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Abstract—The photoplethysmographic (PPG) signal is an im-
portant source of information for estimating heart rate (HR).
However, the PPG signal could be strongly contaminated by the
motion artifact (MA) of the subjects, making HR estimation
a particularly difficult problem. In this paper, we propose
PARHELIA, a PARticle filter-based algorithm for HEart rate
estimation using photopLethysmographIc signAls. The proposed
method employs a particle filter, and utilizes the simultaneously
recorded acceleration signals from a wrist-type sensor, to keep
track of multiple HR candidates. This achieves quick recovery
from incorrect HR estimations under the strong influence of the
MA. Experimental results for a dataset of 12 subjects recorded
during fast running showed that the average absolute estimation
error was 1.17 beats per minute (BPM) whereas that of the best-
known conventional method, JOSS, is 1.28 BPM. Furthermore,
the estimation time of PARHELIA is 20 times shorter than JOSS.

Index Terms—Heart rate estimation, motion artifact removal,
particle filter, photoplethysmography (PPG).

I. INTRODUCTION

HEART rate (HR) monitoring is widely recognized as a
useful measure for the exercisers to control their training

load. There is a strong demand for HR monitoring devices that
can be used during physical exercise. Various types of such
devices are available in the market. They can be categorized
based on the body part on which they are worn — chest,
abdomen, wrist, etc. The devices worn on the chest or on the
abdomen tend to obtain accurate HR estimations because they
are tightly attached to the human body with a belt, making
them resistant to measurement noise. However, wearing the
tightened belt is uncomfortable for the users. Furthermore,
chest-type and belt-type devices require an additional display
device to indicate the current HR to the user. In contrast,
wrist-type devices are, in general, much more comfortable to
be worn compared to the other types of HR monitors, and
are useful, because the display can be embedded into the
device. In order to take advantage of these merits, we focus
on developing an HR estimation method for the wrist-type HR
monitors.
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Most of the wrist-type devices use photoplethysmo-
graphic (PPG) signals [1] to estimate the HR [2]. In typical
PPG measurements, a device illuminates the skin and measures
the changes in the intensity of the reflected light. The change
in intensity corresponds to the volumetric change of the vessels
under the skin; therefore, the HR can be estimated by capturing
the periodicity of the PPG signal. However, PPG signals can be
contaminated easily by motion artifacts (MAs), which makes
HR estimation difficult.

Various methods to reduce the effect of MAs in PPG signals
have been proposed. In [3], the noise in the PPG signal is re-
moved by empirical mode decomposition (EMD). The original
PPG signal is decomposed into intrinsic mode functions (IMF)
components, which are then summed after MA reduction.
In [4], the PPG signal is denoised using wavelet transform.
The wavelet transform is first applied to the original signal,
and subsequently, both the low-frequency and high-frequency
components are removed by a threshold in the wavelet domain.
Finally, the filtered data is transformed back to the time
domain. Other methods include moving average filter [5],
adaptive noise cancellation (ANC) [6], independent component
analysis (ICA) [7], [8], Fourier series analysis [9], etc. These
methods are used when the MAs are relatively small and the
original shape of the PPG signal is not completely lost. A
heuristic algorithm [10] is also proposed under the assumption
that, during exercises, the MAs have higher harmonic contents
than the PPG signal. It works well when there is a clear
distinction between HR and MAs in the frequency domain.

There are other approaches that try to remove the MAs
by using accelerometer signals, which include spectrum sub-
traction [11], [12], joint sparse spectrum reconstruction [13],
singular spectrum analysis [2], [14], [15], adaptive filtering
[16] and mixture of algorithms [17]. With the aid of an accel-
eration signal, strong and continuous MAs can be reduced. For
example, in [11], [12], the MAs are reduced by subtracting
the accelerometer spectrum from the PPG spectrum. More
recently, JOSS [13] has been proposed to estimate the HR from
PPG signals with strong MA contamination. JOSS consists of
two parts: joint sparse spectrum reconstruction and spectral
peak tracking. The joint sparse spectrum reconstruction is a
novel approach that can be used to estimate the frequency
spectrum instead of using ordinary methods such as fast
Fourier transform (FFT). This unique methodology contributes
to the high accuracy of JOSS in HR estimation.

