocal 
Microscopy; Image Analysis; Nerve Fibre Quantification

I. Introduction

Diabetic sensorimotor polyneuropathy (DSPN) is one of most common long term 

complications of diabetes. Up to 50% of diabetic patients suffer from it [1], and it is 

estimated that about one in six diabetic patients have chronic painful neuropathy [2]. Several 

methods are currently used to quantify neuropathy, including clinical scoring of symptoms, 

quantitative sensory testing, nerve conduction measurements and microscopic measurement 

of intra-epidermal nerve-fibre density (IENFD) in skin biopsy samples. These methods have 

their advantages and limitations. Thus, whilst symptoms and signs are directly relevant to 

the patient and are easily recorded, they are subjective resulting in poor repeatability [3]. 

Neurophysiology is more objective; however it only assesses large fibres, which constitute a 

tiny proportion of all the nerve fibres present in a peripheral nerve and has also been shown 

to have limited reproducibility [4]. The quantification of IENFD in skin biopsies is 

objective, but is clearly invasive and requires considerable expertise in assessment. There is 

a need for a rapid, non-invasive assessment that is truly quantitative and assesses small nerve 

fibres, which are more likely to be involved in neuropathy [5, 6].

Corneal confocal microscopy (CCM) images of nerve fibres are captured from the sub-basal 

plexus immediately above Bowman’s membrane of the cornea by an in-vivo laser confocal 

microscope. Fig. 1a shows an example image. One of the advantages of CCM is the entirely 

non-invasive and relatively rapid (about 2 minutes) acquisition of images of small nerve 

fibres and other corneal structures. Clinical studies [7] have shown that CCM is capable of 

making quantitative assessment of DSPN and has the potential to be an ideal surrogate 

endpoint. It has also recently been shown to have a predictive ability in identifying diabetic 

patients at risk of developing DSPN [8] and has been used in several clinical intervention 

studies showing nerve-fibre repair [9–11]. Interactive analysis has been used to derive 

measurements from these images, such as corneal nerve-fibre length (CNFL), corneal nerve-

fibre density (CNFD) and corneal nerve branch density (CNBD) [12, 13] (Fig. 1). CNFL is 

defined as the total length of all nerve fibres visible in the CCM image per square 

millimetre. CNFD and CNBD are the number of the major nerves (red lines in Fig. 1b) per 

square millimetre and the number of primary branches emanating from those major nerve 

trunks (green dots in Fig. 1b) per square millimetre respectively. Although an association has 

been demonstrated between these quantitative features and the severity of DSPN [7] in cross 

sectional studies, the manual analysis suffers from the usual problems of being labour-

intensive and subjective and therefore raises considerable difficulties, particularly when 

undertaking longitudinal follow-up studies [14]. Consequently the quantification results 

show poor reproducibility, especially in CNBD [15]. For the technology to be clinically 

useful, the analysis of images needs to be done automatically.
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Here we describe a fully automatic nerve-fibre detection and quantification system. Fig. 1a 

indicates that the appearance of nerve fibres in CCM images covers a wide contrast range, 

with some fibres appearing very faint on a noisy background, whilst other, larger, fibres 

show strong contrast. A number of studies have presented methods of detecting similar 

linear structures in different types of images e.g. the detection of blood vessels in retinal 

images [16], and the detection of curvilinear structure in mammograms [17]. Previous 

studies aimed at automatic fibre detection in CCM images include Scarpa et al. [18] who 

described a method for tracing nerve fibres based on automatically initialised seed points, 

and Holmes et al. [19]who identified fibres based on ridge points. Sindt et al. [20] detected 

several types of objects visible in CCM images, including dendritic immune cells and wing 

cells in addition to nerve fibres. Dabbah et al. [21] presented a method of fibre detection 

based on a multi-scale Gabor filter with responses trained using a neural network. The best 

detection performances in various applications are achieved using methods based on 

machine learning, in which features are derived from training images [16, 17, 21]

Following fibre detection, it is required to extract individual fibres, identify branches and 

quantify appropriate features for classification. A number of studies have investigated the 

quantification of a variety of image features, describing the morphology of nerve fibres 

delineated either manually or automatically [13, 19–21]. These studies have shown the 

relationship between several features, including those listed above, and neuropathic status. 

