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 

Abstract — Objective: The purpose of this manuscript is to 

compute skin strain data from a flexed biological limb, using 

portable, inexpensive, and easily-available resources. Methods: We 

apply and evaluate this approach on a person with bi-lateral 

transtibial amputations, imaging left and right residual limbs in 

extended and flexed knee postures. We map 3D deformations to a 

flexed biological limb using freeware and a simple point-and-shoot 

camera. Mean principal strain, maximum shear strain, as well as 

lines of maximum, minimum, and non-extension are computed 

from 3D digital models to inform directional mappings of the 

strain field for an unloaded residual limb. Results: Peak tensile 

strains are ~ 0.3 on the anterior surface of the knee in the proximal 

region of the patella, whereas peak compressive strains are ~ -0.5 

on the posterior surface of the knee. Peak maximum shear strains 

are ~ 0.3 on the posterior surface of the knee. The accuracy and 

precision of this methodology are assessed for a ground truth 

model. The mean point location distance is found to be 0.08 cm, 

and the overall standard deviation for point location difference 

vectors is 0.05 cm. Conclusion: This low-cost and mobile 

methodology may prove critical for applications such as the 

prosthetic socket interface where whole-limb skin strain data are 

required from patients in the field outside of traditional, large-

scale clinical centers. Significance: Such data may inform the 

design of wearable technologies that directly interface with human 

skin. 

 

Index Terms—skin strain, lines of non-extension, wearable 

technology. 

I. INTRODUCTION 

hole-limb skin strain analysis may prove critical to the 

design of wearable devices that mechanically interface 

with the human body. In this manuscript, skin strain of a 

flexed biological limb is measured using highly portable and 

inexpensive resources, conducive for collecting data in the 

field, unconfined to a laboratory setting. Such strain data, and 

biomechanical models derived from these data, may provide 

insight into the general design of broad applications including 

apparel, shoes, prostheses, orthoses, body exoskeletons, space-

suits, and other wearable devices where safe and comfortable 

mechanical loading is sought between the synthetic product and 

the body [1], [2]. Measuring skin strain is a challenge given its 

heterogeneous mechanical properties. The multi-layered 

composition of fibrous, gelatinous, and glandular tissues, as 

well as nerves and blood vessels, cause skin to behave as a 
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fluid-solid mixture [3] with non-linear elastic [4] and 

viscoelastic properties [5]. Furthermore, skin biomechanical 

properties are subject to variation based on dermal thickness, 

age, sun exposure, tissue composition, and location on the body 

[6]. Despite being the largest organ of the body, these 

characteristics make skin very challenging to study, due in part 

to intricate hardware, software, and environmental 

requirements [7]. 

Digital image correlation (DIC) is a powerful technique for 

skin strain assessment based on ease of application, high 

resolution, and available turn-key integrated software. 

Commercial DIC systems have been used successfully to 

analyze 3D surface deformation [8], and have been combined 

with finite element modeling to study skin mechanical 

properties in-vivo [9]. DIC skin strain investigations across a 

joint collect surface data between flexed and extended states, 

followed by a ray tracing technique to reconstruct 3D 

displacements [10]. Although semi-portable, DIC systems can 

be costly. Furthermore, the technique has largely been confined 

to analysis of near-planar imaging surfaces. As a solution to this 

limitation, motion capture systems have successfully 

characterized whole-limb in vivo strain of a flexed biological 

limb [2], [11], [12][13][14].  

TABLE I 

COMPARISON OF SKIN STRAIN ANALYSIS METHODS 

 DIC a Motion capture b Point and shoot 

System cost > $150K > $150K < $300

Data 
acquisition 

environment 

Laboratory, 

semi-portable 
Laboratory Portable 

Vendor 
purchase, set-up 

4-6 weeks 4-6 weeks ~ 1 hour 

Resolution 
Skin pattern 

density 

Reflective 

marker limited 

Skin pattern 

density 

Dimensionality Planar 3D 3D 

a integrated turn-key hardware and software system for data acquisition and 

analysis  
b includes gait lab and data acquisition hardware and software  

 

Given whole-limb, 3D capability of motion capture 

techniques, lines of non-extension (LONE), lines where skin 

does not stretch or compress [15], can be estimated. While 

motion capture systems provide important information, they are 
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costly, confined to a laboratory environment, and resolution-

limited to the size and placement of 3D position trackers. 

Additionally, data collection is often impeded due to loss of 

tracking visibility where the detectors cannot locate the 

reflective markers. Table I compares key components of DIC, 

motion capture, and the low-cost point-and-shoot and highly 

mobile method described in this work.  