However, there are some drawbacks in the JOSS method.
It tracks only one candidate of the HR and uses the result of
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HR estimation of the previous time window for estimating
the HR of the current time. Owing to this property, once
the estimated HR deviates from the true HR, it is difficult to
recover the true value from the incorrect estimate. Therefore, it
is necessary for JOSS to employ a recovering algorithm, which
is costly in terms of calculation time. Furthermore, JOSS needs
an initialization stage that requires the subject to be at rest.
Until the initialization is performed successfully, JOSS gives
no estimation result.

Our study focuses on the HR estimation from the PPG
signals that are recorded during physical exercise of changing
intensity, in which the obtained PPG signals tend to be
contaminated by continuous, random, and often large MAs. In
this situation, the signal from the accelerometer is particularly
helpful to identify the possible contamination of MAs, and
this is why we decided to use accelerometer signals in our
HR estimation.

In this paper, we propose a novel approach for HR esti-
mation, PARHELIA. The proposed method utilizes a particle
filter [18] to estimate the HR accurately under strong influence
from MAs. The particle filter, which is one of the robust
tracking methods using time series data, is suitable for the
HR estimation, because the HR variation is limited within a
small range in a short period. The existing works [2], [13]
that are based on the same assumption have achieved good
estimation results. In our work, unlike the existing methods,
we take advantage of the particle filter that has a potential
to recover from an incorrect estimation to the correct one,
since an ensemble of the particles can always keep track of
the multiple HR candidates. Tracking the multiple candidates
ensures the robustness of our proposed HR estimation method.
In addition, our method uses the acceleration signals in the
weight calculation stage of the particle filter. By changing the
weight of the particles according to the acceleration spectra,
the noise caused by MAs can be sufficiently reduced.

The remainder of this paper is organized as follows. In
Section II, the framework of the particle filter is described. In
Section III, the proposed method of HR estimation, PARHE-
LIA, is described. In Section IV, experimental results on
the dataset are presented. Finally, we conclude this paper in
Section V.

II. PARTICLE FILTER

A. Overview

The particle filter can be used to solve non-linear tracking
problems. By performing Bayesian estimation on a large
number of particles, a probability density function (PDF) of
a desired stochastic variable is approximated. The PDF is
iteratively updated on the basis of observations, so that all
the possible candidates can be tracked with the position of the
particles.

Fig. 1 illustrates an example for a one-dimensional density
estimation of the stochastic variable x in a typical particle
filter flow. The black circles represent the particles, and the
curved lines express the density of particles. The purpose of
the particle filter is to approximate the target distribution with
the density of the particles. The salient feature of the particle
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Fig. 1. Overview of a particle filter. In the prediction stage, each particle is
moved according to (1). In the weight calculation stage, the weight of each
particle is calculated by (2). In the resampling stage, the particles are extracted
according to their weights. The above three stages are repeated.

filter is its ability to track multiple candidates; when there
exist more than one candidate, the particle density has multiple
peaks.

At the top of the figure, a distribution of particles at time
t−1 is shown. In the next time step t, the state of the variable
should change. In order to reflect the change, the particles are
moved so that they fit the new state better. Typically, each
movement is made using a random function. Based on the
acquired signal, the fitness of each particle is evaluated and
represented as the weight. Then, the particles are resampled
according to the calculated weight. The particles that have
very small weights will vanish, and the particles that have
large weights will be copied many times, representing the
distribution of the state.

In terms of the HR estimation, the stochastic variable x
represents HR at a particular time. The likelihood of the HR
at the next time step is expressed by the density of particles
based on the current position of the particles and the current
observations of PPG and accelerometer signals. This update is
realized by the following steps:

• Prediction: Each particle is moved to the next new posi-
tion according to a prediction model, which defines the
probabilistic behavior of the particles. For HR estimation,
the prediction model should express the HR fluctuation
caused by biorhythm and/or exercise. By moving all the
particles to the new positions, the distribution of the
particles changes to the likely distribution expected for
the next time step.