None of them, however, has addressed the question of diagnosis of individual subjects.

We have previously described our image filter for enhancing nerve-fibre pixels [21] and 

reported clinical results of applying this system to DSPN [22]. This paper describes the 

development of the fibre detection method into a complete tool for measurement of nerve-

fibre morphology to act as a diagnostic aid, making three specific contributions over our 

earlier publications: (1) we compare our fibre detector [21] with another, successful, linear 

feature descriptor and demonstrate the best reported performance in detecting nerve-fibre 

pixels in CCM images. (2) The detailed algorithms for quantification of morphometric 

features are presented for the first time (only CNFL was used in [21]), including the 

established features (CNFD, CNFL, CNBD) and new features: Corneal Nerve-Fibre Width 

Histogram (CNFWH) and Corneal Nerve-Fibre Orientation Histogram (CNFOH). (3) 

Finally, we report a technical validation of the proposed system based on CCM images 

obtained from 84 control subjects and 92 type 1 diabetic patients, which, to our knowledge, 

is the largest dataset in the literature for DSPN diagnosis of individuals.

II. Methods

A. CCM Images and Manual Measurement

CCM images (Fig. 1(a)) were captured from all participants using the Heidelberg Retina 

Tomograph Rostock Cornea Module (HRT-III) as described in [13]. The image dimensions 

are 384×384 pixels with the pixel size of 1.0417μm. During the CCM scan, images captured 

from all corneal layers and six sub-basal images from the right and left eyes were selected 

for analysis. Criteria for image selection were depth, focus position and contrast. A single 

experienced examiner, masked from the outcome of the medical and peripheral neuropathy 

assessment, manually quantified images of all study participants using purpose-written 

Chen et al. Page 3

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proprietary software (CCMetrics: M. A. Dabbah, Imaging Science, University of 

Manchester) to delineate main fibres, branch fibres and branch points (red lines, blue lines 

and green dots respectively in Fig. 1b). The reproducibility and reliability of manual 

annotation are reported in [15]. The specific parameters measured in each frame were: 

CNFD, CNFL and CNBD, as described in section I in accordance with our previously 

published protocol [13].

B. Automated CCM Measurement

The automated CCM measurement process consists of two main steps: nerve-fibre detection 

and nerve-fibre quantification.

1) Nerve-Fibre Detection—In this and similar applications [16, 17], methods based on 

machine learning have been reported to outperform others in detection of curvilinear 

features. The machine learning method normally consists of two key elements, feature 

description and classifier training on a set of samples.

For the feature description process, we have implemented and adapted two of the most 

successful methods [17, 21] for representing curvilinear structures. Dabbah et al. [21] 

proposed a multi-scale “dual-model filter” (DMF) that combines a foreground model based 

on a Gabor wavelet with a Gaussian background model that scales the output according to 

the level of noise. In our implementation, we apply the DMF at eight orientations (suggested 

in [21]) and at four levels of an image pyramid. Each level is a down-sampled (with 

smoothing) version of its immediate higher level by a factor of 2. The Gabor wavelet and 

Gaussian filter covered orientations from 0° to 180° and a range of fibre widths that we 

found to be sufficient for the CCM images in our study. The DMF method results in 32-

dimensional vectors (8 orientations × 4 scale pyramid levels) to describe features at each 

pixel location.

