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Abstract— Objective: In this work we propose an autoencoder 

based framework for simultaneous reconstruction and 

classification of biomedical signals. Previously these two tasks – 

reconstruction and classification were treated as separate 

problems. This is the first work to propose a combined framework 

to address the issue in a holistic fashion. Methods: Reconstruction 

techniques for biomedical signals for tele-monitoring are largely 

based on compressed sensing (CS) based method; these are 

‘designed’ techniques where the reconstruction formulation is 

based on some ‘assumption’ regarding the signal. In this work, we 

propose a new paradigm for reconstruction – we ‘learn’ to 

reconstruct. An autoencoder can be trained for the same. But since 

the final goal is to analyze / classify the signal we learn a linear 

classification map inside the autoencoder. The ensuing 

optimization problem is solved using the Split Bregman technique.  

Results: Experiments have been carried out on reconstruction and 

classification of ECG (arrhythmia classification) and EEG (seizure 

classification) signals. Conclusion: Our proposed tool is capable of 

operating in a semi-supervised fashion. We show that our 

proposed method is better and more than an order magnitude 

faster in reconstruction than CS based methods; it is capable of 

real-time operation. Our method is also better than recently 

proposed classification methods.  Significance: This is the first 

work offering an alternative to CS based reconstruction. It also 

shows that representation learning can yield better results than 

hand-crafted features for signal analysis.    

 
Index Terms—Body Area Network, Deep Learning, 

Reconstruction, Classification 

 

I. INTRODUCTION 

N recent times tele-monitoring via body area networks 

(BAN) has received considerable interest. Here the goal is to 

acquire biomedical signals like ECG, EEG, PPG etc. and 

transmit it wirelessly to some base station for manual or 

automated analysis. Such a system, when developed will 

benefit both developed countries and developing nations. It will 

help health monitoring of the elderly and the differently abled. 

This can also be employed for mass scale data monitoring of 

subjects in developing nations large portions of the country do 

not have access to proper medical facilities.  

One of the biggest challenges in telemonitoring is to develop 
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an energy efficient BAN. At the sensor nodes there are three 

energy sinks – communication, sensing and processing; 

communication requires the largest amount of energy followed 

by sensing. The energy required for processing is relatively 

small compared to the other two. The standard technique is to 

compress the signal prior to transmission. However such 

transform coding based techniques are computationally 

expensive for a sensor node. In recent times, most studies use 

compressed sensing (CS) instead [1-6].   

CS based solutions project a portion of the acquired signal 

(say 1 second) onto a random matrix (Gaussian, sparse binary, 

binomial) such that the size of the projected data is smaller than 

the length of the 1 second samples. Since it only requires a 

matrix-vector product, it is computationally cheap. There are 

several studies that propose energy and computationally 

efficient hardware for the same [6-10]. The compressed data is 

wirelessly transmitted to a base station where it is reconstructed 

using CS techniques for further analysis and monitoring. There 

can be several variants of the basic CS technique for 

reconstruction; [1], [3] and [6] use variants of sparse Bayesian 

learning [11]. [12-16] use the more standard CS approach for 

recovery; in [17-21] the signals were reconstructed using inter-

channel and intra-channel correlations. 

All these studies concentrated on the reconstruction of the 

signal with the assumption that the signals will be analyzed 

retrospectively. Such offline analysis can only be done for non-

critical applications like emotion assessment [22, 23]. However 

in most applications of biomedical signal analysis this is not the 

case; for example in seizure detection [24, 25] the analysis / 

monitoring should be in real-time.  

In such time-critical systems, CS will fail. CS requires solving 

an optimization problem iteratively. The time required to solve 

the reconstruction problem on a standard PC is much larger than 

the time duration of the signal. In this work we reconstruct 

based on a deep learning approach. It is based on the extensions 

of the seminal paper by Hinton [26] which showed 

autoencoders can ‘learn’ to compress the information content 

of signals. Later studies [27, 28] showed that autoencoders can 

be used for denoising. In this work we go a step further and 

show that autoencoders can be used for solving inverse 

Rabab Ward is with University of British Columbia, Vancouver, Canada 

(correspondence e-mail: angshul@iiitd.ac.in). 

Semi-supervised Stacked Label Consistent 

Autoencoder for Reconstruction and Analysis of 

Biomedical Signals 

Anupriya Gogna, Angshul Majumdar, Senior Member, IEEE and Rabab Ward, Fellow, IEEE 

I 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

2 

problems like reconstruction. Unlike CS based techniques our 

proposed method requires only a few matrix vector-products 

and hence can operate in real-time.  

In biomedical signal processing applications the end goal is 

not signal reconstruction, but signal classification. Estimation 

emotional state, detecting seizures can all be translated to 

classification problems. Usually hand-crafted features [25], 

[29-31] or statistical features [24], [32] and [33] are extracted 

from the signals and standard classification tools like neural 

networks and support vector machines are employed. In recent 

times, systematic studies have shown that image analysis (for 

example biometrics [34] and speech processing (slightly old 

short review on speech recognition by deep learning [35]) , 

automatically generated deeply learnt features yield far superior 

results compared to hand-crafted or statistical features. The 

main challenge of deep learning is the requirement for large 

amount of training data. This is difficult to find in biomedical 

signal analysis problems; probably that is the reason behind the 

relative sparsity of papers in this area.  

