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Abstract

Objective—State-of-the-art algorithms that quantify nonlinear dynamics in physiologic 

waveforms are underutilized clinically due to their esoteric nature. We present a generalizable 

framework for classifying multiscalar waveform features, designed for patient-state tracking 

directly at the bedside.

Methods—An artificial neural network classifier was designed to evaluate multiscale waveform 

features against a fingerprint database of multifractal synthetic time series. The results are mapped 

into a physiologic state space for near realtime patient-state tracking.

Results—The framework was validated on cardiac beat-to-beat dynamics processed with the 

multiscale entropy algorithm, and assessed using PhysioNet databases. We then applied our 

algorithm to predict 28-day mortality for sepsis patients, and found it had greater prognostic 

accuracy than standard clinical severity scores.

Conclusion—We developed a novel framework to classify multiscale features of beat-to-beat 

dynamics, and performed an initial clinical validation to demonstrate that our approach generates a 

robust quantification of a patient’s state, compatible with real-time bedside implementations.
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Significance—The framework generates meaningful and actionable patient-specific information, 

and could facilitate the dissemination of a new class of “always-on” diagnostic tools.

Index Terms

nonlinear variability dynamics; supervised learning; intensive care decision support; sepsis; state 
tracking

I. Introduction

A data revolution is currently underway in healthcare, leading to significant improvements in 

the acquisition and storage of medical data in electronic health records (EHRs), in turn 

enabling data-driven knowledge generation [1]. For instance, many hospitals are deploying 

early warning scores (EWS) for sepsis or rapid decompensation that are integrated into the 

EHR and generate a warning message if specific combinations of laboratory values or vital 

signs exceed certain threshold values [2]-[4]. Although EWS for different patient groups are 

proliferating rapidly with varying degrees of success [5], [6], the decision support logic is 

usually rule-based, i.e. the values of discrete data points are evaluated in relation to 

population-based thresholds with little to no regard for individual differences or temporal 

context. Therefore, EWS are prone to false positives, further adding to the growing issue of 

alarm fatigue [7]. In addition, most EWS were purposely built for the type of averaged vital 

sign data typically stored in EHRs and largely ignore high resolution data, even though the 

latter is especially well-suited for EWS applications by virtue of its high sampling rate and 

the wealth of information encoded in its features. Data storage capacity is no longer a 

significant constraint, so one of the last remaining hurdles to incentivize the use of raw 

physiologic waveforms or higher-level waveform features at the bedside, is the development 

of analytic algorithms that can transform these data into clinically meaningful and actionable 

information.

One such class of higher-level waveform features is the small but continuous changes in the 

timing between waveform-derived events (inter-feature intervals), e.g. beat-to-beat 

variability in a cardiac time series. The dynamics of these interval fluctuations can be 

attributed to the combined action of various feedback and feedforward autonomic neural 

control systems, humoral, and mechanical effects that influence the cardiac rhythm [8]-[10]. 

The physiologic controls act over multiple temporal and biological scales, and interact with 

random noise, resulting in the multiscalar deterministic and stochastic mechanisms that 

underlie the variability. Thus, heart rate variability (HRV) may represent an evolutionary 

optimization to maintain a homeodynamic state that allows the cardiovascular system to 

respond appropriately to internal and external stresses [11]. Consequently, physiologic time 

series are often nonstationary and nonlinear, exhibit both deterministic and stochastic 

properties, and are scale invariant, i.e. operate over multiple interdependent temporal scales 

[9], [12]. Therefore, no a priori assumption can be made about the distribution of the data. 

Nevertheless, vital sign data stored in EHRs are based on first (mean) and second-order 

(variance) statistical moments, which are most commonly associated with a Gaussian 

distribution and thus ignore the multiscalar long-term correlation structure of the overall 

time series. We theorize that a unified framework for feature extraction, processing, and 
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visualization of multimodal, high-dimensional (waveform) data will facilitate moving 

beyond the status quo, and is required to introduce clinical decision support tools based on 

complexity dynamics at the bedside.

Because beat-to-beat variability effectively serves as a high level proxy for the underlying 

neural regulation, diagnostic and prognostic value has been attributed to many of its 

properties in both preclinical studies [13]—[15] and clinical trials [16]—[19]. Previously, 

we quantified the predictability of cardiac beat-to-beat dynamics using multiscale entropy 

(MSE) [20]. We pattern-matched the output of the MSE algorithm to colored noise with 

frequency-dependent scaling factors and tracked the progression of systemic inflammation 

in two preclinical models [13]. Now, we present the adaptation of this approach to human 

electrocardiogram (ECG) data by: 1) improving the original heuristic pattern-matching 

method to scale beyond the preclinical proof-of-concept study for univariate time series 

dynamics; 2) limiting sampling bias via a fingerprint database of synthetic time series; 3) 

developing a visual representation of a state space for patient tracking; and 4) validating our 

state tracking system in four distinct datasets. Specifically, the normal sinus rhythm, long-

term atrial fibrillation, and congestive heart failure datasets, publicly accessible on 

PhysioNet [21], and a sepsis dataset generated in the Medical Intensive Care Unit (MICU) at 

University Hospitals Cleveland Medical Center (UHCMC).