Berks et al. [17] described a system that used the dual-tree complex wavelet transform 

(DWT) [23] for detection of linear structures in mammograms. The DWT combines the 

outputs of two discrete transforms, using real wavelets differing in phase by 90°, to form the 

real and imaginary parts of complex coefficients. It provides a directionally selective 

representation with approximately shift-invariant coefficient magnitudes and local phase 

information. As in the DMF method, the DWT is applied to a four-level image pyramid. 

Additionally, the DWT is performed at six different orientations (±15°, ±45°, ±75°, used in 

[17]) at each pyramid level. The six sub-bands are then multiplied by {i, −i, i, −1, 1, −1} 

respectively, so that the phase at the centre of the impulse response of each wavelet is zero. 

Finally, to achieve 180° rotational symmetry, any coefficient with negative imaginary part is 

replaced with its complex conjugate. Hence from coarse level to fine level of the image 

pyramid, the DWT results in a 48-element feature vector (4 level image pyramid × 6 

orientation × 2 magnitude and phase) for each selected pixel location. Both of these 

detectors outperformed competitors in their respective domains.

In this study we have implemented both detectors in the form proposed by the original 

authors (number of pyramid levels and orientations) as these produced feature vectors of 
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similar dimension. We then subjected them to a comparative analysis in detecting nerve 

fibres.

For classifier training, the feature descriptors and their corresponding fibre/non-fibre labels 

from a set of training samples were used as the inputs to a classifier, which took the form of 

either a neural network or random forest [24]. The trained classification model was then 

used for classifying fibre/non-fibre pixels in unseen CCM images.

CCM images have a fairly high level of background noise (see Fig. 2a), which at a fine scale 

have similar contrast to nerve fibres at random orientations. These may be detected by the 

trained detectors and are removed by a further denoising step, which iteratively diminishes 

pixels that are not consistent with the dominant direction over a localised region. The output 

response image after denoising is shown in Fig. 2b. The evaluation and comparison of 

different combinations of the two feature descriptors and the two classifiers, before and after 

denoising, are presented in section III.

Based on the denoised image, a threshold is then applied to generate a binary image. The 

optimum threshold value is determined by the training and validation experiments described 

in section III-A. The binary image is then filtered by morphological operators to fill small 

gaps within nerve fibres and link adjacent structures. The binary structures are thinned to 

obtain a one-pixel wide skeleton (Fig. 2c). Branch and end points, identified by counting the 

neighbours of each skeleton point, are each assigned a unique label. For some regions, the 

evidence for nerve fibres is too weak (as highlighted in Fig. 2c) to be detected by a global 

threshold. However, the undetected pixels may be important in determining the nerve-fibre 

connectivity. Hence, for each end point, we extrude 30 pixels along the fibre orientations. 

The orientation of nerve fibres at each pixel location can be estimated using the second 

eigenvalue of the Hessian matrix of the response image. If an intersection with another fibre 

is detected and the average probability from the response image of the extruded pixels is 

sufficiently high (> 0.2), the extruded line is retained, otherwise it is eliminated (Fig. 2d). 

Subsequently, independent small segments and short branches that are less than 15 pixels 

long are removed, and the intersection points (solid circles) and end points (hollow circles) 

are calculated again as shown in Fig. 2e. The final binary skeleton, as shown in Fig. 2f, is 

used for total nerve-fibre quantification, described in the next section.

2) Nerve-Fibre Quantification—Fig. 2f shows that the output of fibre detection consists 

of several networks of interconnected line segments. In order to produce similar results to 

the manual CNFD, CNFL and CNBD, it is important to identify the main fibres within these 

networks and the branch points along the main fibres. To connect the appropriate fibre 

segments together, we generate four N × N matrices (MI, ML, MW and MO) to store the 

fibre intensity, fibre length, fibre width (described later in this section) and fibre orientation 

information respectively for each segment. N is the total number of branch and end points. If 

the ith and jth end/branch points are connected by a segment, the intensity, width, length and 

orientation information will be saved at the [i, j] location of the corresponding matrices; if 

they are not connected, these elements are zero. The matrices of intensity (MI), length (ML) 

and width (MW) are symmetric, as the elements at [i, j] and [j, i] should be identical. The [i, 
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j] and [j, i] elements in the orientation matrix MO represent the respective orientations of the 

opposite ends of the fibre segment.