In the tele-monitoring scenario there are two tasks - signal 

reconstruction and signal analysis. In this work we propose a 

combined solution to the two. The standard autoencoder is self-

supervised, i.e. the input and the output are the same; they are 

unsupervised in the sense that they do not require any training 

data. In this work we learn a semi-supervised autoencoder. 

Along with reconstruction, it will also learn a linear map to the 

class labels when class information is available; for signals 

having no class information it will just learn to reconstruct. 

Such an autoencoder serves the dual purpose. It can be used for 

automated signal analysis; and also for manual monitoring of 

the reconstructed signals – both in real-time.  

The rest of the paper is organized into several sections. The 

following literature review section discusses prior CS based 

reconstruction techniques and the basics of autoencoder. The 

proposed architecture and its implementation is described in 

detain in section 3. Thorough experimental evaluation is carried 

out in section 4. The conclusions of this work is discussed in 

section 5.  

II. LITERATURE REVIEW 

A. Compressed Sensing based Reconstruction 

In this work we will talk mostly about EEG reconstruction 

since majority of the work has been on this area. But the 

techniques discussed are generic enough to be applied to any 

other biomedical signal.  

One of the earliest works that applied CS for EEG signal 

compression and transmission is [12]. It projected the EEG 

signal onto an i.i.d Gaussian basis for compression and used CS 

to recover the EEG signal by exploiting the signal’s sparsity in 

the Gabor domain. The compression can be expressed as –  

b z=                      (1) 

where z is the EEG signal,  is the projection / compression 

matrix and b is the compressed data. It was assumed that the 

data is sparse in some domain Ψ so that the sparse coefficients 

(α) could be recovered by l1-norm minimization.  

1
min  subject to b


 =             (2) 

In [15] the authors showed that a better way to recover the 

signals is to use an analysis prior formulation instead of (2).  

1
min  subject to 

z
z b z =              (3) 

EEG is always acquired by multiple channels; ECG too is 

acquired from several channels. The aforementioned techniques 

reconstruct one channel at a time. The possibility of exploiting 

inter-channel correlation in order to improve EEG signal 

reconstruction was mentioned in [12], but there was no concrete 

formulation. This problem is partially addressed in [16]. They 

do not explicitly model the inter-channel correlation, but frame 

a joint reconstruction problem where the signals from all the 

channels are reconstructed simultaneously.  

Let ‘i’ denote the channel number, then the compression for 

this channel can be represented as –  

i ib z=                      (4) 

This can be organized as follows, 

1 1... 0

... ... ... ... ...

0 ...C C

b z

b z

    
    

=    
        

             (5) 

The concatenated solution will be sparse in wavelet domain; 

this sparsity of the signals from all channels is exploited in [16]. 

At a first glance this looks like a joint reconstruction problem, 

but a closer look reveals that this is actually as good as channel 

by channel reconstruction; this formulation (5) does not exploit 

any structure across the channels. Other studies assume a block 

structure of the EEG signals [1], [3], [6] and [11] in a transform 

domain (DCT or wavelet). 

A recent work proposed CS techniques for EEG signal 

compression and transmission, but instead of sending the raw 

EEG signals it subtracted the mean from all the signals thereby 

reducing the number of bits to be transmitted [13]. However, 

such a scheme will not be energy efficient, since in order to 

compute the mean EEG signal, the nodes need to communicate 

with each other – and such communication consumes 

considerable energy. 

In another work [14], it was shown that for certain specific 

tasks like seizure detection, instead of sending the full signal, it 

is possible to send some distinct features which can be further 

analyzed at the base station for possible risks. Such a technique 

requires more computation than standard CS techniques, but the 

number of features to be transmitted are very few. 

Unfortunately such a technique cannot be generalized for other 

applications. 

Biomedical signals are inherently correlated. Prior studies 

hinted at using the inter-channel correlation but did not propose 

any formulation to exploit this information. In [18] the common 

inter-channel sparsity pattern was exploited to capture the 

correlation. Instead of (5), the organization is –  

1 1| ... | | ... |C Cb b z z=                     (6) 

The signals from different channels being correlated will 

share a common sparsity pattern in the transform domain. Thus 
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the matrix 1 | ... | Cz z   will be row-sparse. Hence can be 

recovered by l2,1-minimization.  

2,1
min  subject to 

Z
Z B Z=              (7) 

where 1 | ... | CB b b=   and 1 | ... | CZ z z=    

Here the l2,1-norm is defined as the sum of the l2-norm of the 

rows. The outer l1-norm (summation) promotes sparsity in the 

selection of rows. The inner l2-norm promotes a dense solution 

in the selected row. 

In [17], a separate take on correlation is proposed. The 

authors argued that if the signals are correlated they will be 

linearly dependent; therefore when stacked as columns will 

form a low-rank matrix, i.e. Z (7) will be low-rank. This 

property was exploited in [17]; a matrix completion based 

formulation was utilized to recover the signal ensemble.  

min  subject to 
NNZ

Z B Z=             (8) 

The nuclear norm (defined as the sum of nuclear values) is 

the closest convex surrogate of rank.  