This work presents an initial clinical validation of a framework for classification of 

multiscalar physiologic waveform features, developed to facilitate end-user interaction with 

advanced patient state tracking tools.

II. A Framework for Physiologically-Relevant Classification of Multiscale 

Variability Dynamics

This section describes a generalizable framework for classification of multiscale variability 

dynamics, using a database of synthetic time series that emulates an appropriate physiologic 

range of ECG beat-to-beat dynamics (Fig. 1, A) [20].

A. Fingerprint Database (FPDB)

Nonstationary, multifractal synthetic time series were generated as training data for the 

artificial neural network (ANN, see § II. D.) using the p-model [22]–[24]. Synthetic time 

series that emulate cardiac beat-to-beat dynamics have multiple advantages over real-world 

data. First, it avoids sampling bias and is much faster to generate. Second, the primary goal 

of the FPDB is not to model the entire universe of possible cardiac beat-to-beat dynamics in 

health and disease, but rather to mimic the subset of pattern dynamics that can be quantified 

via the multiscale variability algorithm of interest, in this case regularity/predictability as 

quantified by MSE. As such, the synthetic time series provide a granular level of control 

over the dynamic structure of the data (Fig. 2, B). The FPDB was generated as follows: 50 

multifractal time series were generated from a p-model with p-factor = 0.57, length L = 

10,000, and fractionally integrated at slope β = −1 (Fig. 2, A [middle]). These parameters 

were chosen empirically as an idealistic representation of “normal” cardiac beat-to-beat 

dynamics, and will be referred to as f−ℚ, analogous to colored noise conventions [25] but 
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assuming multiple non-integer fractal scaling exponents. Second, additional time series were 

generated from three f−ℚ time series that were used to seed progressive addition of 

stochastic noise (Sn) by random scrambling, in steps from 1% to 99% of the length of the 

time series (i.e. 3×99 = 297 time series), and were labeled f−ℚ + Sn (Fig. 2, A [left]). Three 

seed time series and their derivations were sufficient to cover the range of physiologically-

relevant MSE profiles (see § II. C.) ranging from deterministic multifractal dynamics f−ℚ → 
f−ℚ + Sn) to almost full randomness (white noise, f0). Third, 297 time series were generated 

from additional p-model time series that were fractionally integrated at progressively more 

negative (“steeper”) slopes β, equidistant in the range γ = [−1.18, −3], and were labeled 

f−βℚ (Fig. 2, A [right]). The number of time series was chosen arbitrarily to match the f−ℚ + 

Sn category. Integration at steeper power spectral slopes is used to smooth out the long-term 

correlation structure in the time series. For β ≈ −1.62, a given value is strongly correlated 

with the preceding interval only, i.e. approximating a random walk-like process (brown 

noise, f−2). At even steeper slopes β, high frequency dynamics are progressively lost. In 

summary, the final FPDB contains 644 synthetic time series, each of length 10,000, ranging 

from almost pure white noise (f0) and f−ℚ + Sn (acute pathologic), to multifractal dynamics 

(f−ℚ, physiologic), and random walk-like dynamics (f−βℚ, chronic (pathophysiologic). The 

choice of the number of time series and their properties was guided by: 1) our prior work 

[13], 2) ensuring that the full range of physiologically-relevant MSE profiles was covered by 

the FPDB (see § II. C), and 3) appropriately representing the important class of f−ℚ time 

series, used as a proxy for “normal” dynamics, in the classifier training data (see § II. D.).

B. Deterministic, Stochastic, and Multifractal Properties

Delay vector variance (DVV) was used to verify the deterministic versus stochastic 

properties of the synthetic time series [26]. Time series with a strong deterministic 

component will have a low minimum target variance ( ). For f−ℚ → f−ℚ + sn time series 

(Fig. 2,C [i = 1 ← 100]), this is -predictably- reflected in a progressive loss of the 

deterministic component in favor of the stochastic (noise) component. For f−ℚ → f−βℚ time 

series (Fig. 2, C [i = 100 → 199]), this is reflected in a further decrease in , i.e. the time 

series structure becomes fully deterministic.

Additionally, the fractal properties of the time series were characterized via multifractal 

detrended fluctuation analysis (MFDFA) [27]. Cardiac beat-to-beat interval data (under most 

non-pathological conditions) are scale-invariant, indicative of a system controlled by 

mechanisms in dynamic equilibrium acting over multiple interdependent temporal scales [8], 

[9], [28]. Thus, the time series is characterized by one or more fractal dimensions and 

exhibits memory effects. MFDFA generates Hurst exponents (or fractal dimensions) Hq, 

weighted over different orders q, with low q-values emphasizing small fluctuations 

(singularities) and vice versa. In other words, MFDFA calculates a spectrum of fractal 

dimensions ranked in terms of the size of the fluctuations they describe, and is more accurate 

than monofractal techniques. For 0.5 < Hq ≤ 1, a time series exhibits long-range correlations 

(LRC) or memory, i.e. current intervals are correlated with both the distant and recent past as 