The objective of this study is to present and assess a low-cost 

methodology (< $300) for quantifying whole-limb skin strain 

across a joint. Skin strain is calculated using direct skin 

markings, a simple point-and-shoot camera, and publicly 

available software to analyze static 3D human body postures. 

The proposed method acquires whole-limb strain data 

comparable to DIC and motion capture systems but without 

their inhibitory cost and lack of portability. As such data may 

inform the design of future prosthetic socket interfaces, the 

method is evaluated by analyzing skin strain for a flexed knee 

joint in a human participant with bi-lateral transtibial 

amputations.  

II. MATERIALS AND METHODS  

A. Human Participants 

The Committee On the Use of Humans as Experimental 

Subjects at the Massachusetts Institute of Technology (MIT) 

approved this research investigation. One healthy adult male 

with bilateral transtibial amputations consented and enrolled in 

this pilot study. Data are collected from the left residual limb 

(n1), and the right residual limb (n2) to comprise two 

independent data sets of both extended and flexed postures. 

B. The Skin Strain Measurement Process 

Two static knee joint postures, extended (0˚ flexion, or full 

extension) and flexed (60˚ flexion) are considered for this 

study. Skin strain is measured between these two postures for 

both the left and right residual limb. Each step of the skin strain 

quantification process is shown in the schematic overview of 

Fig. 1. Steps 1-4 are completed for each residual limb (left and 

right leg) and each knee posture (extended and flexed). Step 5 

corresponds the extended and flexed postures, necessary for 

strain computation in Step 6. These steps are detailed below. 

Step (1): Skin Marker Pattern Application 

A dotted marker pattern is manually applied across the 

residual limb surface (Fig. 2) with non-toxic black body ink 

(Milani Cosmetics, Los Angeles, CA). The black ink was 

determined to be optimal based on a color palette analysis 

across RGB and black body paints. Dark ink is highly 

contrasting for light skin-tone. Light ink is highly contrasting 

for dark skin-tone. Markers are 3 mm diameter circles, 

positioned approximately 2 cm apart (a distance less than the 4 

cm two-point discrimination of human skin on the medial 

surface of the lower leg [16]). The marker pattern is applied 

such that the markers closely represent the vertices of an 

Fig. 1. Schematic overview of the strain measurement procedure. Step 1: a marker pattern is applied to the skin surface. Step 2: photographs are 

acquired 360˚ around the residual limb. Step 3: images are processed to create a 3D textured surface model. Step 4: the marker centroids are identified 

across the limb to create a triangulated marker centroid surface model. Step 5: identical markers in the extended and flexed state are corresponded. 
Step 6: the corresponded marker models are used for skin strain and strain directionality (e.g. LONE) computation. 
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equilateral triangular pattern. Such a pattern aids in marker 

surface model construction and is necessary for point 

correspondence and strain computation (detailed below in Steps 

4-6). During marker application, the anatomical location and 

spacing need not be precise. However, the marker density 

(number of markers per cm2) is important, as this defines the 

resolution of the resulting skin strain field. The chosen marker 

size and spacing maximizes point density while keeping 

computational times to within 1-3 hours. Given our intended 

application of strain-informed prosthetic interface design, we 

mark an area encompassing the typical region of the leg in 

contact with a prosthetic liner (from the distal end to ~15-20 cm 

above the knee). Initiating at the most proximal row, a tape 

measure is used to manually place each marker ~2 cm apart. 

These spaced markers also serve as scaling dimensions for the 

3D digital model. Natural skin tone variations, moles, and 

marker diameter/shape variations provide image texture and 

non-uniformity, necessary for pattern recognition during model 

reconstruction. Fig. 2 shows the final inked marker pattern for 

a transtibial amputated limb in the extended and flexed posture. 

The process to mark the skin takes approximately 30-45 

minutes. 

 

Fig. 2. Visualization of a typical marker pattern on the skin surface in the a) 

extended and b) flexed knee posture of the same residual limb. 