Some recent studies [19, 20] exploited the Blind 

Compressive Sensing (BCS) formulation; here instead of using 

a fixed sparsifying basis like wavelet / Gabor, it is learnt from 

the data. 

B. Autoencoder 

 
 

Fig. 1. Single Layer Autoencoder 

 

An auto encoder (as seen in Fig. 1) consists of two parts – the 

encoder maps the input to a latent space, and the decoder maps 

the latent representation to the data. For a given input vector 

(including the bias term) x, the latent space is expressed as: 

h Wx=                     (9) 

Here the rows of W are the link weights from all the input nodes 

to the corresponding latent node. The mapping can be linear (9), 

but in most cases it is non-linear (sigmoid, tanh etc.): 

( )h Wx=                     (10) 

The decoder portion reverse maps the latent features to the data 

space.  

' ( )x W Wx=                    (11) 

Since the data space is assumed to be the space of real numbers, 

there is no sigmoidal function here. 

During training, the problem is to learn the encoding and 

decoding weights – W and W’. This is achieved by minimizing 

the Euclidean cost: 
2

, '

arg min ' ( )
F

W W

X W WX−               (12) 

Here 1[ | ... | ]NX x x=  consists all the training sampled 

stacked as columns. The problem (12) is clearly non-convex. 

However, it is solved easily by gradient descent techniques 

since the sigmoid function is smooth and continuously 

differentiable. 

 

 
Fig. 2. Stacked Autoencoder 

 

There are several extensions to the basic autoencoder 

architecture. Stacked / Deep autoencoders [26], [27] have 

multiple hidden layers (see Fig. 2). The corresponding cost 

function is expressed as follows: 

1 1 1

2

... , ' ... '

arg min ( )
L L

F
W W W W

X g f X
−

−             (13) 

where ( )( )1 2' '... ' ( )Lg W W W f X= and

( )( )1 1... ( )L Lf W W W X  −=  . 

Solving the complete problem (13) is computationally 

challenging. The weights are usually learned in a greedy 

fashion – one layer at a time [36], [37].  

Stacked denoising autoencoders (SDAE) [27] are a variant of 

the basic autoencoder where the input consists of noisy samples 

and the output consists of clean samples. Here the encoder and 

decoder are learnt to denoise noisy input samples. The learned 

features appear to be more robust when learnt by SDAE. 

In a recent work a marginalized denoising autoencoder was 

proposed [38], which does not have any intermediate nodes but 

learns the mapping from the input to the output. This 

formulation is convex (unlike regular autoencoders); the trick 

here is to marginalize over all possible noisy samples so that the 

dataset need not be augmented like SDAE. Such an autoencoder 

was used for domain adaptation.  

Another variation for the basic autoencoder is to regularize 

it, i.e. 
2

( )

arg min ( ) ( , )
F

W s

X g f X R W X− +          (14) 

The regularization can be a simple Tikhonov regularization 

– however that is not used in practice. It can be a sparsity 

promoting term [28], [39] or a weight decay term (Frobenius 

norm of the Jacobian) as used in the contractive autoencoder 

[40]. The regularization term is usually chosen so that they are 

differentiable and hence minimized using gradient descent 

techniques. 

In a recent work [41] a group-sparse autoencoder is 

proposed. Here the regularization term is an l2,1-norm on each 

class. The idea is that by enforcing a similar sparsity signature 

in each class one can enforce some level of supervision in 
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autoencoding. This work is different from ours.  

III. PROPOSED APPROACH 

In this section we discuss our proposed label consistent 

autoencoder. This will be divided into two sub-sections. In the 

first one will discuss why it is possible to recover the signals 

using autoencoders. In the second sub-section we add the label 

consistency term and complete the formulation.   

A. Reconstruction 

We are interested in solving a linear inverse problem of the 

form: y Ax= . For a determined or an over-determined system 

the solution is linear. Even for an under-determined system the 

minimum energy solution is linear. However, a compressed 

sensing solution is non-linear. First we discuss the reason 

behind this non-linearity.  

Ideally to obtain a sparse solution one would like to solve the 

l0-minimization problem, but as is well known, this is NP hard. 

0
min  subject to 

x
x y Ax=             (15) 

One way to solve (15) is to employ greedy techniques such 

as orthogonal matching pursuit (OMP) [41]. This is a greedy 

approach which detects one support (non-zero position in x) at 

a time and estimates its value. The full algorithm is given by, 

Algorithm OMP 

 

 Input: y, A, k (support) 

 Initialize: ,r y=  =   (support set) 

  Repeat for k iterations 

      Compute Correlation: ( )Tc abs A r=  

      Detect Support: argmax i
i

l c=  

      Update Support: l =    

      Estimate values at support Ω: 
2

2
min

x
x y A x  = −  

      Compute residual: r y A x = −  

 End 

 

 

Here the subscript Ω means that only those columns in A 

indexed in Ω are selected. After the iterations are over, we get 

a solution with the values at some non-zero positions. To get 

the full x, one needs to fill in the other positions with 0 values.  

OMP is a non-linear operation. In every iteration, one needs 

to compute the ‘max’ during the support detection stage – this 

is a highly non-linear operation. Extensions of OMP like 

StOMP [42], or CoSamp [43] are also non-linear. StOMP 

requires a thresholding operation; CoSamp requires a sorting – 

both are non-linear operations. 