Hq → 1. For 0 < Hq < 0.5, the time series structure is anti-correlated, characterized by 

paired switching of short/long intervals, whereas Hq = 0.5 is the special case of random 

(white noise, f0) data. For Hq > 1, short-range correlations (SRC) become more pronounced, 
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in extremis approaching a highly-smoothed random walk. The f−ℚ time series in the FPDB 

(Fig. 3, A1) have Hurst exponents centered around 1. The f−ℚ + Sn time series have a dual 

profile, with decreased LRC at low q-order (small fluctuations), and relatively well-

preserved LRC at higher q-orders (large fluctuations) until Sn ~ 90%. For Sn > 90%, the 

Hurst exponents center around 0.5 (f0). For the f−βℚ time series (Fig. 3, A2), three distinct 

groups can be observed: 1) power spectral slopes in the range −1 > β ≥ −1.4 exhibit stable 

LRC across q; 2) for −1.4 ≥ β ≥ −2.6, both small and large fluctuations are short-range 

correlated (random walk-like dynamics), but the structure of small fluctuations is noticeably 

smoother (high Hq at low q); and 3) for β < −2.6 the range of Hq narrows again as the 

removal of the high frequency component becomes even more pronounced. The multifractal 

singularity spectra for several representative time series are shown in Fig. 3, B. The spectra 

depict the occurrence of different local Hurst exponents in the signal. The width of the 

spectrum (αwidth) is an estimator of the strength of the multifractal dynamics, while the 

mode of the distribution (αmode) represents the most prevalent fractal dimension. For f−ℚ → 
f−ℚ+ Sn, αwidth narrows from 0.4 to 0.24, while αmode shifts from 1.02 to 0.55, again 

illustrating the loss of multifractal dynamics and LRC. For f−ℚ → f−βℚ, αmode shifts to the 

right, while the multifractal dynamics are largely preserved. Importantly, two different types 

of multifractal behavior can be observed in a time series: 1) that due to LRC of both small 

and large fluctuations; and 2) that due to a probability density distribution with broad 

support [27]. The latter would be unwanted for the FPDB and its presence can be tested for 

as follows: the f−ℚ time series (Fig. 2, A [middle]) were scrambled randomly (Fig. 3, B 

[green-dashed line]) or shuffled using iterative Amplitude-Adjusted Fourier Transform 

(iAAFT; Fig. 3, B [red-dashed line]) [29]. The latter preserves the amplitude distribution and 

the (auto)correlation structure of the original data, while destroying any nonlinear structure. 

Because the randomized surrogate shifts to αmode~ 0–5, while the iAAFT surrogate is 

essentially identical to the original f−ℚ time series, the multifractal dynamics can be 

explained fully by LRC (type 1).

C. MSE Conversion

The MSE algorithm was used to convert the FPDB into the corresponding MSE profiles 

(Fig. 1, A). Sample Entropy (SampEn) quantifies the regularity/predictability of a time 

series. MSE does so over multiple coarse-grained scales, thereby distinguishing between 

stochastic noise and complex determinism (or complexity dynamics). One adjustment was 

made to the original algorithm [20]: all combinations of overlapping coarse-grained time 

series were processed as opposed to only non-overlapping cases (see § III. D.). The default 

parameters were used: pattern length m = 2, standard deviation modified by similarity 

criterion r = 0.15, scales n = [1, 20]. We previously showed the importance of the SampEn 
value as a function of scale n [13], i.e. specific changes in the shape of the MSE profile were 

found to be important determinants of the progression of systemic inflammation and 

associated organ damage, which could be quantified by matching the MSE profile to three 

prototypical colored noise time series (white f0, pink f−1, and brown f−2 noise). We refer the 

interested reader to Fig. 2 and 4 in [13] for more details. This heuristic approach worked 

well for highly controlled animal experiments but would not have been amenable to 

generalization and more confounded clinical data. First, the initial set of MSE profiles was 

pruned to delineate 7 discrete classes (Fig. 4, A → B) to facilitate the classifier training (see 
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§ II. D.). As the assignment of the class labels is a manual process, the dataset will be made 

available upon request. To account for a wider SampEn range in vivo, the initial 7 classes 

were shifted up (Fig. 4, C [green]), or down (Fig. 4, C [red]) by a constant value S. In terms 

of the time series dynamics, the shifts correspond to decreased (positive 8) and increased 

(negative S) regularity, respectively. Newly generated classes that fell outside the relevant 

physiologic range due to the shifts were removed, resulting in a total of 17 classes, 

schematically shown in Fig. 5, A. These classes are the theoretical equivalent of the 

empirically-determined classes in [13], and reflect clinically-pertinent state changes as we 

demonstrate in Section IV. The shifting procedure increased the total number of MSE 

profiles used for training to 792.

D. Training the Pattern Recognizer

A two-layer feedforward artificial neural network (ANN) with 20 inputs (corresponding to 

the MSE scales n), 17 hidden (sigmoid activation) and 17 output (softmax activation) 

neurons was trained on 594 MSE profiles (75% of dataset), and then validated and tested on 

119 (15%) and 79 (10%) MSE profiles, respectively, using the scaled conjugate gradient 

backpropagation algorithm (standard settings in the Matlab R2015a Neural Network Pattern 

Recognition Toolbox (nprtool)). The cross entropy of the ANN is 0.0089. Although the 

classification performance of the ANN is very high for MSE profiles based on synthetic time 

series, it is more ambiguous for real-world data. This is by design, as it enables smooth class 

transitions in the state space (see § III. D.).