Step (2-3): Image Acquisition, and textured 3D surface model 

reconstruction 

Once the marker pattern is applied, the research participant is 

positioned on his stomach with the left residual limb extending 

over the edge of a raised imaging platform. The imaging 

platform is draped with a white sheet in order to maintain 

lighting uniformity during data collection. White balance is 

manually set against the white sheet at the start of all data 

collection sessions. This also reduces interference from 

background objects, movement, and color variations. After the 

white balance is set, a series of digital photographs (illustrated 

as arrays in Step 2 of Fig. 1) are acquired 360˚ around each 

residual limb using a standard point and shoot camera in 

automatic shooting mode without flash (Canon, IXUS 220 HS, 

shutter speed 1/60 s, aperture f2.7, resolution 1984 x 1488 

pixels). The 2D photos are uploaded into the freeware 123D 

Catch (Autodesk, San Rafael, CA) to construct a textured 3D 

surface model (a 3D model made of vertices, faces, and color 

information). 123D Catch has cloud-based, desktop, and mobile 

platform versions designed to interface with cameras ranging 

from point-and-shoot to cell phone cameras, negating the need 

for high-end equipment or manual calibration. Given this 

recreational nature, camera specifications for photo acquisition 

are very general. In order to optimize the quality of the 3D 

model output, it is important to acquire 2D photos based on the 

123D Catch guidelines [17]. These guidelines suggest at least 

5˚-10˚ overlap between sequential photographs. This was 

achieved by acquiring 20-40 images for each knee posture, 

extended and flexed. The optimal distance was determined by 

maximizing the residual limb in the camera field of view for 

each frame. This also ensures consistency of model output 

regardless of patient variability.  

 

Fig. 3. The 2D photos are output as a textured 3D surface model in a) 123D 
Catch, illustrating camera orientations (grey path lines) and locations (white 

camera schematics) with respect to the reconstructed surface, and b) the model 

is imported into MeshLab, the inset illustrates the refined nature of the mesh at 
marker locations enabling centroid selection (Step 4).  

Image acquisition is completed for both the extended and 

flexed knee positions of the left residual limb (n1), followed by 

the extended and flexed positions of the right residual limb (n2), 

resulting in a total of four independent model renderings. It is 

important to note that the research participant arbitrarily held 

his knee in the fully extended and flexed positions when asked 

to first straighten his knee and then flex his knee. These verbal 

commands resulted in n1 having an actual 54° flexed joint 

angle, and n2 having an actual 69° flexed joint angle. The total 
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time required for experimental completion (marker application 

and imaging) of a single residual limb in both flexed and 

extended postures is approximately 1 hour. 

Fig. 3a illustrates typical orientations and locations of the 

camera during collection of 2D images 360˚ around the residual 

limb. 123D Catch automatically corrects for distance and 

orientation variations during model construction. Each high 

resolution model reconstruction in 123D Catch takes 1-3 hours, 

depending on freeware stability. The high resolution textured 

3D surface model from 123D Catch is imported into MeshLab 

freeware, (MeshLab 64-bit, v1.3.4, Institute of Science and 

Information Technology-National Research Council, Italy). 

MeshLab renders the model as triangulated surface meshes 

composed of approximately 100000 vertices and 200000 

triangular faces. Fig. 3b shows the refined nature of the 

MeshLab triangulated surface mesh at marker locations. The 

inset of Fig. 3b shows a close-up of the textured triangulated 

mesh, highlighting three markers. At marker locations and other 

areas of non-uniform shape or non-uniform texture, the surfaces 

become very refined. This ensures that the markers locations 

are captured by a large number of triangles on the textured 

surface model.  

Step (4) Marker centroid selection and model construction 

The model is manually scaled based on the previously 

described 2 cm spacing between two markers in the most 

proximal row of the residual limb. After scaling the model, 

marker centroids are manually selected using a manual 

MeshLab tool. Since the triangulated mesh is most refined at 

the marker locations shown in Fig. 3b, many mesh vertices are 

available across each marker. This enables accurate centroid 

selection of the marker. Fig. 4 shows a typical triangulated 

surface constructed from the marker centroids. The extended 

posture is shown on the left, and the flexed posture is shown on 

the right. The red, green, and blue points are vertices of the 

same triangle in the extended and flexed posture for point 

correspondence (Step 5). 

 

Fig. 4 The triangulated marker surfaces for a limb in the a) extended, and b) 
flexed postures. The red, green and blue points illustrate vertices of a 

corresponded triangle, which is shaded black for visualization.  

The resulting marker centroid point cloud is exported from 

MeshLab and imported into MATLAB (R2014b, MathWorks, 

Natick, MA, USA) for further processing. The manually 

selected marker centroids create a coarser triangulation whose 

vertices consist of all the marker centroids. This triangulated 

surface is called the marker surface model. A publicly available 

MATLAB script [18], [19] is used to compute a Delaunay 

triangulation (a triangulation such that for each triangle, the 

circumcircle only encapsulates the triangle’s vertices) of the 

marker centroid point cloud.  

Step (5) Point correspondence 

Since the marker pattern allowed for the creation of a near 

equilateral triangulated surface (Fig. 4), the shortest diagonal 

between four adjacent points remains invariant across the 

expected physiological states of deformation. Consequently, 

the resulting Delaunay triangulation is also invariant, 

facilitating unique identification and point tracking across 

posture changes. As a result, the number of triangles is constant 

and identifiable between two postures of the same object [20] 

and vertices can be uniquely corresponded between data sets. 