So far we have talked about greedy algorithms for sparse 

recovery. The more popular technique is to relax the NP hard 

l0-norm to its closest convex surrogate the l1-norm. This enjoys 

stronger theoretical guarantees. In practice the solution is 

obtained via: 
2

2 1
min

x
y Ax x− +               (16) 

Consider the simplest technique to solve (16) – Iterative Soft 

Thresholding Algorithm (ISTA) [44]. Every iteration (say k) 

consists of two steps. The first step is the Landweber Iteration 

(17) and the second step is the soft thresholding (18).  

( )1 1

T

k kb x A y Ax− −= + −              (17) 

( )max 0,
2

kx sign b b
 

= − 
 

           (18) 

Where the step-size σ is inverse of the maximum Eigenvalue of 

ATA. 

The first step (17) is a simple gradient descent step – it is a 

linear operation. But the second step involves thresholding and 

is hence a non-linear operation.  

To summarize, all CS recovery techniques are non-linear 

inversion operations. 

CS has been used extensively in the past decade in a variety 

of signal processing applications, ranging from biomedical 

signal reconstruction to medical imaging, seismic imaging and 

astronomy to name a few. However CS cannot be used for real-

time reconstruction, since the solution is iterative and hence 

time consuming. In our problem, the reconstruction should be 

real-time; this precludes use of such sophisticated inversion 

techniques. Instead of designing the inversion techniques 

(discussed in section II) we will ‘learn’ to reconstruct.  

It is well known that Neural Networks act as universal 

function approximators. Given enough training data the non-

linear activation functions learn to represent arbitrary functions; 

this was proven by Cybenko [46] and Hornik [47]. A more 

fundamental work on this topic dates back to Kolmogorov [48] 

where he showed that a continuous function of many variables 

can be approximated by a superposition of continuous functions 

of one variable. We make use of this universal functional 

approximation property of neural networks to ‘learn’ a CS like 

inversion operation with autoencoders.  

The basic idea is simple, a poor man’s inverse of a linear 

system is obtained by: 

' T Tx A y A Ax= =                 (19) 

This x’ is a noisy version of the actual solution x. In CS, the 

noise is progressively removed by soft-thresholding [49]. It has 

been shown that autoencoders can also be used for the 

denoising [28]. Basically one prepares a large number of noisy 

versions of the signal and input them to the autoencoder; at the 

output are the corresponding noisy versions. The autoencoder 

‘learns’ a mapping from the noisy input to the clean output. 

When a new noisy signal is later applied to the input, a clean 

version of it is obtained at the output. In [28] it was claimed that 

the simple denoising autoencoder can yield decent denoising 

results – sometimes even at par with dictionary learning based 

techniques.   

In this work the ‘noisy’ signals are the obtained from poor 

man’s inverse (x’); these are input to the autoencoder for 

training. The corresponding clean signals are at the output. 

During training, the autoencoder learns to ‘clean’ the signal. 

The training time can be large, but during actual operation one 

only needs two (for a single layer autoencoder) matrix vector 

products; therefore it is super-fast.  
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B. Combined Classification and Reconstruction 

Whatever we have discussed so far can be done using a 

classical autoencoder. But such an autoencoder cannot classify. 

One can follow the usual deep learning approach where after 

learning the autoencoder, the decoder is removed and a soft-

max layer is attached and the full architecture is fine-tuned for 

classification. Such a deep neural network would classify but 

could not reconstruct. As mentioned before, our problem 

demands both – reconstruction as well as classification. Some 

of the tasks may be automated (and would not require 

reconstruction) but many others would require manual 

monitoring. This would require a novel autoencoder that can 

simultaneously reconstruct and classify.  

 
Fig. 3. Proposed Label Consistent Autoencoder 

 

Our proposed architecture is shown in Fig. 3. It is a two layer 

stacked autoencoder. For all deep learning tasks, the features 

from the deepest layer are used; therefore we propose to learn a 

linear map from the innermost layer to the targets; this 

constitutes the label consistency criterion. This idea has been 

used in the past for discriminative DBM [50] and label 

consistent dictionary learning [51]. The mathematical 

expression is given by, 

' '
1 2 2 1

2
' '

1 2 2 1
, , , ,

2

2 1

min ( ( ( )))

( ( ))

FW W W W D

F

X W W W W X

T D W W X

  

  

−

+ −

       (20) 

Here X is the training samples, T the targets and D the linear 

map. It is not possible to learn this architecture using off-the-

shelf backpropagation techniques. This is because there are two 

outputs, therefore there is no unique unambiguous way to 

backpropagate the errors. We will solve it using the Split 

Bregman technique. But before, getting into the solution, we 

need to incorporate semi-supervision, i.e. not all the training 

samples will have a label. This leads to: 

' '
1 2 2 1

2
' '

1 2 2 1
, , , ,

2

2 1

min ( ( ( )))

( ( ))

FW W W W D

S F

X W W W W X

T D W W X

  

  

−

+ −

       (21) 

We assume the training data to be [ | ]U SX X X= , where the 

subscripts denote Unsupervised or Supervised.   