E. State Space Mapping and Visualization

The 17 discrete class outputs of the ANN were assembled into a 2-dimensional state space 

(Fig. 5, B), with physiologically-related classes neighboring each other. As mentioned 

earlier, the ANN will usually classify new data as a combination of 2 or more classes, which 

is the intended behavior in order to generate a more accurate representation of the dynamical 

fluctuations as a function of time. Every class has a geometric center in the state space, and 

new data are mapped along the Euclidean distance between the identified class centers, 

weighted over the relative contribution of each class. The state space was pseudo-colored to 

improve readability: 1) the green sector encompasses high complexity dynamics with stable 

LRC, corresponding to “healthy” dynamics (not necessarily healthy individuals); 2) the red 

sector represents either extreme randomness (white noise, f0) to the far left, and extreme 

regularity (C) at the bottom of the state space, indicative of (acute) pathophysiologic 

changes in the underlying dynamics; 3) the yellow sector on the right edge encompasses 

f−βℚ type dynamics at low β values, i.e. random walk-like dynamics characterized by SRC, 

indicative of more chronic (patho)physiologic changes in the underlying dynamics; and 4) 

the yellow sector bordering the green and red sectors denotes transitional f−ℚ + Sn 
dynamics. Additionally, temporal (in)stability of the signal as it moves through the state 

space is another important determinant of the physiologic state of a patient.

III. Classification of New Data

This section describes how new data can be classified using the instance of the framework 

set up in § II, applied to four distinct physiologic waveform databases (Fig. 1, B).
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A. Ethics Statement

All experiments were approved by the Institutional Review Board of UHCMC, and selected 

study data were collected and managed using REDCap electronic data capture tools, hosted 

at UHCMC [30].

B. Databases and Study Participants

ECG waveforms from 3 PhysioNet databases were used: the MIT-BIH Normal Sinus 

Rhythm database (n = 18, 128 Hz) [21], the Long-Term Atrial Fibrillation database [21], 

[31] (n = 15, 128 Hz), and the BIDMC Congestive Heart Failure database [21], [32] (n = 15, 

250 Hz). In addition, a database of continuously recorded physiologic waveforms, including 

ECG (125 Hz), was generated for sepsis patients recruited in the MICU at UHCMC via the 

Philips Healthcare Research Data Export environment. Selected laboratory values and 

clinical annotations were managed in a REDCap database. Inclusion criteria were: 1) ≥ 18 

years old, 2) admitted to the MICU with a diagnosis of sepsis or septic shock. Exclusion 

criteria were: overly moribund and not expected to survive for more than 24 h. Patients were 

enrolled between 03/2015 and 01/2016. For the present study, 15 septic patients with 

vasopressor dependency were selected from the database.

C. Data Preprocessing

The datasets (n = 63) collectively span 131 days of ECG recordings. To minimize data 

curation time, a custom beat-detector was built and optimized for feature extraction from 

long non-stationary time series. Artifacts and ectopic beats were labeled automatically, and 

visually evaluated by an operator. Short artifacts were automatically corrected by examining 

the surrounding normal beats, followed by replacing the artifact by one or more “expected” 

beats. Artifacts too long to be corrected were taken into account in an overall quality control 

penalty, and excluded from the analysis.

D. Tracking a Patient’s State

A beat-to-beat interval time series was processed in epochs of 60 min, shifting forward in 

time by 10 min. This is important from a technical point-of-view: 1) it ensures sufficient 

data for robust algorithm operations, while maintaining adequate temporal resolution; and 2) 

the MSE similarity criterion r is based on the standard deviation of the input data, which can 

lead to inaccurate estimations for longer input time series due to non-stationarity of the data. 

Additionally, from a physiologic point-of-view, it ensures that leading edge beat-to-beat 

dynamics are evaluated in the context of the appropriate memory lag. For every epoch, 3 

Stochastic iAAFT (SiAAFT) surrogate permutations were generated. SiAAFT is more 

accurate than standard iAAFT in matching the power spectrum of the input data, at the 

expense of increased computation time [29], [33]. Next, every epoch was processed with the 

MSE algorithm. As mentioned earlier, the original MSE algorithm was adjusted to process 

all combinations of overlapping coarse-grained time series, to buffer against the influence of 

outliers in the beat-to-beat interval time series. Additionally, for real-world data, both pattern 

length m = 2 and m = 3 were computed, to extend the quantification of regularity to longer 

pattern matches (refer to [20] for details). Finally, original data epochs and their 

corresponding surrogates were classified by the ANN and mapped in the state space as 
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described earlier. The state space locations for multiple pattern lengths and surrogates were 

averaged. In addition to the state space plots (Fig. 5, B), sectors (corresponding to the 

pseudo-colors in the state space) were defined to generate a representation of sector 

transitions as a function of time. The 3 dimensions of the state space (2D grid and time) are 

projected onto a linear axis, representing sector transitions, as a function of time (ID axis 

and time). Although the information content of the latter is reduced compared to the state 

space plots, it improves the time-based interpretation of the data by focusing only on major 

sector transitions. Furthermore, a moving average filter was applied to the sector transition 

plots, to reduce the importance of very short-lived (1 epoch) state transitions.