• Weight calculation: The likelihood of the predicted par-
ticles is verified based on the current observation. If the
predicted particle agrees well with the observation, a large
weight is assigned to the particle; otherwise, a small
weight is assigned. The size of the white circles in Fig. 1
represents the weights of the particles.

• Resampling: The particles are redistributed to express
the weighted particles with the density of the particles.
Thus, a new distribution of the particles representing the
likelihood of the current state is obtained. The number
of new particles is the same as the initial one, thus being
ready as the input of the prediction step in the next
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iteration.
Kalman filter [19] is a well known method for solving track-

ing problems. In order for the Kalman filter to be applicable for
a tracking problem, the system must be expressed by a linear
model and the noise needs to follow the Gaussian distribution.
At the same time, a particle filter does not need the above
premise. In HR estimation, the HR may change suddenly and
become heavily contaminated by MAs. This is why we use a
particle filter instead of simple Kalman filters.

B. Detailed Formulation

In this subsection, we give a more formal derivation of the
particle filter [19] and show how it is used in HR estimation.

A general non-linear/non-Gaussian state space model can
be expressed as follows:

xt = f(xt−1, vt), (1)
yt = h(xt, wt), (2)

where f(·) and h(·) represent non-linear functions, xt denotes
a state of the system and follows the Markov process, yt
is a measurement at time t, and vt and wt are the state
and measurement noises, respectively. Let y1:t be the stacked
vector of observations up to time t.

The important problem related to the state space model is
estimating the unknown state xt using (1) and (2) when y1:t is
given. For Bayesian estimation, this problem can be reviewed
as a probabilistic inference process. The Bayesian estimation
estimates a probability density function, p(xt|y1:t), by using
prediction and updating procedures as explained below. Here,
p(xt|y1:t−1) is the probability for the value xt to be true, from
the observations y1:t.

• Prediction: The PDF of x is calculated at the current time
t by using (1) and all the observations until time t− 1,

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (3)

This calculation corresponds to the prediction step of the
particle filter.

• Updating: The current observed value yt is used to update
the prior PDF using Bayes’ theorem,

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
, (4)

where the normalizing constant is

p(yt|y1:t−1) =

∫
p(yt|xt)p(xt|y1:t−1)dxt, (5)

which depends on the likelihood function p(yt|xt) de-
fined by (2). This part corresponds to the weight calcu-
lation and resampling steps in the particle filter.

In the above framework, the particle filter is defined as
follows. Let xt|t−1 and xt|t be the particles that express
the probability density functions p(xt|y1:t−1) and p(xt|y1:t).
Being N the number of particles, these particle groups
Xt|t−1 = {x(i)

t|t−1}
N
i=1 and Xt|t = {x(i)

t|t}
N
i=1 are successively

calculated using the following algorithm [18].

PPG signal
Acceleration signal

FFT
BPM

estimation

Weight 
calculation

Prediction

Resampling

BPM
output

Stage 1:
Spectral analysis

 Stage 2:
Particle filter

Y1(x), Y2(x), A(x)  

Y1(x)  

Fig. 2. Flowchart of the proposed method.

1) Generate particles x
(i)
0 ∼ p(x0) (i = 1, . . . , N), where

“∼” represents the sampling from p.
2) For t = 1, . . . , T , carry out the following steps:

a) Repeat the following steps for each i = 1, . . . , N :
i) Prediction: Generate x

(i)
t|t−1 from

x
(i)
t−1|t−1 using the prediction model,

x
(i)
t|t−1 ∼ p(xt|xt−1), (i = 1, . . . , N).

ii) Weight calculation: Calculate the weight of the
particles w

(i)
t using the observation, w

(i)
t =

p(yt|x(i)
t|t−1).

b) Calculate Wt =
∑N

i=1 w
(i)
t .

c) Resampling: Extract x
(i)
t|t−1 from Xt|t−1 =

{x(i)
t|t−1}

N
i=1 according to the weight ŵ

(i)
t =

w
(i)
t /Wt by sampling with replacement.