Triangles are corresponded using a mesh-growing algorithm 

[19]. A seed triangle is first manually identified on both 

postures (as highlighted by red, green, and blue points in Fig. 

4). After this manual initiation, auto-correspondence iteratively 

propagates across the mesh, since the edges of the corresponded 

triangle can be uniquely matched to adjacent triangles in both 

extended and flexed deformations at each iteration.  

Step (6) Strain and directionality computation 

The local strain at each triangle is computed using custom 

MATLAB code [21] and publicly available toolboxes. The 

corresponded triangulated surfaces allow for 3D displacement 

computation by subtracting the coordinate sets for extended and 

flexed posture. The displacement at each triangle is then 

decomposed into translation, rotation, and stretch via an affine 

transformation [22], [23]. The in-plane maximal and minimal 

principal stretches 𝜆1 and 𝜆2 and principal stretch directions can 

be obtained using singular value decomposition of the 

transformation matrix, since the principal stretches and 

principal stretch directions relate to the singular values and 

singular vectors. The deformation process of a triangular 

element is illustrated with a concentric unit circle in Fig. 5a, 

where 𝜆1 = 𝜆2. In Fig. 5b, the set of stretches acting along the 

principal axes have deformed the circle into an ellipse, where 

𝜆1 > 1 (red) defines a tensile stretch, and 𝜆2 < 1 (blue) defines 

a compressive stretch. The principle strains for each triangle 

can be computed from the stretches. We calculate true 

(logarithmic) strain, defined as: 𝜀𝑖 = ln⁡(𝜆𝑖), for each triangle to 

measure large strains that occur during flexion of the knee joint, 

as opposed to engineering strain, which is not suitable for 

measuring strain across such large deformations [24]. The mean 

principal strain is defined as: 
1

2
(ε1 + ε2), the maximum shear 

strain defined as: 
1

2
|ε1 − ε2|. 
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Fig. 5. The deformation process of a reference triangular element is illustrated 

with a concentric unit circle in a) an (undeformed) circle where 𝜆1 = 𝜆2, and b) 

a (deformed) ellipse, where the maximum (𝜆1 > 1) and minimum (𝜆2 < 1) 
principal stretches are shown as red and blue arrows respectively. 

The directionality of deformation is also of interest since this 

may inform the design of custom mechanical interfaces. Of 

particular interest are the principal strain directions, and the 

Lines Of Non-Extension (LONE). LONE can be 

conceptualized as directions where the deformed ellipse in Fig. 

5b intersects the unit circle in Fig. 5a, this is illustrated in Fig. 

6. It can be seen that for these directions no radial extension or 

compression is observed at this state of deformation [15]. 

Depending on the state of deformation either all directions (if 

𝜆1 = 𝜆2 = 1, i.e. an undeformed state), a single direction (if 

only one principal stretch deviates from unity), two directions 

(i.e. if 𝜆1 > 1 ∧ 𝜆2 < 1 such as in Fig. 6), or no direction at all 

(if both stretches are tensile or if both stretches are compressive 

i.e. (𝜆1 > 1⁡ ∧ ⁡𝜆2 > 1) ⁡∨ ⁡(𝜆1 < 1⁡ ∧⁡𝜆2 < 1))) can be 

identified as LONE. It may also occur that stretches are very 

similar. Therefore LONE are here considered significant only 

if |𝜆1 − 𝜆2| > 0.05. LONE may be identified at angles ±𝜃 with 

respect to the local first principal strain direction: 

𝑐𝑜𝑠2(𝜃)

𝜆1
2 +

𝑠𝑖𝑛2(𝜃)

𝜆2
2 = 1                  (1) 

 

Fig. 6. A unit circle (grey) deformed to an ellipse (black). The circle-to-ellipse 

deformation has two directions of non-extension located at  = 22.5 where 

𝜆 = 1 (LONE), shown using black dotted lines. The maximum (𝜆1 > 1) and 

minimum (𝜆2 < 1) principal stretches are shown as red and blue arrows 

respectively.  

It is important to note that LONE may exist in the presence 

of circumferential strains, strains orthogonal to the triangle, and 

large displacements, and rotations. For example, the schematic 

shown in Fig. 6 suggests LONE directions exist at ±22.5°, but 

these lines started out at ±45° in the initial state, and have 

therefore rotated despite the overall deformation lacking a 

rotational component. It should also be noted that, although 

LONE directions may be identified for a particular state of 

deformation, this does not imply that these lines remained a 

LONE direction throughout the entire history of the 

deformation. 