E. Analysis

Statistics were performed with GraphPad Prism 6.07 (GraphPad Software, La Jolla, CA, 

USA) at a 95% confidence level. Two-way ANOVA was used to compare group aggregated 

data. Unpaired two-tailed t-tests were used to compare clinical severity scores between 

“Sepsis – Survived” and “Sepsis – Deceased” groups. All summary data are reported as 

means ± SD. Code for custom analyses was written in Matlab R2015a (The Math Works 

Inc., Natick, MA, USA).

IV. Application to Clinical Data

A. Normal Sinus Rhythm (NSR) Database

Long-term NSR ECG recordings (n = 18) were used to validate the baseline monitoring 

capabilities of the state tracker. Fig. 6 shows the state space plots for original [left] and 

surrogate [right] data for two representative NSR subjects. For dataset #014 [top], almost all 

original data epochs are located in the f−ℚ sector (green), with the exception of a low 

number of epochs on the edge of the f−ℚ + Sn sector (yellow). For the surrogate data, all 

epochs are located in the f−ℚ sector (green). The corresponding sector transition plot shows 

a complex signal, indicative of LRC, for the total length of the recording. The static state 

space plots shown here obfuscate temporal information; an animated version of the state 

space plot for subject NSR014 can be found in the Supplemental Information. For dataset 

#007 [bottom], the original signal is distributed similarly across the state space but includes 

transitions to the f−ℚ + Sn (yellow) and f0 sectors (red). Again, these transitions were 

removed by surrogate shuffling, and the ECG revealed that these transitions occurred during 

periods of marked respiratory sinus arrhythmia (RSA) and long sinus pauses [34], [35], 

which can occur during non-rapid eye movement sleep. Thus, benign bradyarrhythmias can 

introduce beat intervals that act as a source of “physiologic noise”, although one that could 

be highly regulated via cardiorespiratory coupling if examined with the appropriate 

techniques [36]. Indeed, SiAAFT surrogate shuffling removed the effect of the arrhythmias 

from the pattern dynamics, pointing to a more nonlinearly organized structure. Similar types 

of bradyarrhythmias were observed in 4/18 of the datasets; surrogate shuffling removed their 

influence in all cases (Fig. 8). Aggregate data, expressed as total time spent in each sector, 

are shown in Fig. 8.
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B. Congestive Heart Failure (CHF) Database

Beat-to-beat dynamics of CHF patients are known to exhibit reduced complexity [20] and 

multifractal dynamics [28]. Two representative examples from the CHF database (n = 15) 

are shown in Suppl. Fig. 1. Dataset #013 [top] fluctuates between the edge of the f−ℚ and 

f−ℚ + Sn sectors (green/yellow), for both the original and surrogate data. For the latter, the 

transitions are reduced in duration and severity, except for the larger f−ℚ → f0 transition 

(green → red) around 12.5 h. Thus, in the case of CHF, the periodic loss of complexity, 

sometimes approaching randomly distributed data, is also reflected in the linear structure of 

the data, in contrast to the bradyarrhythmias observed in the NSR database. Dataset #004 

[bottom], on the other hand, has a markedly different profile. The original data is 

characterized by a random walk-like structure (yellow). However, the surrogate shuffling 

seems to unmask sector transitions that are more similar to dataset #013. Aggregate data, 

expressed as total time spent in each sector, are shown in Fig. 8.

C. Atrial Fibrillation (AF) Database

The AF database (n = 15) contains 8 subjects with paroxysmal (PAF) and 7 subjects with 

sustained AF (SAF). A representative PAF and SAF example are shown in Suppl. Fig. 2. For 

dataset #001 (PAF) [top], both the original and surrogate data are located in the f−ℚ (green) 

sector with little to no sector transitions, followed by a very marked transition to f−ℚ + Sn 
(yellow) and f0 (red) at the onset of the AF episode. SAF (dataset #012, [bottom]), on the 

other hand, is characterized by a very narrow clustering of the epochs in the f−ℚ + Sn → f0 

(yellow → red) sectors for both the original and surrogate data. Aggregate data for the PAF 

and SAF groups, expressed as total time spent in each sector, are shown in Fig. 8.

D. Sepsis Database

ECG waveforms from patients admitted to the MICU (Table I) and diagnosed with sepsis 

with vasopressor dependency were used to evaluate the state tracker on patients with 

complex disease etiologies and no primary cardiac pathology. Patients were retrospectively 

divided in “Survived” and “Deceased” groups, based on 28-day mortality. Two 

representative examples are shown in Fig. 7 (an animated version of the state space plot for 

subject MICU032 can be found in Supplemental Information). One of the survivors (dataset 

#032, [top]) was admitted with sepsis, respiratory and kidney failure, and required 

mechanical ventilation. During the first 64 h of admission, original and surrogate epochs 

were located mostly in sector C (extremely regular patterns, red), indicative of severe 

disturbances in regulatory pathways converging on the heart. This was followed by an abrupt 

C → f0 transition when continuous veno-venous hemofiltration (CVVH) was started in 

response to the kidney failure. About 15 h after the start of CVVH, both the original and 

surrogate data started to normalize to the f−βℚ (yellow) and f−ℚ (green) sectors, respectively. 