C. Derivation 

In this work we solve (21) by a Bregman type variable 

splitting [52]. In the first step we substitute 
1 '

2 2 1( ( ( ))Z W W W X  =               (22) 

The proxy variable has two parts – unsupervised and 

supervised, i.e. 
1 1 1[ | ]U SZ Z Z=  . This allows us to express (21) 

as follows: 

' ' 1
1 2 2 1

2 2' 1
1 2 1

, , , ,D,

1 '
2 2 1

min ( ( ))

. . ( ( ( ))

FFW W W W Z
X W Z T D W W X

s t Z W W W X

  

  

− + −

=

  (23) 

One can incorporate the proxy and variables by a Lagrangian, 

but the exact Lagrangian would enforce equality between the 

two in every iteration. This is not required; for practical 

purposes we only need the proxy and the variables to converge 

at the solution. Therefore one can relax the Lagrangian to the 

augmented Lagrangian instead: 

' ' 1
1 2 2 1

2 2' 1
1 2 1

, , , ,D,

2
1 '

1 2 2 1

min ( ( ))

+ ( ( ( ))

FFW W W W Z

F

X W Z T D W W X

Z W W W X

  

   

− + −

−

  (24) 

In the Augmented Lagrangian formulation, one starts with a 

small value of μ – this relaxes the equality constraint. For each 

value of μ, (24) is solved and then then value of μ is increased 

to enforce equality progressively. As one can see this is not an 

elegant approach; increasing the value of μ is at best heuristic. 

The most elegant solution is to incorporate a Bregman 

relaxation variable B1, this automatically adjusts for the 

equality constraint since it is updated. One does not need to tune 

the values of μ. The Split Bregman formulation is: 

' ' 1
1 2 2 1

2 2' 1
1 2 1

, , , ,D,

2
1 '

1 2 2 1 1

min ( ( ))

+ ( ( ( ))

FFW W W W Z

F

X W Z T D W W X

Z W W W X B

  

   

− + −

− −

  (25) 

We apply the Split Bregman technique on the substitution 
2

2 1( ( ))Z W W X = , leading to: 

' ' 1 2
1 2 2 1

2 2
' 1 2

1
, , , ,D, ,

2
1 ' 2

1 2 1

2
2

2 2 1 2

min

+ ( )

( ( ))

S
F FW W W W Z Z

F

F

X W Z T DZ

Z W Z B

Z W W X B



 

  

− + −

− −

+ − −

     (26) 

As in Z1, Z2 has two parts – Supervised (denoted by subscript 

S) and Unsupervised (denoted by subscript U). In the third 

level, we substitute 1( )Z W X= . This leads to the final 

formulation: 

' ' 1 2
1 2 2 1

2 2
' 1 2

1
, , , ,D, , ,

2
1 ' 2

1 2 1

2 22
2 2 2 1

min

+ ( )

( ) ( )

S
F FW W W W Z Z Z

F

FF

X W Z T DZ

Z W Z B

Z W Z B Z W X B



 

   

− + −

− −

+ − − + − −

    (27) 

Even though not exactly separable, (27) can be segregated 

into a number of sub-problems: 

1W
'

1W

Sa
m

p
le

s

Sa
m

p
le

s2W
'

2W

Ta
rg

etClassification

Reconstruction

D
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'
1

2
' 1

1P1:min
FW

X W Z−  

'
2

2 2
1 ' 2 1 1 ' 2

2 1 1 2P2:min ( ) ( )
F FW

Z W Z B Z B W Z −− −  − −  

2

2 2
2 1 2

2 2 2 2P3:min ( ) ( )
F FW

Z W Z B Z B W Z −− −  − −  

1

22 1
1 1P3:min ( ) ( )

F FW
Z W X B Z B W X −− −  − −  

1

2 2
' 1 1 ' 2

1 1 2 1P4:arg min + ( )
F F

Z

X W Z Z W Z B − − −  

2

2 2
2 1 ' 2

1 2 1

2
2

2 2 2

P5:min + ( )

( )

S
F FZ

F

T DZ Z W Z B

Z W Z B

  

 

− − −

+ − −

 

2 22
2 2 2 1P6:min ( ) ( )

FFZ
Z W Z B Z W X B   − − + − −  

2
2

D
P7:min S

F
T DZ−  

Sub-problem P1 and P7 are a simple least squares problems 

having a closed form solutions. Sub-problems P1-P3 can be 

recast as linear least squares problems (shown above) and hence 

can be solved analytically as well. Sub-problem P4 can be re-

arranged as follows, 

( )1

2
'

1 1
' 2

2 1

min
( )Z

F

X W
I Z

W Z B  

   
  −  

  +
  

      (28) 

This turns out to be a simple least squares problem as well. 

Similarly one can recast P6 as a least squares problem in the 

following manner.  

( )

2
1 2

22
2

1

( )
min

( )Z

F

WZ B
Z

IW X B




 

−   +
  −    +   

      (29) 

Sub-problem P5 can be expressed in two parts: 

2 2

2 2
2 1 ' 2 2

1 2 1
,

2
2 2

2 2 2

P5:arg min + ( [ | ])

[ | ] ( )

U S

S U S
F F

Z Z

U S
F

T DZ Z W Z Z B

Z Z W Z B

  

 

− − −

+ − −

 

The variables
2 2,U SZ Z  are separable. Hence P5 can be 

segregated as follows: 

2

2 2
1 ' 2 2

1 2 1 2 2 2min ( ) ( )
U

U U
F FZ

Z W Z B Z W Z B   − − + − −  (30) 

2

2 2
2 1 ' 2

1 2 1

2
2

2 2 2

min + ( )

( )

S

S S
F FZ

S
F

T DZ Z W Z B

Z W Z B

  

 

− − −

+ − −

      (31) 

As we have been doing so far, we can recast (30) and (31) as 

least squares problems (32) and (33) respectively. 