 The local maximum and minimum principal strain, and 

LONE directions for a flexed posture, are shown for each 

triangle in Fig. 7 as red, blue, and black line elements 

respectively. The inset illustrates a single triangle within the 

surface mesh. 

 

Fig. 7. Colored vectors indicate the local direction of maximum principal strain 

(red), minimum principal strain (blue), and LONE (black) for each triangle. 

Reconstructed continuous lines for these measures, for the triangle highlighted 
by a dashed line in the inset, are shown in red, blue and black respectively. 

These multi-linear lines propagate by connecting continuous 

directional segments across adjacent triangular edges. By 

definition, the principal strain directions occur once per 

triangle, are mutually orthogonal, and exist for all triangles. 

However as mentioned above, zero, one, or two LONE may be 

identified for a given triangle occurring at varying orientations. 

If two LONE exist, both directions propagate (see crossing 

black lines in Fig. 7 inset). If no LONE exists, the line 

propagation terminates locally.  

 

C. Evaluation of methodology performance 

Strain data is calculated directly from the obtained 

transformation matrices defining the deformation between a 

triangle in extended and flexed states, detailed above in Step 

(6). The source of error in our results stems from discrepancies 

between the actual and measured marker locations. These are 

the focus for evaluation of methodology performance. The 

marker location error is due to two main effects: 1) 123D Catch 

model inaccuracies, and 2) manual selection of marker 

centroids. First, since each model is rendered in arbitrary units 

using 123D Catch, scaling is required to obtain appropriate 

dimensions. The scaling error has a global effect due to the 

manual selection of two known point centroids ∼2 cm apart. 

Second, the marker centroid error has a local effect, resulting in 
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local displacement and strain deviations stemming from two 

sources; a digital error (e.g. surface shape error) inherent to 

free-hand acquisition of individual photos, and human error 

from manual centroid selection of each marker dot (Fig. 2).  

In order to evaluate methodology performance and quantify 

these error sources, a calibration object is 3D printed (Connex 

500, Stratasys, Eden Prairie, MN, USA), illustrated in Fig. 8. 

The calibration object is a rigid body that has a similar size and 

shape as a residual limb but experiences zero strain. The 

calibration object is designed with a similar marker pattern and 

a point spacing (~ 2 cm) as defined above in Steps 1 and 2, 

allowing for near uniform surface triangulation, Steps 3 and 4. 

 

Fig. 8. The calibration object is shown as the a) ground truth digital CAD file, 

and b) rendered 3D model on a pedestal. Each dark colored point is separated 

by approximately 2 cm at known locations. The vertical white bracket indicates 
the region from which error is computed. 

The known marker locations are taken as true coordinates and 

can be obtained directly from the computer aided design (CAD) 

file (Fig. 8a). The calibration object is placed stationary on a 

pedestal to render a 123D Catch derived 3D model (Fig. 8b). 

The vertical white bracket indicates the region from which error 

is computed. An open-source MATLAB Toolbox [25][26] is 

used to perform rigid registration and statistical computation of 

the CAD model to the rendered 3D model. Scaling error can be 

determined from the scaling required to minimize the difference 

between the rigidly registered surfaces. Once the scaling factor 

is corrected, difference vectors that define the point location 

determination error are computed.  

III. RESULTS 

A. Characteristic Skin Strain profiles  

Fig. 9 and Fig. 10 represent histograms of characteristic mean 

principal and maximum shear strain profiles, respectively. Each 

bar in the histograms of Fig. 9 and Fig. 10 represents the 

fraction of the total surface area that experiences magnitudes of 

mean principal strain and maximum shear strain. The mean 

principal strain distribution in Fig. 9 shows a larger presence of 

high strain magnitudes in n2 compared to n1. This difference is 

consistent with n2 knee flexion being 15° more acutely flexed 

at a joint angle of 69°, whereas n1 had a 54° flexed angle. In 

Fig. 10, there is a greater presence of low maximum shear strain 

(from 0 – 0.1) in n1 relative to n2, and a larger presence of high 

maximum shear strain (above 0.1) in n2 relative to n1. As in 

Fig. 9, this difference is consistent with n2 knee flexion being 

15° more acute than the n1 knee flexion. The anatomical 

mapping of mean principal and maximum shear strain fields, 

maximum and minimum principal strain direction lines, and 

directional LONE, for legs n1 and n2 are displayed in Fig. 11 

and Fig. 12 respectively.  