Dataset #046 (“Deceased” group, [bottom]) is from a patient admitted with urosepsis who 

required mechanical ventilation. For the first 24 h of admittance, the original and surrogate 

data were located in sector C (red), with occasional transitions to f−βℚ (yellow), followed by 

an abrupt transition to the f0 (red) sector with no further changes until discharge to palliative 

care.
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E. Statistical Comparison

Aggregate data for the PhysioNet databases are shown in Fig. 8. Averaging the data reduces 

the information content severely and destroys all temporal context. We did this solely to 

provide summary statistics for validation purposes. Compared to the NSR control group, 

CHF was significantly decreased for the f−ℚ (green) sector (p < 0.0001), and increased for 

the f−βℚ (yellow) sector (p < 0.0001); PAF was significantly decreased for the f−ℚ (green) 

sector (p = 0.0002), and increased for the f−βℚ (yellow) sector (p = 0.006); and SAF was 

significantly decreased for the f−ℚ (green) sector (p < 0.0001), and increased for the C//° 

(red) sector (p < 0.0001). The aggregate effect of SiAAFT shuffling appears to be removal of 

random walk-like dynamics (f−βℚ → f−ℚ) (yellow → green) for the CHF (p = 0.0016) and 

PAF (p < 0.0001) databases, emphasizing that surrogate shuffling can unmask 

physiologically-relevant linear patterns.

Aggregate data from the Sepsis Database is shown in Fig. 9 and Table II. Total time spent in 

the C/f0 (red) sector and, to a lesser extent, the f−ℚ (green) sector was significantly 

correlated with outcome (28-day mortality). In contrast, clinical severity scores were non-

significant between the “Sepsis – Survived” and “Sepsis – Deceased” outcome groups.

V. Discussion

We presented an initial clinical validation of a novel framework for the classification of 

multiscalar features extracted from physiologic waveform time series data. Our framework 

was designed to facilitate rapid prototyping and bedside deployment of state-of-the-art 

feature extraction algorithms that have diagnostic or prognostic value, but whose clinical 

implementation is hampered by their esoteric nature. Specifically, and depending on the 

application: 1) the synthetic fingerprints can be reconfigured to embed other time series 

dynamics (e.g. respiratory instead of cardiac); 2) the feature extraction algorithm can be 

changed (e.g. (MF)DFA, DVV, other implementations of MSE); 3) changes in #1 and #2 

require the ANN to be retrained; however, the time-consuming step of the acquisition of 

high-quality training data is bypassed by the FPDB; 4) the physiologic state space -and 

variations thereof- can be read without extensive training, as the “intelligence” is handled by 

the classification process.

The method was validated using MSE analysis of cardiac beat-to-beat intervals because of 

prior preclinical work that identified specific features of MSE profiles as important 

determinants of progression and outcome of systemic inflammation [13]. These preliminary 

observations were translated to human data in the present study. ANN-mediated matching of 

new data to multiscalar complexity fingerprints reduced the dimensionality of a single time 

point from 20 dimensions (scales n) to 2 (state-space plot) or 1 (sector-transition plot) spatial 

dimension(s) with minimal loss of relevant clinical information. Moreover, the pattern 

matching approach highlights clinically pertinent “features of features”, by interpreting 

SampEn as a function of all scales n, across time. Certain aspects of this workflow are 

computationally expensive (e.g. the surrogate permutations). However, the time lag (10 min 

in the current implementation) would allow server-side processing. Additionally, because 

many of the analysis steps are easily parallelizable, scaling is trivial.
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The resulting MSE-based framework instance was validated on various physiologic 

waveform databases. The NSR database established a baseline for normal cardiac dynamics. 

Importantly, 22% of the subjects exhibited bradyarrhythmi-as, which was detected as 

increased randomness in the beat-to-beat intervals (Fig. 6 [bottom]). The surrogate 

permutations effectively removed the influence of the arrhythmias, highlighting the 

importance of teasing apart the linear and nonlinear organization of the data via surrogate 

methods. The CHF and AF databases were used to corroborate prior results with the same or 

similar data [20], namely that beat-to-beat dynamics of CHF patients exhibit random walk-

like dynamics, and those of AF patients approach full randomness (white noise). 

Interestingly, if random walk-like dynamics were present in the original signal, they were 

“unmasked” by surrogate shuffling, sometimes revealing f−ℚ + Sn and f0 sector transitions 

(Fig. 8 and Suppl. Fig. 1). Additionally, for PAF subjects, the sector transitions tracked 

accurately with the AF episodes (Suppl. Fig. 2 [top]). These results are not surprising, 

considering the underlying primary cardiac pathology, but nevertheless validate the 

robustness of the method, and emphasize the importance of also examining the linear 

structure of the data via surrogate permutations.