Identification of the main nerve fibres starts with the most prominent segments: those with 

greatest length and width. These are identified by multiplying the corresponding elements of 

MW and ML to produce a new matrix MA. The segments are considered in sequence 

according to the corresponding values of MA in descending order. There are normally two 

candidate segments that intersect with the current segment at a branch point. The candidate 

segments are ranked for the length, orientation difference, intensity and width parameters 

respectively. The candidate with the highest summed rank is chosen to connect with the 

current segment. The process continues till an end point is reached. The relevant entry in 

MA is set to zero and the process continues until no non-zero elements remain in MA. 

Finally, a list of connected fibres is obtained. Only the fibres with length greater than a 

threshold are kept as the main fibres. Fig. 1b and 1c respectively show the manual and 

automatic quantification results of the CCM image in Fig. 1a. The red lines show the 

principal nerve fibres, which are counted to produce CNFD. The blue lines indicate the 

secondary nerve fibres, which together with the principal fibres make up CNFL. The green 

dots are the branch points from the main fibres that are used for CNBD calculation.

Besides the CNFD, CNFL and CNBD features that are readily measured in the manual 

analysis, automatic quantification is able to calculate additional features. These additional 

CCM features include the total corneal nerve-fibre area per mm2 (CNFA), the corneal nerve-

fibre width histogram (CNFWH) and the corneal nerve-fibre orientation histogram 

(CNFOH). These can be calculated if the width and orientation at each nerve-fibre location 

is known. The orientation is calculated by the Hessian method referred to in section II-B-1. 

The nerve-fibre width estimation for a particular segment is illustrated in Fig. 3. Fig. 3a 

shows a highlighted example nerve-fibre segment along with a magnified version. At each 

nerve-fibre location, an intensity profile line of length 13 pixels (larger than the thickest 

fibre) is extracted perpendicular to the nerve-fibre orientation, as indicated by the short 

straight lines in Fig. 3a. The profiles corresponding to a fibre segment are averaged along the 

length of the segment to generate a representative profile for the segment, which is then 

further averaged (Fig. 3b) with its symmetrically inverted profile, smoothed by a three pixel 

length average filter and normalised (Fig. 3c). Finally a Gaussian curve is fitted to the 

normalised profile curve (Fig. 3c). The final width of that segment is calculated as 2.5 

(empirically determined) times the RMS width of the fitted Gaussian curve. CNFWH is the 

number of occurrences of different fibre widths in the range between 1 to 8 pixels, at 0.2 

pixels interval (36 bins). The CNFA is calculated as sum of fibre width × fibre length of all 

the fibre segments in mm2. The CNFOH is the number of occurrences of different fibre 

orientations in the range between 0° to 179°, at 5 degree interval (36 bins).

III. Materials and evaluation

We performed the model training and testing processes on two independent datasets. Dataset 

1 contains 200 CCM images which were randomly selected from healthy volunteers and 

subjects who were diagnosed with type 1 diabetes. This dataset was used for model training 

and validation for parameter optimisations. The testing stage was conducted on an 
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independent dataset 2 that contained 888 images captured from 176 subjects (84 controls 

and 92 diabetic patients). The subjects were divided into 3 groups: control (n=84), type 1 

diabetic patient with no neuropathy (n=63) and diabetic patients with neuropathy (n=29). 

The Toronto Diabetic Neuropathy Expert Group (TC) [6] recommendation was followed to 

define an individual to have DSPN if he/she met both of the following criteria: (1) Abnormal 

nerve conduction – A peroneal motor nerve conduction velocity of <42 m/s; (2) a symptom 

or sign of neuropathy, defined as ONE of the following: (a) diabetic neuropathy symptom 

(DNS) [25] of 1 or more out of 4, (b) neuropathy disability score (NDS) [26] of 3 or more 

out of 10. These features, along with a number of other clinical and physiological 

parameters, were measured for each subject [22].