III. PROPOSED METHOD

PARHELIA estimates the HR by using two PPG signals and
3-axis acceleration signals. The two PPG signals are indepen-
dently recorded by the two adjacent PPG sensors equipped
in a single wrist-type device. The accuracy of estimation is
improved by using the two PPG sensors because one signal
can compensate the other signal that might be contaminated
by MAs, and vice versa. The acceleration signals are recorded
by an accelerometer in the same device recording the PPG
signals. They are used to reduce the influence of MAs.

PARHELIA consists of two stages: spectral analysis and
particle filter. The particle filter is used to track multiple HR
candidates. The flowchart of PARHELIA is shown in Fig. 2.

A. Stage 1: Spectral Analysis

The power spectra of two PPG signals and 3-axis acceler-
ation signals are calculated using FFT with an order NFFT.
NFFT is a parameter that decides the frequency resolution. In
this case, the frequency resolution is expressed as

Fs

NFFT
× 60BPM, (6)
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Fig. 3. An example of a raw PPG signal.
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Fig. 4. FFT Spectra of the PPG signal in Fig. 3.
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Fig. 5. An example of a raw acceleration signal (y-axis).
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Fig. 6. FFT Spectra of the acceleration signal in Fig. 5.

where Fs is a sampling frequency and BPM is beats per
minute. The multiplication by 60 is a simple unit conversion
from seconds to minutes. Figs. 3–6 show examples of the
spectrum analysis for the PPG and accelerometer signals.
Each power spectrum of the PPG signal is normalized by
its maximum value. For an acceleration spectrum, an average
of the three spectra of the 3-axis acceleration signals are
used, because the axis whose data corresponds to the MAs
is unknown. In this work, the spectral analysis is performed
using FFT, for its computational efficiency. However, it can
be replaced by other spectrum analysis methods, such as the
one proposed in [13].

B. Stage 2: Particle Filter

Let x(i)
t be the i-th particle that represents a value of BPM

at time t, Y1(x) and Y2(x) are the two PPG spectra, and A(x)
is an acceleration spectrum. x is distributed from 60 BPM to
210 BPM, which corresponds to a human’s HR during physical
exercises. The algorithm of the particle filter stage is described
as follows.

1) Initialization: First, the distribution of particles at an
initial state is decided. This corresponds to “1) Generate
particles” in Section II-B. Since the HR is assumed to be
relatively low but unknown at the beginning of the exercise,

we generate X0 = {x(i)
0 }Ni=1 from p(x0), which is a uniform

distribution in between 60 BPM and 170 BPM. This range
is used only for an initial distribution and the particles are
allowed to move beyond that range during the iterations of
the particle filter. The limit of the BPM range is discussed
later in Section IV-D.

2) Prediction: As mentioned before, the prediction is per-
formed based on (1). This corresponds to “2) a) i) Prediction”
in Section II-B. Therefore, an appropriate prediction model for
the HR change during exercise is required to achieve robust
HR tracking. To construct an HR-aware prediction model, we
used a dataset provided in [2] (see Section IV-A for details),
which includes the ground truth of HR. These data enable us
to plot the histogram for HR changes as shown in Fig. 7. In the
figure, the horizontal axis shows the amount of BPM change,
observed in the window of 2 s.

In Fig. 7, the change in BPM is mostly in the range of
±6BPM. Based on this observation, the prediction model of
our particle filter is determined to use a normal distribution,
whose mean is zero and standard deviation is 6 BPM. With
these parameters, the maximum BPM change that may occur
in 2 s can be tracked by the particle filter. These parameters,
particularly the standard deviation, may be optimized better for
each person or for each exercise; however, choosing relatively
large values should work in most situations. Considering the
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Fig. 7. Histogram for HR change in the dataset [2]. The difference in HR
between two successive time windows and their corresponding frequencies
are plotted.

bell-shape spread of the frequency components of the HR and
by adopting a normal distribution with a sufficiently large
standard deviation, the particle filter robustly keeps track of
the change in HR even if a large and instantaneous change of
HR is included in the data. In addition, even if the prediction
fails to track the true peak of the HR, iterations of the particle
filter catch up to obtain the peak of the HR.

Here, it should be noted that the prediction is performed
by moving each particle according to a normal distribution
with a standard deviation of 6 BPM. In most cases, when the
particles spread in a wide area, a few time steps are sufficient
to recover the correct HR estimation, even if the estimation in
the previous time step is far from the correct value.