The Sepsis Database is characterized by much more complex disease etiologies that are not 

primarily cardiac in origin. In this case, cardiac beat-to-beat interval dynamics act as a proxy 

for examining the underlying network physiology and organ coupling [10], [37]. Subtle 

changes in the dynamics can be attributed to network disturbances and the detection of 

tipping points; for instance, the transition of a controlled inflammatory response to 

uncontrolled systemic inflammation. The initial validation shows that our approach is 

already more powerful than widely used clinical severity scores (e.g. SAPS and APACHE) 

in categorizing severity and outcome. Because the survival rate of sepsis and septic shock is 

highly correlated with early diagnosis and start of appropriate treatment [4], [38], robust 

real-time decision support tools are imperative for the continued management of sepsis and 

multiple organ failure. As an anecdotal example, in dataset #032 (Fig. 7 [top]), a very 

marked improvement in complexity dynamics in both the original and surrogate signals was 

detected 15 h after starting CVVH, and 74 h before CVVH was terminated. Because urine 

output and other biomarkers of kidney failure are masked during CVVH, critical care 

physicians have little information available to guide the decision to continue or terminate the 

treatment. Precedent exists for using variability-based biomarkers for decision support, e.g. 

in mechanical ventilation weaning trials [17]. We wish to highlight the following limitations 

of our study: 1) we used various sources of ECG data to perform an initial clinical 

validation, but the total number of subjects was limited (n = 63); 2) so far, the presented 

framework instance was only tested on cardiac interbeat interval data, processed by the MSE 

algorithm; and 3) potential end-users did not yet evaluate the visualization tools. Future 

studies will focus on evaluating the performance of framework instances for specific 

monitoring applications directly at the bedside.

VI. Conclusion

In summary, the classification framework presented in this paper can generate meaningful 

and actionable patient-specific information that is based on relevant properties from 

physiologic time series, in near real-time. We demonstrated this for an MSE-based instance 
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of the framework, using three PhysioNet databases and a Sepsis Database from the MICU at 

UHCMC. The latter showed that our approach yielded a sensitive, albeit non-specific, 

continuously updating physiologic biomarker that reflected improvements in or 

exacerbations of a patient’s overall state. Furthermore, we presented two data visualization 

approaches that represent the information in an end-user friendly format, and could facilitate 

bedside adoption.

Future work will evaluate the performance of the current framework instance on a much 

larger and more diverse ICU population, in addition to evaluating other framework instances 

(e.g. designed to process other types of physiologic time series data, such as 

photoplethysmography, arterial blood pressure, or respiratory signals), multimodal variants 

(e.g. based on cardiorespiratory coupling), and implementation of other pertinent feature 

extraction algorithms or data sources (e.g. based on ambulatory monitoring systems). In 

addition, decision-support tools that are both sensitive and specific can be developed by 

fusing information generated by these or similar “always-on” EWS with diagnostic data 

from the patient’s EHR profile.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Schematic representation of the framework
Dark grey boxes: proposed framework workflow. Light grey boxes: specific implementation 

of the current framework instance. A) Steps to be performed once to set up a new framework 

instance, see § II. B) Steps to be performed to process new (unknown) data, see § III. 

iAAFT, iterative Amplitude-Adjusted Fourier Transform.
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Fig. 2. Characterization of the FPDB: stochastic vs deterministic properties
A) Schematic representation of the generation of the various types of synthetic time series 

mat make up the FDPB: Sn, stochastic noise; β, power spectral slope for fractional 

integration; γ, offset value for slope β; ci, constant to generate equidistantly spaced γ ≥ β ≥ 

−3. B) From left-to-right: representative tachograms for f−ℚ + Sn99% (approximating white 

noise, f0); f−ℚ + Sn49%; f−ℚ (multifractal and nonstationary seed time series); f−1.62ℚ 

(approximating brown noise, f−2); and f2.99ℚ (extreme smoothing, loss of high frequency 

dynamics). C) Minimum target variance ( ) for a representative set of 199 synthetic time 

series (i.e. encompassing the entire range from f−ℚ + 99% to f−ℚ and f−2.99ℚ determined by 

delay vector variance (DVV). The lower , the stronger the deterministic component; the 

higher , the stronger the stochastic component of the time series structure. The middle 

time series [i = 100] corresponds to a fractional integration slope β of −1. See text for 

details.
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Fig. 3. Characterization of the FPDB: multifractal properties
A) Hurst exponent Hq (fractal dimension) as a function of order q (singularity weighting 

factor) for a representative set of 199 synthetic time series (i.e. encompassing the entire 

range from f−ℚ + 99% to f−ℚ and f−2.99ℚ). The annotations correspond to Fig. 2, B. B) 

Multifractal singularity spectra for representative synthetic time series: αwidth is an estimator 

of multifractal strength, αmode denotes the most prevalent fractal dimension. The surrogate 

permutations (randomized (green) and iAAFT (red)) correspond to the original time series 

(β = −1). See text for details.