Following the description in section II-A, all images from both dataset 1 and dataset 2 were 

acquired by the same procedure. They were all manually segmented by a trained clinician 

(INP). CNFD, CNFL and CNBD were also measured manually in each of the images using 

the CCMetrics annotation tool (denoted as MCNFD, MCNFL, and MCNBD, respectively).

A. Evaluation of Nerve-Fibre Detection

For the evaluation of nerve-fibre detection, we firstly trained and validated the models based 

on dataset 1 using a two-fold cross validation. The 200 images in dataset 1 were randomly 

divided into two groups with 100 images each. Each set served for parameter setting and 

training based on the other half as a test set. The roles were then reversed. We performed this 

two-fold cross validation on the four combinations of feature descriptors (DMF and DWT) 

and model classifiers [24] (random forest (RFC) and multi-layer perceptron neural network 

classifiers (NNC)), denoted as DMRF (DMF + RFC), DMNN (DMF + NNC), DTRF (DWT 

+ RFC) and DTNN (DWT + NNC). For each of the combinations, we repeated the two-fold 

cross validation to investigate the optimum parameter settings by varying the number of 

training pixels (500, 1000, 2000 pixels randomly selected from each of the foreground and 

background regions for each image), the number of trees (100, 200 and 500 trees) in RFC 

and the number of hidden neurons (20, 50 and 100) in the three-layer NNC.

For performance evaluation, as in [21], the response images (before denoising) were 

thresholded and thinned to one-pixel wide lines. These lines were then compared pixel by 

pixel to the manually generated skeletons acting as ground-truth, a true positive (TP) being 

scored if the detected pixel is within a three-pixel tolerance of ground truth and a false 

positive (FP) if it is outside this tolerance. True negative (TN) and false negative (FN) pixels 

are recorded if the pixel in the detected image is zero while the ground-truth is zero and one 

respectively. The three pixel tolerance deals with the imprecision in placing hand-drawn 

centrelines. By varying the threshold of the response images, ROC curves can be generated 

for each of the parameter settings. Optimum performance, in terms of specificity and 

sensitivity at the equal error rate point and computational time, was achieved by using 1000 

foreground and background pixels from each image for training, and 200 trees for RFC and 

50 hidden neurons for NNC.

In the testing stage, we applied the two optimised models (one from each of the two-fold 

cross validation runs on dataset 1) to the independent dataset 2. ROC performances were 

compared between models trained using DMNN, DMRF, DTNN and DTRF. The values of 
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sensitivity and specificity at the equal error rate point for the two models were as follows. 

DMNN: 0.917 and 0.913, DMRF: 0.912 and 0.908, DTNN: 0.888 and 0.882, DTRF: 0.883 

and 0.878. In Fig. 4, we show the ROC plots of the model that with the higher performance. 

These were obtained using the raw detections before denoising to obtain an insight into the 

underlying detector performance. From the ROC curves, it is clear that the combination 

based on the DMF outperforms the DTW feature descriptor, having higher sensitivity at any 

value of specificity.

Although the specificity is a fair measurement for the detection of both background and 

foreground pixels, the value is dominated by the very high TN count. The absolute value of 

specificity is potentially misleading, as we have noted in section II-B-1 that the initial 

detection results in detection of a high number of background pixels that are removed by a 

subsequent denoising step. We therefore also calculated the False Discovery Rate 

(FDR=FP/(FP+TP)) and the False Negative Rate (FNR=FN/(FN+TP)). The smallest (best) 

FDR/FNR measures for the four methods before and after image denoising are listed in 

Table I. Since the two cross validation models produce very similar classifications, we only 

report the results from one of the cross validation models. All four detector/classifier 

combinations have similar FDR values before denoising and, significantly reduced, after 

denoising, consistent with the similar specificity values at most values of sensitivity in Fig. 