 

Fig. 9. Mean principal strain histogram distribution. The fraction of the total 

surface area that experiences magnitudes of mean principal strain for residual 
limbs n1 and n2.  

 

Fig. 10. Maximum shear strain histogram distribution. The fraction of the total 

surface area that experiences magnitudes of shear strain for residual limbs n1 

and n2.  

B. Mean principal strain 

Mean principal strain data for n1 and n2 are shown in Fig. 

11(a-d) and Fig. 12(a-d) respectively. Peak tensile mean 

principal strains (~ 0.3) are observed on the anterior surface of 

the knee in the proximal region of the patella, while peak 

compressive mean principal strains (~ -0.5), are observed on the 

posterior surface of the knee.  

C. Maximum shear strain 

The maximum shear strain for n1 and n2 are shown in Fig. 

11(e-h), and Fig. 12(e-h) respectively. These show the peak 

maximum shear strain to be ~ 0.3, which is found on the 

posterior surface of the knee. The maximum shear strain 

profile was qualitatively similar between n1 and n2, although 

n2 displayed larger deformations compared to n1 simply 

because the n2 knee flexion angle was 15° more acute than the 

n1 knee angle. 
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Fig. 11. Skin strain mapping of leg n1 viewed from the knee anterior, lateral, 

posterior, and medial surfaces for: (a-d) mean principal strain, (e-h) maximum 
shear strain, (i-l) maximum (red) and minimum (blue) principal strain lines, and 

(m-p) connected LONE (black). 

D. Principal strain lines 

The maximum principal strain direction line data for n1 and n2 

are shown in Fig. 11(i-l) and Fig. 12(i-l), respectively. These 

lines (red) pass longitudinally across the anterior surface of the 

knee, and circumferentially across the posterior surface of the 

knee. Conversely, lines of minimum principal strain (blue) are 

by definition orthogonal to the lines of maximum principal 

strain, and thus pass circumferentially across the anterior 

surface of the knee, and longitudinally across the posterior 

surface of the knee. 

E. Lines Of Non-Extension (LONE) 

Directional LONE for n1 and n2 are illustrated as discontinuous 

black lines in Fig. 11(m-p) and Fig. 12(m-p) respectively. 

LONE propagation terminates if no LONE is locally identified, 

such as regions across the patella, but are observed to be more 

densely located in regions of low strain. Since the existence and 

multitude of LONE depend on the state of deformation, it is 

natural that they may not be continuous.  

 

Fig. 12. Skin strain mapping of leg n2 viewed from the knee anterior, lateral, 

posterior, and medial surfaces for: (a-d) mean principal strain, (e-h) maximum 
shear strain, (i-l) maximum (red) and minimum (blue) principal strain lines, and 

(m-p) connected LONE (black). 

F. Evaluation of methodology performance 

The scaling error of the calibration object is computed to be 

0.93, indicating manual scaling success within 7%. The scaling 

error is visible in Fig. 13a, where the ground truth CAD file is 

shown in blue, and the 7% dilated model is overlaid in red. Point 

location determination error is visualized in Fig. 13b as points 

colored towards the magnitudes of difference vectors, which are 

the distances (cm) between points on the CAD surface and the 

model surface after 7% corrective scaling. The point location 

difference vector data presents with an overall standard 

deviation of 0.05 cm. The maximum point location distance was 

0.16 cm, visible as a red colored vertex in the lower left 

quadrant of Fig. 13b. The mean point location distance is 0.08 

cm. 
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Fig. 13. Methodology performance visualized as a) a 7% scaling error dilation 

given the digital CAD file (blue) overlaid with the rendered model (red), and b) 
point location determination error shown as points colored towards the distance 

(cm) between the points for the CAD file and the rendered model.  

IV. DISCUSSION 

The measurement of skin strain resulting from natural 

movement of a biological joint derives importance from a 

myriad of applications such as apparel, shoes, and wearable 

robotics. An inexpensive approach to skin strain measurement 

unconfined to a lab is paramount to applications that necessitate 

mobile yet accurate estimates. Examples include persons in the 

field where expensive and bulky equipment may not be 

available. In this study, we describe a mobile approach to 

quantify whole-limb skin strain across large joint angles using 

a standard point-and-shoot digital camera and freeware to 

analyze 3D quasi-static deformations. We apply and evaluate 

this skin strain methodology for two transtibial residual limbs 

in a flexed knee posture, as such data may inform the design of 

future prosthetic socket interfaces. 