( )
( )

2

2
1 1 '

1 1 1 2 2

22 2 2

min

( )U

U
Z

F

Z B W
Z

IW Z B

  

 

−   +
   −

  +   

      (32) 

( )
( )

2

2
1 1

'
1 1

1 2

2
2 2 2 2min ( )

S

S
Z

F

Z B W

W Z B I Z

T D

  

  

 

− +  
   
   + −
   
       

      (33) 

The last part is to update the Bregman relaxation variables. 

This accounts for the automatic adjustments between the 

variables and their proxies at convergence. The relaxation 

variables are updated using simple gradient descent. 
1 ' 2

1 2 1( )B Z W Z B − −  

2
2 2 2( )B Z W Z B − −  

1( )B Z W X B − −  

There are two stopping criteria. Iterations continue till the 

objective function reaches some local minima, i.e. there is no 

significant change in successive iterations. Or, they continue for 

a fixed number of iterations. Our algorithm requires specifying 

several hyper-parameters. We found that they are very robust to 

a wide range of values; in this work we put 1 2 0.01  = = =  

IV. EXPERIMENTAL EVALUATION 

A. ECG arrhythmia classification and reconstruction 

In this study, five types of beat classes of arrhythmia as 

recommended by Association for Advancement of Medical 

Instrumentation (AAMI) were analyzed from ECG signals 

namely: non-ectopic beats, supra-ventricular ectopic beats, 

ventricular ectopic beats, fusion betas and unclassifiable and 

paced beats. The classification experiments are carried out on 

the MIT-BIH Arrhythmia dataset from www.physionet.org. 

First we carry out reconstruction and classification using the 

aforesaid database. This is a fully supervised problem, i.e. all 

the samples have class labels.  

It is well known in deep learning that ‘more the merrier’. 

However in real-life supervised samples are few; but it is easy 

to have a large number of unsupervised samples. Therefore in 

the second set of experiments we augment the aforesaid 

(supervised) dataset MIT-BIH with the European ST-T dataset 

(cardiac ischemia) dataset from www.physionet.org. No class 

information from the second dataset is used; it is only used for 

semi-supervised learning. 

The MIT-BIH Arrhythmia database contains 48 half hour 

recordings of two channel ambulatory ECG, obtained from 47 

subjects in the year 1975 and 1979 by the Beth-Israel Hospital 

Arrhythmia Laboratory at Boston. Twenty-four hour 

ambulatory ECG recordings were collected from a mixed 

population of size 4000 having inpatients (around 60%) and 

outpatients (around 40%). The recordings were digitized at 360 

samples per second per channel with 11-bit resolution over a 

10 mV range. Two or more cardiologists independently 

annotated each record; consensus was made to obtain the 

computer-readable reference annotations for each beat. 

European society of cardiology has provided a standard ST-T 

database consisting of 90 annotated samples of ambulatory 

ECG recordings from 79 subjects having myocardial ischemia 

disease. The subjects were 70 men aged from 30 to 84 years, 

and some women aged from 55 to 71 years. Additional selection 

criteria were established in order to obtain a representative 

http://www.physionet.org/
http://www.physionet.org/
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selection of ECG abnormalities in the database, including 

baseline ST segment displacement resulting from conditions 

such as hypertension, ventricular dyskinesia, and effects of 

medication. Each record is of 2 h duration and contains two 

signals. Each is sampled at 250 samples per second with 12-bit 

resolution over a nominal 20 mV input range. 

As a pre-processing step the MIT-BIH dataset is down-

sampled to 250 Hz from its native 360 Hz; this is ensure parity 

between the two datasets. Both the datasets are normalized. The 

quantization level remains as it is. The MIT-BIH protocol is 

converted to the AAMI / ANSI standard. This leads to 5 classes 

- Non ectopic beat (N), Supra-ventricular ectopic beats (S), 

Ventricular ectopic beats (V), Fusion beat (F) and Unknown 

beat (Q). Owing to the relative sparsity of samples in the F and 

Q classs they are merged with V; this is following the AAMI2 

protocol proposed in [53].  

We train our proposed label-consistent autoencoder with one 

second (250 points) length samples. The outer hidden layer has 

125 nodes and the inner hidden layer has 63 nodes. The class of 

the entire duration is assigned to the sample during training. 

During testing, the test ECG sequence is broken down into one 

second samples (Xtest) and passed through the trained model. 

The target for this is obtained by 2 1( ( ))test ST D W W X = . 

Practically Ttest will not have ones and zeroes, they would be 

real numbers in between. We take the row averages of T and 

assign the class of Xtest to the class having the maximum value 

in the corresponding row. 