3) Weight Calculation: In this step, the weights of the
particles are calculated using the PPG spectra Y1(x) and
Y2(x), and the acceleration spectrum A(x). This corresponds
to “2) a) ii) weight calculation” in Section II-B. Here, Y1(x)
and Y2(x) are contaminated by strong MAs as shown in Figs. 8
and 9. The spectrum amplitudes of Y1(x) and Y2(x), in the
frequency range where that of the MA is large, need to be
suppressed. For that purpose, Y1(x) and Y2(x) are modified
as

Y
′

n(x) =

{
Yn(x)/k (l1 ≤ x ≤ l2, l3 ≤ x ≤ l4)
Yn(x) (otherwise)

, (7)

where k is a weight coefficient, and l1 and l2 denote the left
and the right ends of the mountain-like shape that are closest
to the peak position of A(x), as shown in Fig. 9. They are
usually located in the range 60–135 BPM. Similarly, l3 and l4
define the second range of 135–210 BPM, as shown in Fig. 8.

According to (7), if the frequency of the MA is equal to
or close to that of the HR, the spectrum amplitude of the HR
might be reduced. However, it will not be an issue in reality.
When the MA and HR almost completely overlap each other,
the amplitude of that frequency shall become the tallest peak,
which remains as the peak value even after the division of k.
In addition, the maximum amplitude of the MA is close to that
of the PPG, and therefore MAs do not completely overwhelm
the PPG signal.
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Fig. 9. Spectrum of acceleration signal.

Y
′

1 (x) and Y
′

2 (x) are the spectra where the MA effect is
reduced. Using the two spectra, the weight of the particle
is calculated by considering the two observations with equal
importance;

wt(x
(i)
t|t−1) = Y

′

1 (x
(i)
t|t−1) + Y

′

2 (x
(i)
t|t−1), (8)

where wt(x
(i)
t|t−1) denotes the weight of particle x

(i)
t|t−1. They

are then normalized so that the sum of all the weights becomes
one.

4) BPM Estimation: In this step, the most likely BPM
is decided using both the particle filter results and the PPG
spectrum. The probability of the BPM β to be the true HR, is
estimated by

p(β) =
∑

x
(i)

t|t−1
=β

wt(x
(i)
t|t−1). (9)

Let βmax be the maximum point of p(β), and it is defined as

βmax = arg max
β

(p(β)). (10)
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Here, βmax is a point that is most likely to be the true HR
according to the particle filter. The final estimation of the
current BPM is then calculated by

BPM cur =

{
xpeak1 (|βmax − xpeak1| < d)
βmax (otherwise)

, (11)

where xpeak1 denotes the peak position of Y1(x), and d is
a distance threshold between xpeak1 and βmax. The reason
why xpeak1 is used instead of using βmax directly is that the
peak position of the current PPG spectrum often gives a more
accurate BPM than that given by the particle filter does.

5) Resampling: This step corresponds to “2) c) Resam-
pling” in Section II-B. There are several ways for resampling.
For example, Kitagawa [20] proposed “random resampling,”
which is a common method for resampling. However, its
computational time increases quadratically to the number of
the particles. Therefore, it takes a long time to calculate the
distribution of the particles, particularly when the number of
particles is large. In order to reduce the computational cost,
in this work, the particles are resampled according to the
following procedure.

1) Let p′(β) = N ·p(β), so that the sum of p′(β) becomes
the particle number N .

2) Round p′(β) up or down to the nearest decimal.
3) Generate particles so that the number of β becomes

p′(β).
This process is very fast since it has constant computational
complexity. However, unlike random sampling, the number
of the distributed particles may vary due to the rounding
operation. If it is required to generate exactly N samples, it is
possible to perform additional random sampling to compensate
the difference with N .