Macro-scale strain patterns Fig. 11 and Fig. 12 are clearly 

visible using this method and may benefit clinical needs where 

global patterns of skin strain are important. As expected for the 

knee flexion exercise investigated, the anterior patella region of 

both left and right residual limbs exhibited predominantly 

tensile strains (a peak mean principal strain of ~ 0.3 was 

observed), while the posterior patella region exhibited 

predominantly compressive strains (a peak mean minimum 

principal strain of ~ -0.5 was observed). The latter region also 

presented with the peak maximum shear strains (~0.3), 

consistent with the fact that this skin region undergoes the most 

shape change as the knee is flexed. The skin around the 

quadriceps and hamstrings (proximal regions), and the 

gastrocnemius and soleus (distal regions) experience relatively 

low strains as these regions presented with near-zero mean 

principal strains and low maximum shear strains.  

Fig. 11(i-l) and Fig. 12(i-l) show directional principal strain 

data for legs n1 and n2, respectively. The anterior surface of the 

residual limb displays longitudinal mappings (coronal plane) 

that are predominantly due to the maximum principal strain 

(red), coupled with circumferential mappings (transverse plane) 

of minimum principal strain (blue). These directional strain 

fields reverse orientation on the posterior surface of the residual 

limb, displaying longitudinal mappings (coronal plane) that are 

predominantly minimum principal strain (blue), coupled with 

the circumferential mappings (transverse plane) of maximum 

principal strain (red). These patterns are consistent with what is 

expected for the knee flexion exercise, i.e. that anterior and 

posterior present opposing behavior during flexion. The 

anterior side is dominated by tensile strains while the posterior 

side is dominated by compressive strains. 

Mapped LONE are illustrated in Fig. 11(m-p) and Fig. 12(m-

p) as black lines that indicate local directions where extension 

or compression are not present during joint flexion. LONE 

presented herein follow similar characteristic profiles as the 

first observations of LONE [15]. However, while literature 

LONE are illustrated as continuous lines throughout entire 

sections of the body, our results are discontinuous across the 

residual limb. The discontinuities are expected based on the 

definition of the LONE phenomenon described in Section II(B), 

Step(6), and have been previously observed [2]. In the 

presented work, LONE was computed locally if |𝜆1 − 𝜆2| >
0.05. Future investigations to improve the continuity of LONE 

derived propagated lines could optimize both the threshold and 

the line propagation algorithm for inclusion of nearly-

undeformed regions. Although the LONE phenomenon has 

garnered promise for mechanical interface design, other 

directional strain data may prove more useful in the future. For 

example, lines of minimum absolute strain may be a candidate 

for future research, since these are continuous and coincide with 

LONE or principal strain directions. Further research is 

required to evaluate the utility of directional strain data. Strain 

directions are subject to time varying rotations, while LONE are 

shown to also be transient.  

The total error associated with the presented methodology is 

evaluated using a ground truth rigid calibration object. Two 

main modes of error are distinguished; a global scaling error, 

and a local point location determination error. The former is 

evident in Fig. 13a as a visible 7% dilation of the rendered 

model overlaid with the CAD model. This global error can be 

addressed in future trials by including a rigid body of known 

dimensions in each frame to serve as a stationary scaling 

reference (e.g. a rigid sphere of known size). The latter is 

illustrated in Fig. 13b as points (vertices) colored towards the 

magnitudes of each difference vector. The mean point location 

distance between the CAD ground truth and the rendered model 

is 0.08 cm, the overall standard deviation for point location 

difference vectors is 0.05 cm, and the largest distance is 0.16 

cm. Point location errors can be improved by using automatic 

point detection.  

Developing a multi-camera imaging rig to enable 

simultaneous sub-second image acquisition would provide a 

static platform from which to ensure a constant focal length for 

improved model reconstruction, helping to address limitations 

of the uncontrolled variables of the freeware. Although 123D 

Catch is a useful tool, the input requires 20 to 40 still-frame 

photos. The 10-15 minutes necessary to acquire such a large 

number of sequential images causes fatigue in human research 

participants, who are asked to remain motionless for the 

duration of data acquisition. Developing the above mentioned 

imaging system may help prevent fatigue and reduce error from 

motion artifacts inherent to in vivo imaging of the residual limb. 

Furthermore, video capture could be implemented using the 

above described imaging rig. Video capture would enable 

dynamic skin strain analysis while retaining still-frame data. 
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Future work also includes investigation of optimal computation 

times relative to triangulation methods and data analysis, using 

reality capture software that has improved capabilities with the 

resolution of a 35 mm camera (ReCap, Autodesk, San Rafael, 

CA). The stationary scaling reference discussed above to 

correct for global error could also be useful for minimizing 

motion artifacts.  

Comparison of strain findings to the literature is challenging 

since methodologies, deformation regimes, and analysis 

methods may differ significantly. In addition, results may differ 

between research participants, and no gold standard yet exists. 