For the experimental protocol we follow [54]; this is 

repeatable protocol. The division into test set and training set is 

shown in Table I. The record number (#) of the patient used for 

training are – 101,114,122,207,223,106,115,124,208,230,108, 

116,201,209,109,118,203,215,112,119,205,220; for testing are 

– 100,117,210,221,233,103,121,212,222,234,105,123,213,228, 

111,200,214,231,113,202,219,232.  

 
TABLE IV 

TRAIN AND TEST SET DETAILS 

Dataset N S V F Q Total # Rec 

Train 45844 943 3788 415 8 50998 22 

Test 44238 1836 3221 388 7 49690 22 

Total 90082 2779 7009 803 15 100688 44 

 

In this work we emulate a health-monitoring scenario. We 

assume that the ECG signals are acquired and are compressed 

by projecting them onto a lower dimension by a sparse binary 

matrix [1]. The compressed data is sent to a base station for 

reconstruction and analysis. As a benchmark for reconstruction 

we use the Block Sparse Bayesian Learning (BSBL) algorithm 

[11] with wavelet as the sparsifying transform; this has been 

used in extensively in the past for reconstructing compressively 

sampled biological signals [1], [3] and [6]. The reconstructed 

signal is then used for classification. Here we compare with two 

recent techniques optimum-path forest (OPF), support vector 

machine (SVM) [54], Probabilistic Neural Network (PNN) [55] 

and Extreme Learning Machine (ELM) [56]; all of them use 

hand-crafted features. The best results are obtained from the 

feature extraction technique proposed in [57]; hence we use the 

same for our comparison. In the aforesaid references, detailed 

comparison have been done with other techniques and these 

were shown to yield the best results; hence we compare with 

these studies.  

As mentioned before, two sets of experiments have been 

carried out. In the first set only the MIT-BIH database has been 

used. In the second set, the database has been augmented with 

unsupervised samples from the European ST-T database. The 

results for reconstruction are shown in Table II and those from 

classification are shown in Table III. For classification, 

reconstructed signals from 50% compression have been used.  

For reconstruction, Normalized Mean Squared Error is the 

error metric.  

2

2

groundtruth reconstructed
NMSE

groundtruth

−
=   

We report the mean reconstruction error and the deviations. 

Classification Accuracy (Acc.) is the most important measure 

for performance; but it is a standard practice to report sensitivity 

(Sens.) and specificity (Spec.); the standard definitions apply 

for all the metrics. 

 
TABLE II 

ECG RECONSTRUCTION RESULTS 

Technique 50% Compression 25% Compression 

BSBL 0.121±0.056 0.262±0.114 

Prop. 0.140±0.014 0.190±0.026 

Prop. Aug. 0.089±0.006 0.122±0.018 

 
TABLE III 

ECG CLASSIFICATION RESULTS (AAMI2 PROTOCOL) 

Classifier Acc. F S V 

Sens. Spec. Sens. Spec. Sens. Spec. 

OPF 86.5 91.2 56.8 11.0 97.4 62.4 90.8 

SVM 90.1 98.8 31.9 0 97.6 41.7 95.4 

PNN 93.8 94.6 55.3 15.9 97.0 48.9 89.6 

ELM 89.2 95.6 39.8 0 97.0 50.2 95.2 

Prop. 92.0 96.8 54.5 13.6 100 48.6 93.6 

Prop. Aug. 96.9 98.8 56.6 19.0 100 65.2 96.2 

Prop. = MIT-BIH; Prop. Aug = MIT-BIH + European ST-T 
 

In Table II, the results are shown for the MIT-BIH database 

only. Even though we augment the dataset for our technique, 

we do not report the results for European ST-T; this is to keep 

all the results in sync. We can observe that the proposed 

technique improves with additional data and can yield results 

even better than sophisticated compressed sensing techniques. 

The reconstruction time required by the BSBL algorithm (takes 

~ 12 seconds) is about 40 times more than our proposed 

autoencoder (takes ~ 0.3 seconds to reconstruct signals of 1 

second durations) based approach. Therefore, not only do we 

recover the signal more accurately, we are faster than required 

for real-time operation.  

In classification we see that our proposed technique (even 

without augmentation) yields competitive results. It is among 

the top two results. But with augmentation, the results improve 

even more. We always perform the best in terms of accuracy. 

For a few isolated cases, our specificity and sensitivity are 

marginally low. One should note that, the results in Table III 

cannot be directly compared with [54]; this is because in the 

prior work the groundruth signal is used whereas in the current 

work the reconstructed signal is used. Therefore there is bound 

to be some fall in accuracy.  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

8 

B. EEG classification and reconstruction 

A publicly available EEG dataset, made available by the 

University of Bonn [58] is used in this work. The EEG database 

consists of five sets (A–E). Each set contains 100 single-

channel EEG segments, each with a duration of 23.6 s. Sets A 

and B have been recorded using the standard international 10–

20 system for surface EEG recording. Five healthy volunteers 

were participated in these tests with eyes open (A) and eyes 

closed (B). For sets C, D, and E, five epileptic patients were 

selected for presurgical evaluation of epilepsy by using 

intracranial electrodes. Depth electrodes were implanted 

symmetrically to record EEG from the epileptogenic zone (D) 

and from hippocampal formation of the opposite hemisphere of 

the brain (C). Segments of set E were taken from contacts of all 

electrodes. In sets C and D, segments contain interictal intervals 

while seizure activities occur in set E. Each epoch was sampled 

at 173.61 Hz resulting in a total of 4096 samples. 