IV. EXPERIMENTAL RESULTS

A. Dataset
In our experiments, we used a dataset from [2], which

included two-channel PPG signals and 3-axis acceleration
signals as the input of PARHELIA. They were all sampled
at 125 Hz. The PPG signals were recorded by two pulse
oximeters with green LEDs, which were embedded in a
wristband. The acceleration signals were recorded by a 3-axis
accelerometer, which was also embedded in the wristband. In
the dataset, a one-channel electrocardiogram (ECG) signal was
available as the ground truth. The ECG signal was simultane-
ously recorded using wet ECG sensors firmly attached on the
chest. The ECG signals were reliable enough to be used as
the ground truth, because the electrical signals measured from
the chest are less affected by MAs.

All the signals were recorded from 12 subjects having ages
from 18 to 35. The subjects either walked or ran during
the data recording. The walking and running speeds were
decided according to the following scenario: 1–2 km/h for
0.5 min, 6–8 km/h for 1 min, 12–15 km/h for 1 min, 6–8 km/h
for 1 min, 12–15 km/h for 1 min, and 1–2 km/h for 0.5 min. 12–
15 km/h is considered to be fast enough for a normal human
being; therefore, the data obtained by this protocol is suitable
for evaluating the accuracy of HR estimation during typical
running exercises.
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Fig. 10. AEE as a function of parameter d. k is set to be 2.5.

B. Settings

The HR estimation is performed on a time window of 8 s.
The window slides with a step of 2 s. In the spectral analysis
stage, the order of FFT is set to NFFT = 10000. This means
that the resolution of BPM is 0.75 BPM. In the particle filter
stage, the number of particle is set to N = 10000 and the BPM
estimation parameter is set to d = 4BPM. Here, Fig. 10 shows
the effect of choosing d for the estimation error in absolute
average error (AAE), when k = 2.5. As seen in this figure,
AAE rapidly grows for values of d smaller than 3.5, meaning
that when βmax and xpeak in (11) are relatively close, xpeak,
which gives the actual peak of the spectra, is a better choice
to ensure the accuracy. When a relatively large value is chosen
for d, it has an almost negligible effect on the estimation
accuracy. The weight coefficient k is an important parameter
in the proposed method; therefore, we experimentally explore
the appropriate value of k from a range of 2.1 to 3 so that the
average error becomes small, for all subjects. The proposed
method is implemented using a MATLAB code.

C. Performance Measurement

We use the ground truth of HR given in the dataset [2]
for the performance evaluation of the proposed method. Let
BPM true(i) and BPM est(i) denote the ground truth of HR
and the estimation of HR in the i-th time window, respectively.
The estimation performance is evaluated by three indices. The
first index is AAE, which is calculated by

AAE =
1

W

W∑
i=1

|BPM est(i)− BPM true(i)|, (12)

where W is the total number of time windows.
The second index is Bland-Altman plot [21], in which

the difference between the estimation and ground truth of
HR is plotted against their average. The limit of agree-
ment (LOA) [21], which is defined by [µe − 1.96σe, µe +
1.96σe], where µe denotes the average of the difference and σe

denotes the standard deviation of the difference, is calculated
for evaluating the error distribution. Under the assumption that
the error follows a Gaussian distribution, 95% of the errors are
expected to be in this range. Most of the errors are expected to
be in this range, therefore the LOA can be estimated to be the
substantial upper and lower limits of the errors. If the LOA
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Fig. 11. AEE as a function of the variable k. AAE takes a small value around
k = 2.2–2.5.

becomes smaller, the maximal error should become smaller.
Thus, we use LOA for evaluating the accuracy of estimation.

The third index is Pearson correlation. Given two data rows
{(xi, yi)} (i = 1, 2, ..., n), Pearson correlation coefficient is
calculated by

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (13)

where x and y are the arithmetic means of x = {xi} and y =
{yi}, respectively. The more the coefficient becomes close to
1, the linear dependence between the variables becomes more
significant. In this work, the correlation between the ground-
truth of HR and the estimated values are evaluated.

D. Results and Discussion

First, we explore the appropriate value of the particle-weight
coefficient k in (7). Here, k is swept from 2.1 to 3 with
an increment of 0.1, and the respective AAE is compared.
The result is shown in Fig. 11. We see that AAE becomes
minimum when k = 2.2–2.5. It should be noted that the
AAE does not vary significantly, thus giving stable errors in a
range between 1.17 BPM and 1.24 BPM, for the given range
of k. The appropriate value of k may change depending on the
subject’s health condition, noise intensity, etc. However, even
in cases where the selection of k is suboptimal, the estimation
accuracy does not degrade significantly. Based on this analysis,
2.5 is chosen as the value of k for the rest of the evaluation.