4. The FNR values increase only slightly by denoising, the DM detector achieving better 

FNR figures. Following denoising there is no real difference between the RF and NN 

classifiers.

B. Evaluation of Nerve-Fibre Quantification

As observed in section III-A the two cross-validation models produced very similar 

performance on the independent dataset 2. We chose the detector model with the slightly 

higher performance as the basis for automated measurements of nerve-fibre parameters, 

denoted ACNFD, ACNFL and ANCBD. Additionally, total nerve-fibre area, orientation 

histogram and width histogram were calculated (CNFA, CNFOH ad CHWH). For the 

multidimensional features CNFOH and CNFWH, we investigated the use of the maximum, 

standard deviation, skewness, kurtosis and logistic regression combing all elements of the 

histogram feature vectors to represent the feature. The standard deviation of the histogram 

proved to be the most effective; these are denoted as ASDOH and ASDWH.

For each of the subjects, the average feature values obtained from their CCM images were 

used. Fig. 5 and Fig. 6 show the box plots of each of the manual and automated CCM 

features respectively. In these figures, the central red lines are the median, the edges of the 

box are the 25th and 75th percentiles (q1 and q3), and the whiskers extend to the most 

extreme data points that are not identified as being outliers (within the range q1−1.5(q3−q1) 

to q3+1.5(q3−q1)). The outliers are plotted individually as red dots. A common decreasing 

trend from control group to neuropathy group can be observed on all manual and automated 

CCM features. The values of the manually generated measurements are higher than those 

generated automatically. One reason for this is that the manual tracing process deviates from 

the exact fibre path (Fig 1(b)), resulting in a larger CNFL value. Additionally, the automated 

method is less effective than human annotators at connecting weak branches, resulting in 
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generally higher CNFD and CNBD values for the manual analysis. However, the important 

point is the relative correlation between manual and automated measures across the control 

and patient groups. The Pearson correlation coefficients between automatically and 

manually derived CNFL, CNFD and CNBD measurements were 0.861, 0.859 and 0.701 

respectively. The lower correlation in the case of CNBD measurement is due to poor 

reproducibility in the manual measurement of this feature. This has been reported in [15] 

and arises from the subjective judgement required for identifying branch points.

We used both the ANOVA test [27] and ROC analysis to demonstrate the capability of using 

the CCM image features to discriminate between control and non-neuropathic groups, and 

between non-neuropathic and neuropathic patients, as defined by the Toronto Criteria.

Tables II and III show the respective ANOVA p-values, the area under the ROC curve (AUC) 

measures and sensitivity and specificity values calculated at the equal error point (EEP) of 

the ROC curves. We also experimented with different combinations of features, from both 

manual and automated analysis, using logistic regression in a leave-one-out manner. In these 

experiments each subject was predicted by the logistic regression model built from the 

remaining n-1 subjects, where n is the total number of subjects in both groups. ROC 

measures for the combinations of all manual features or all automated features are listed in 

Table II and Table III along with the single-feature measures. The confidence intervals for 

the combined methods indicate that the combination results in a discriminating power 

indistinguishable from the best manual or automatic methods respectively. This would 

indicate that the features are accessing the same underlying information about each of the 

groups. It is unsurprising that there should be dependency between total fibre length and 

fibre density or fibre area.

IV. Discussion

A number of studies have shown the features extracted from Corneal Confocal Microscopy 

images are associated with the severity of diabetic peripheral neuropathy [7, 12, 13] and the 

potential of CCM to quantify severity of neuropathy and assess therapeutic benefit has been 

demonstrated [28]. In this paper, we have described the details of a complete system for 

measurement of CCM images to enable discrimination between control and diabetic subjects 

and between diabetic subjects with and without neuropathy.