Most prior studies like [24], [59-61] convert it to a binary 

classification problem – seizure vs non-seizure. In this work we 

classify all the 5 classes A to E as defined in [62]. We compare 

our proposed technique with empirical mode decomposition 

(EMD) [24] – using SVM, Rational Discrete Short-Time 

Fourier (DTSTF) transform [59] – using Neural Network and 

Linear Prediction Error (LPE) [62] – using simple thresholding. 

For our proposed method, the number of nodes in the outer layer 

is 1024 and in the inner layer is 256. 

As before we test our proposed technique in two modes. In 

the first mode, we only use the given dataset. In the second one 

we augment this dataset with unsupervised data. The 

unsupervised data is obtained from the BCI competitions II, III 

and IV [63]. These datasets have different sampling rates, so all 

of them have be sub-sampled to 128 Hz. The same was done for 

the actual dataset [58] used in the experiments. Also the signals 

are normalized.  

The results have been generated as before. The data is 

compressed to 25% and 50% of its original length and 

reconstructed using BSBL. The reconstructed signal is 

processed and classified using the techniques mentioned before. 

For our proposed techniques, the reconstruction and 

classification proceeds simultaneously. The reconstruction 

results are shown in Table IV and the classification results in 

Table V. The classification results are shown for 50% 

compression. 

 
TABLE IV 

EEG RECONSTRUCTION RESULTS 

Technique 50% Compression 25% Compression 

BSBL 0.112±0.062 0.240±0.084 

Prop. 0.192±0.024 0.292±0.096 

Prop. Aug. 0.060±0.006 0.096±0.012 

 
TABLE V 

EEG CLASSIFICATION RESULTS 

 Details EMD DTSTF LPE Prop. Prop. 

Aug. 

A Eyes open 88 88 86 86 88 

B Eyes closed 98 98 98 96 100 

C Inter-ictal (epileptic 

focus) 

94 96 92 92 96 

D Inter-ictal (Hipocam. 
region) 

95 95 92 93 96 

E Ictal state 92 94 90 92 92 

 

 

From Table IV, we find that the reconstruction accuracy from 

our proposed technique is poor when we only use the test 

dataset [58]. This is because there is not enough data to learn 

the mapping; when we augment the dataset with unsupervised 

data the improvement is dramatic. It yields significantly better 

results than sparsity based methods. We see a similar speed 

improvement. BSBL takes about a minute to reconstruct 23.6 

seconds of data whereas our proposed method takes only 1.8 

seconds. 

Table V shows the per class classification accuracy. Our 

proposed method (without augmentation) with only the 

supervised dataset does not yield very good results. This is 

likely to be an effect of overfitting of the autoencoder. With 

augmentation, the over-fitting issue is resolved and we get the 

best results overall results. It must be remembered that one 

cannot expect these results to match those in the published 

works; this is because the published papers use the groundtruth 

samples. Here the reconstructed samples are used. Owing to the 

reconstruction artifacts, the classification accuracy suffers.  

V. CONCLUSION 

This work proposes a comprehensive solution for the tele 

health monitoring scenario. Prior studies addressed the problem 

in situ. Some studies concentrated on the acquisition and 

reconstruction of the signals whereas others focused on the 

analysis of these signals. During analysis it was assumed that 

the reconstruction is ‘perfect’. This is not true. In prior studies 

[17-21] it has been shown that reconstruction artifacts do reduce 

the performance of automated analysis. This is mainly because 

prior techniques were based on hand-crafted feature extraction; 

they were dependent on the detection of peaks, troughs etc. 

Reconstruction artifacts corrupt these structures in the signal 

and hence the accuracy suffers.  

There are several major contributions of this work. First, we 

propose a new approach for reconstruction. Prior compressed 

sensing based techniques are ‘designed’ assuming certain 

structures of the signal. In this work we ‘learn’ to reconstruct 

the signal; this does not require any assumption regarding the 

structure of the signal. As long as we have enough number of 

samples to train, our ‘learned’ approach excels over prior 

‘designed’ techniques.  

We employ an autoencoder for reconstruction. However, as 

mentioned before, reconstruction is not the final goal – signal 

analysis is. Here we introduce a linear map into the classifier 

that learns the class labels from the training samples. Thus our 

proposed label consistent autoencoder simultaneously learns to 

reconstruct and classify. We understand that learning such 

structure require sizable portion of the data; labeled data may 

not be always available. Our proposed label consistent 

autoencoder can work with both labeled and unlabeled data. If 

the data is labeled it learns to reconstruct and map (to class 

labels), if there is no class label associated with the sample, it 

only learns to reconstruct.  

Usually Neural Networks are trained using some back-

propagation (bp) algorithm. However our said architecture is 

non-linear and hence cannot be used solved using bp. We solve 
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it using a recent class of optimization technique called Split 

Bregman.  

The proposed semi-supervised stacked autoencoder is 

suitable for the said problem. However it can also be used when 

there is no necessity to reconstruct. One can input the same 

samples at the input and the output and the corresponding class 

labels (if available); this would learn an autoencoder based 

classifier which can be applicable to any problem. In the future 

we would test how the proposed method excels on benchmark 

deep learning datasets.  
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