Table I lists the AAE for 12 subjects for the previous work,
JOSS [13], and the proposed method, PARHELIA. It can
be seen that, in most cases, PARHELIA achieves a better
performance than JOSS. The average AAE of PARHELIA
(60–210 BPM, 2ch PPG, w/o data trimming) is 1.17 BPM,
whereas that of JOSS is 1.28 BPM. It means that PARHELIA
can estimate HR more accurately than JOSS by 8.6%. In
the results of JOSS reported in [13], the results of the first
few frames, until it successfully captures the accurate HR,
are missing. It is because the initial recordings contain strong
MA, probably due to the device adjustment after the recording
system was turned ON, as mentioned in [13]. In JOSS, the
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Fig. 12. Bland-Altman plot of the HR estimation by PARHELIA over 12
subjects. The LOA are [−4.65, 5.09] BPM.

calculated HR has to be used for the estimation of the next
step, and therefore failing to capture the HR in the very first
region of the data seems to be the reason for missing the
estimation of the subsequent results. The data for subjects
#2, #3, #4, #8, #10, and #11 are missing. In order to make
apple-to-apple comparison, additional experiments are added
for PRAHELIA by removing the initial few frames for the
subjects that have missing results in JOSS. In this condition,
AAE of the proposed method further improved to 1.12 BPM.

In addition, we also evaluate the absolute average error
of the proposed algorithm for 12 subjects by changing the
range of particles, assuming that the range of the BPM is
unavailable in advance. In this evaluation, the valid range of
the particle movement is 40–210 BPM, while maintaining the
number of particles. This result is also shown in Table I.
The results in the case of a wider range (40–210 BPM)
shows that PARHELIA obtains better estimations than the
state of the art method, JOSS, although widening the particle
distribution range slightly deteriorates the BPM estimation.
Furthermore, we confirmed that the BPM range used in the
initial stage estimation does not change the overall estimation
result significantly. It is because particles quickly follow the
changes of the HR by the particle filter iterations.

If we use the data of one of the two PPG sensors, the
AAE for 12 subjects becomes worse from 1.17 to 1.58, in the
cases without data trimming. As shown in Table I, the AAE
of all but one subjects degraded, showing that the estimation
accuracy improves by using two PPG signals. However, with
data trimming, the AAE of the single-PPG estimation only
decreases from 1.12 to 1.26, which means that PARHELIA
with a single PPG still outperforms JOSS under the same
experimental conditions.

Fig. 12 shows the Bland-Altman plot of the HR estimation
for the 12 subjects. The LOA of PARHELIA were [−4.65,
5.09] BPM, whereas the LOA of JOSS were [−5.94, 5.41]
BPM. The smaller range of the LOA of PARHELIA means
that the possibility of large errors is less often than the case
of JOSS; e.g., the probability that the estimation error of
PARHELIA exceeds the LOA of JOSS is about 2.5%, whereas
that of JOSS is 5% according to the definition of LOA. When
we perform the evaluation on the trimmed data using a single
PPG signal, the LOA became [−5.07, 5.56].
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TABLE I
ABSOLUTE AVERAGE ERROR FOR 12 SUBJECTS1

Method JOSS [13] PARHELIA
Settings BPM range – 60–210 60–210 40–210 60–210 60–210 40–210

# PPG ch. 1 1 2 2 1 2 2
Data Trimming Yes Yes Yes Yes No No No

Subject No. 1 1.33 2.21 1.74 1.72 2.18 1.82 1.73
2 1.75 1.35 1.04 1.51 2.46 1.29 2.17
3 1.47 1.02 0.80 0.71 0.86 0.80 0.75
4 1.48 0.88 1.04 0.92 0.97 0.99 0.89
5 0.69 0.63 0.65 0.66 0.66 0.65 0.65
6 1.32 1.10 1.07 1.00 1.08 1.10 1.03
7 0.71 0.65 0.69 0.70 0.65 0.62 0.62
8 0.56 0.64 0.64 0.52 0.53 0.62 0.51
9 0.49 0.44 0.41 0.42 0.44 0.40 0.40
10 3.81 3.88 3.12 3.22 4.89 3.62 3.90
11 0.78 0.89 0.99 1.14 0.86 0.92 1.04
12 1.04 1.47 1.22 1.18 3.42 1.24 1.22