Petropoulos et al. [22] reported a clinical evaluation study comparing the system described 

in this paper with manual analysis of CCM images and a broader range of subjective and 

objective clinical assessment methods, including the Neuropathy Symptom Profile, vibration 

perception thresholds, cool and warm thermal thresholds, and cold and heat induced pain. 

CCM features, measured both automatically and manually, were found to be significantly 

correlated with these methods. They noted that the automatic analysis of CCM images was 

significantly faster than manual analysis, taking 10–22s per image, depending on the density 

of fibres, as opposed to 2–7 minutes.

Based on the well-established Toronto Criteria, we show that both manual and automated 

CCM features discriminate diabetic patients with and without neuropathy. Manual and 
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automatic measurement regimes result in broadly similar results: about 0.77 AUC value and 

73% sensitivity-specificity at the equal error rate point. There were no significant differences 

between the ROCs of manual (MCNFD) and automated measurements (e.g. p=0.44 and 0.55 

for ACNFD and SDWH respectively).

Corneal confocal microscopy has shown considerable success in translation to the 

assessment of other neuropathies including Fabry disease [29], ISFN [30], CMT1A [31], 

sarcoidosis [32]. Automated quantification of corneal nerves provides a major step forward 

in the early diagnosis and assessment of progression, but in particular for use in clinical 

trials to establish therapeutic benefit in diabetic and other peripheral neuropathies.

The automatic quantification software can be requested freely from [33] for research 

purposes. It is currently being used by over 40 research groups worldwide to investigate 

potential relationships between CCM features and different types of neuropathy [34].

V. Conclusion

We have presented a technical evaluation of a complete system that is able to automatically 

quantify six different types of nerve-fibre features in CCM images. We have proposed an 

optimum configuration for detection of nerve fibres based on a previously reported 

foreground and background model trained with a neural network. The automatic 

quantification results show a high correlation with manually measured CCM features 

(CNFL, CNFD and CNBD). The results also show significant differences (p-values of 

ANOVA test in table II) between the control and non-neuropathic group, indicating the 

system’s ability to detect early signs of change from a healthy to a diabetic condition. The 

automated system is able to produce additional CCM features that measure the area, width 

and orientation of the nerve fibres (CNFA, CNFWH and CNFOH). All these new measures 

show significant differences between the non-neuropathic and neuropathic groups (p-values 

of ANOVA test in table III), with some features achieving 72% sensitivity-specificity at the 

equal error rate point, indicating the capacity to identify individuals suffering from 

neuropathy. The advantages in time labour and reproducibility suggest that automatically 

measured features may be used as a new, non-invasive method for diagnosing diabetic 

peripheral neuropathy, providing information on small nerve-fibre damage that is not 

accessible by most currently used methods. The only method in current clinical use that 

addresses small fibre damage is the intra-epidermal nerve-fibre density (IENFD) measure, 

which is invasive, requiring a skin biopsy, and currently cannot be evaluated automatically. 

We have recently shown [35] that analysis of CCM features has favourable diagnostic 

efficacy to IENFD (AUC of 0.66)
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Fig. 1. 
(a) Original CCM image. (b) Manually quantified CCM image. (c) Automatically quantified 

CCM image. Red lines represent main nerve fibres, blue lines are branches and green spots 

indicate branch points on the main nerve trunks. Refer to online coloured version.
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Fig. 2. 
(a) Original CCM image (b) Response image after nerve-fibre detection and denoising (c) 

Nerve-fibre skeleton with highlighted weak connection segments (d) Nerve-fibre skeleton 

after assessment of weak connections. (e) Automatically detected end points (hollow circles) 

and intersection points (solid circles). (f) Final detected nerve fibres.
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Fig. 3. 
(a) Original CCM image with a highlighted segment, a selection of orthogonal profile lines 

are indicated on the enlarged inset. Profiles are calculated at each pixel along the segment. 