Vandendriessche et al. Page 17

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 December 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Fig. 4. MSE conversion of the FPDB
A) Set of 199 representative synthetic time series converted to their corresponding MSE 

profiles (see Fig. 3. A). B) Pruning of the MSE profiles to delineate 7 distinct classes. C) 

Positive (green) and negative (red) shifts of the original (blue) MSE profiles to better match 

the physiologic range, generating a total of 17 classes. See text for details.
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Fig. 5. Schematic representation of the classification scheme and the state space
A) Each class is labeled according to the primary determinant of its structure; (middle 
column) f−ℚ corresponds to β = −1; f−ℚ + Snx corresponds to increasing amounts (x = 1, 2, 

3) of stochastic noise added to the seed time series f−ℚ; fβℚ corresponds to decreasing (x = 

1, 2, 3) fractional integration slopes β. The left and right columns represent negative and 

positive offsets δ, respectively. The drawings are approximations of the MSE profile shape 

covered by that specific class. B) Visual representation of the state space, overlaid with the 

17 classes. The pseudo-coloring delineates multi-class sectors within the state space that 
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share dynamical properties (as quantified by MSE) to improve readability. LRC, long-range 

correlations; SRC, short-range correlations. See text for details.
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Fig. 6. Two representative examples from the NSR database
State space plots for original [top-left] and surrogate [top-right] data, and sector transition 

plot [bottom] for: 1) dataset #014, NSR; and 2) dataset #007, NSR with marked 

bradyarrhythmias. See text for details.
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Fig. 7. Two representative examples from the Sepsis database
State space plots for original [top-left] and surrogate [top-right] data, and sector transition 

plot [bottom] for: 1) dataset #032 (“Sepsis – Survived” group); and 2) dataset #046 (“Sepsis 

– Deceased” group). AKI, Acute Kidney Injury; APACHE II, Acute Physiology and Chronic 

Health Evaluation; SAPS II, Simplified Acute Physiology Score; CVVH, continuous 

venovenous hemofiltration. See text for details.
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Fig. 8. Relative sector occupancy for the NSR, CHF, and AF databases
A–B) Averaged original (A) and surrogate (B) data for the databases, grouped per sector: 

f−ℚ, f−βℚ, f−ℚ + Sn, and f0/C. Stars denote comparisons of the CHF, PAF, and SAF groups to 

the NSR control group. ****, p ≤ 0.0001; ***, p ≤ 0.001; **, p ≤ 0.01; *, p ≤ 0.05.
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Fig. 9. Relative sector occupancy for the Sepsis Database
A–B) Averaged original (A) and surrogate (B) data for the “Sepsis - Survived” and “Sepsis - 

Deceased” groups, grouped per sector: f−ℚ, f−βℚ, f−ℚ + Sn, and f0/C. **, p ≤0.01; *, p ≤ 

0.05.

Vandendriessche et al. Page 24

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 December 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript

Vandendriessche et al. Page 25

TA
B

L
E

 I

Pa
tie

nt
 C

ha
ra

ct
er

is
tic

s

P
at

ie
nt

G
en

de
r

A
ge

A
PA

C
H

E
SA

P
S

A
K

I
D

ec
ea

se
d

00
5

M
88

21
67

3
Y

00
9

M
66

22
48

0
Y

01
5

M
58

19
68

2
N

01
9

M
75

21
62

1
Y

02
1

M
45

17
46

0
N

02
5

F
57

22
51

1
N

02
7

M
43

18
37

3
N

03
1

F
67

24
75

0
Y

03
2

F
53

35
96

3
N

03
7

F
68

26
56

3
Y

03
8

M
23

8
58

0
N

04
0

M
64

13
46

2
N

04
2

M
71

20
64

0
Y

04
5

F
60

26
75

0
Y

04
6

M
70

29
63

3
Y

A
PA

C
H

E
 I

I,
 A

cu
te

 P
hy

si
ol

og
y 

an
d 

C
hr

on
ic

 H
ea

lth
 E

va
lu

at
io

n;
 S

A
PS

 I
I,

 S
im

pl
if

ie
d 

A
cu

te
 P

hy
si

ol
og

y 
Sc

or
e;

 A
K

I,
 A

cu
te

 K
id

ne
y 

In
ju

ry
.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 December 01.



V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript

Vandendriessche et al. Page 26

TABLE II

Group Comparison Sepsis Database

SURVIVED* DECEASED* COMPARISON

APACHE 18.86 ±8.44 23.63 ±3.16 p = 0.160

SAPS 57.43 ± 19.66 63.75 ± 9.07 p = 0.428

AKI 1.57 ± 1.27 1.25 ± 1.49 p = 0.663

f−ℚ - original 0.439 ±0.314 0.192 ±0.184 p = 0.0602

f−ℚ - surrogate 0.663 ± 0.250 0.365 ± 0.246 p = 0.0112

f0/C - original 0.148± 0.181 0.527 ±0.269 p = 0.0013

f0/C surrogate 0.148 ±0.185 0.419 ±0.290 p = 0.0249

APACHE II, Acute Physiology and Chronic Health Evaluation; SAPS II, Simplified Acute Physiology Score; AKI, Acute Kidney Injury.

*
Results are mean ± SD.
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