Our strain results are, however, within a similar range of values 

reported in an earlier motion capture study [2], which discussed 

a need for marker position error analysis and marker density 

refinement. Our study presents both a refinement in marker 

density quantified by marker positon error analysis. Further, a 

significant cost reduction is achieved using the low-cost 

methodology detailed here, compared to motion capture or DIC 

based strain imaging. DIC has also been used to investigate 

local skin strain [9]. Although DIC offers superior resolution, 

applications have been limited to measurements near a loading 

site and approximately planar geometries. The work by 

Manthey et al. 1995 [27] focused on surface strain in a sheet 

metal object, based on the application of a regular grid pattern. 

Such an approach is feasible for objects with initially planer or 

highly regular geometries. To cope with the complex geometry 

of the human body, we employ a marker pattern instead. This 

makes the experimental design very flexible as few constraints 

are placed on the mesh configuration, which is unknown a priori 

and may significantly vary between subjects. Given the 

elaborate installations required for motion capture and DIC 

based skin strain analysis, we present a low cost, highly 

accessible, and mobile alternative.   

As demonstrated here, measurement of skin strain during an 

exercise, such as joint bending, can be post-processed to 

provide directional strain information. The directional data 

include lines of non-, minimum, and maximum extension.  In 

the absence of a garment or wearable device, the measurement 

provides the skin’s natural deformation occurring during 

exercise. To optimize the comfort of a garment or wearable 

device, its properties at the interface with the skin can be 

modified to accommodate the natural skin deformation pattern. 

For example, an anisotropic biomechanical interface can be 

relatively compliant by design (in terms of resisting tension or 

compression) in the direction of maximum strain, thereby 

reducing relative motion and shear forces between the skin and 

the device. Conversely, the interface material can be reinforced 

along the lines of non-extension or minimum strain to enable 

maximum motility of the skin while providing targeted support. 

As an example, following the work by Iberall et al. [15], [28], 

researchers have proposed the use of the lines of non-extension 

in the design of space suits [29][30][31] e.g. incorporating local 

directional adjustment of fabric reinforcement and contractile 

properties in parallel to natural skin deformation. Similarly, in 

light of the potential application of the presented work, strain 

directionality for transtibial amputee lower limb joint bending 

may be used to locally enhance or reduce the stiffness of the 

prosthetic liner or socket to limit relative motion and shear 

forces at the skin surface. The aim of such an anisotropic 

interface may be to minimize alteration of the natural 

deformation pattern. It should be noted that we have considered 

only the case of strain on an unloaded residual limb. In reality, 

the presence of wearable technology such as a prosthetic 

device, will alter skin strain directionality and magnitudes. 

Weight bearing activity with the use of a mechanical interface 

will introduce new variables and alter mechanical conditions, 

dynamically shifting strain fields. This further highlights the 

importance of the application of the presented techniques in the 

presence of a prosthetic liner-socket interface during 

ambulation.  In order to assess skin deformation in the presence 

of the biomechanical interface using the presented 

methodology, transparent materials for prosthetic devices could 

be employed. Validated computational biomechanical models 

[32] (e.g. trained to match experimental strain conditions) may 

also be used to simulate the deformations occurring at the 

device-skin interface [33], thereby removing the need for 

transparent materials. These models can also be combined with 

iterative adjustment of the interface properties (shape and local 

anisotropy) to further optimize skin loading and deformation 

[33].  Future work will investigate the use of the presented strain 

assessment techniques, coupled with biomechanical modeling, 

to inform dynamic properties of a patient-specific prosthetic 

interface (liner and socket).  

V. CONCLUSION 

Understanding skin biomechanics may prove critical to the 

design of wearable technologies that directly interface with 

human skin. Rather than relying on bulk production designed 

with generic characteristics, a uniform process to quantify strain 

fields using portable and cost effective resources could help 

advance the development of custom devices by providing 

quantitative data. These data could potentially be used for the 

design and fabrication of anisotropic prosthetic liners. For 

example, lines of maximum strain could dictate where the liner 

needs to be more compliant, while a less compliant material 

could be embedded along the lines of minimum strain. 

Providing a positional error will also be informative of the 

precision range necessary when considering custom liner 

design and fabrication. The human body comprises 

continuously-varying tissue impedances given its multi-tissue 

composition, and thus the design and manufacture of innovative 

technology must also reflect this biomechanical variability. It is 

our hope that the low-cost, skin-strain measurement 

methodology presented here may inform human-machine 

interface design with applications in wearable body 

exoskeletons, prosthetic and orthotic devices.  
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