(b) Average of all the profile lines along the whole fibre segment. (c) The symmetric profile 

of (b) is firstly calculated, and then normalised (Solid line). A Gaussian distribution is fitted 

for nerve-fibre width estimation (broken line). The final width equals 2.5 times the RMS 

width (σ) of the fitted Gaussian curve.
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Fig. 4. 
ROC curves for nerve-fibre detection on dataset 2, using DMNN (Dual Model, Neural 

Network), DMRF (Dual Model, Random Forest), DTNN (Dual-Tree Wavelet, neural 

Network) and DTRF (Dual-Tree Wavelet, Random Forest) respectively.
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Fig. 5. 
Boxplots of manually measured features for control, non-neuropathy and neuropathy groups 

(a) MCNFD (b) MCNFL (c) MCNBD.
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Fig. 6. 
Boxplots of automatically measured features for control, non-neuropathy and neuropathy 

groups in dataset 2 (a) ACNFD (b) ACNFL (c) ACNBD (d) ACNFA (e) ASDOH (f) 

ASDWH.
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TABLE I

FDR AND FNR FOR THE FOUR COMPARED DETECTORS BEFORE AND AFTER IMAGE 

DENOISING.

Method FDR/FNR Before denoising FDR/FNR After denoising

DMNN 0.4810/0.2700 0.2013/0.2934

DMRF 0.4828/0.2877 0.2014/0.2983

DTNN 0.4890/0.2961 0.2012/0.3141

DTRF 0.4881/0.3221 0.2013/0.3261
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TABLE II

AUC, 95% confidence interval values and sensitivity-specificity at the equal-error point (EEP) for manual and 

automated CCM features for discrimination between control subjects and diabetic patients without DSPN.

CCM Features AUC 95% CI Sensitivity Specificity at EEP P-value of ANOVA

MCNFD 0.8063 [0.73 0.88] 0.7460 <0.0001

MCNFL 0.7627 [0.68 0.84] 0.6825 <0.0001

MCNBD 0.7492 [0.67 0.83] 0.6984 <0.0001

ACNFD 0.7401 [0.66 0.82] 0.7305 <0.0001

ACNFL 0.7766 [0.70 0.85] 0.7613 <0.0001

ACNBD 0.7103 [0.63 0.80] 0.6414 <0.0001

CNFA 0.6837 [0.59 0.77] 0.6601 0.0002

SDOH 0.7671 [0.69 0.85] 0.7002 <0.0001

SDWH 0.7798 [0.71 0.86] 0.7402 <0.0001

Combined manual 0.7940 [0.72 0.87] 0.7143 -

Combined automated 0.7373 [0.67 0.83] 0.7009 -
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TABLE III

AUC, 95% confidence interval values and sensitivity-specificity at the equal-error point (EEP) for manual and 

automated CCM features for discrimination between non-neuropathic and neuropathic groups of diabetic 

patients.

CCM Features AUC 95% CI Sensitivity Specificity at EEP P-value of ANOVA

MCNFD 0.7890 [0.68 0.90] 0.7241 <0.0001

MCNFL 0.7137 [0.59 0.83] 0.6552 0.001

MCNBD 0.6136 [0.49 0.74] 0.5862 0.081

ACNFD 0.7600 [0.65 0.87] 0.6482 <0.0001

ACNFL 0.7576 [0.65 0.88] 0.6186 <0.0001

ACNBD 0.6801 [0.56 0.80] 0.5798 0.002

CNFA 0.7601 [0.64 0.87] 0.7301 <0.0001

SDOH 0.7799 [0.68 0.90] 0.6907 <0.0001

SDWH 0.7709 [0.67 0.88] 0.7219 <0.0001

Combined manual 0.7843 [0.68 0.89] 0.7100 -

Combined automated 0.7419 [0.63 0.86] 0.6779 -
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