Mean 1.28 1.26 1.12 1.14 1.58 1.17 1.24
1 The numbers in bold indicate better result when the error of each of the proposed method is compared to that

of the state of the art method, JOSS.
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Fig. 13. Scatter plot between the ground-truth of HR and the estimations
over 12 subjects. The fitted line was y = 1.00x− 0.389, where x indicates
the ground truth of HR, and y indicates the corresponding estimation. The
Pearson correlation coefficient was 0.995.

Fig. 13 shows a scatter plot between the ground truth
and the estimation of HR over 12 subjects. The Pearson
correlation coefficient of PARHELIA is 0.995 whereas that of
the existing method is 0.993. When we perform the evaluation
on the trimmed data using a single PPG signal, the Pearson
correlation became 0.994.

To summarize, the three index values of performance for
estimations by PARHELIA are all better than the existing
method. This is largely due to the quick recovery property
of PARHELIA, which enables it to recover faster than the
existing method, even when unavoidable incorrect estimation
occurs due to strong MA, etc. In addition, in PARHELIA, the
frequency of giving incorrect estimates is less.

Fig. 14 shows the traces of the estimated HR by PARHELIA
and JOSS for Subject #4. The particle density in PARHELIA
estimation at each time is also presented as a contour map.
It can be seen that JOSS takes several seconds to recover
from the incorrect estimation (approximately 30 s), while
PARHELIA quickly recovers from the incorrect estimations
due to the tracking of multiple HR candidates with the aid of
particles. As it can be seen from the contour map in Fig. 14, the
particles are distributed in a wide range, covering the changes
of the ground truth. Although many particles are concentrated
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Fig. 14. The traces of the estimated HR by PARHELIA and JOSS. The
number of particles in PARHELIA is also represented as a contour. It can
be seen that PARHELIA quickly recovers from the incorrect estimation as it
tracks multiple HR candidates.

close to the prior estimations of HR, the estimation value can
change by about 20 BPM in one step, which makes it possible
to recover than JOSS. In addition, the number of successive
errors, which is both larger than 10 BPM and more than two
time windows in all the subjects are 7 in PARHELIA and 24 in
JOSS. From this result, it can be said that PARHELIA quickly
recovers from incorrect estimations.

E. Processing Time

We compare the processing time of PARHELIA and JOSS.
We implemented the spectral analysis part of JOSS by using
the MATLAB code published in [22]. In general, JOSS takes a
long time for its spectral analysis. JOSS takes about 0.6 s to es-
timate a single HR of a subject with Fs = 25Hz on a computer
equipped with Intel Xeon X5570 running at 2.93 GHz and
MATLAB R2015a, whereas PARHELIA takes only 0.03 s with
Fs = 125Hz on the same computer. PARHELIA estimates the
HR about 20 times faster than JOSS. If PERHELIA is run on
an embedded system with a slower processor, the processing
speed may decrease. However, even if the embedded processor
is 60 times slower than the Xeon processor, PERHELIA can
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TABLE II
PROCESSING TIME PROFILE OF A SINGLE STEP HR ESTIMATION

(8 S WINDOW)

PARHELIA JOSS
Spectral analysis 12 ms 600 ms
Particle filter 15 ms

Prediction 0.6 ms
Weight calculation 1.6 ms
BPM estimation 13 ms
Resampling 0.07 ms

Total 27 ms 600 ms +α

still perform at the speed of a single HR estimation per 2 s,
which is sufficient for online and real-time estimations.

Table II shows a breakdown of the processing time for a
single HR estimation by PARHELIA and JOSS. The most
computationally intensive procedure for JOSS is the singular
value decomposition (SVD) in spectral analysis. The SVD
for dense matrix has a computational complexity of O(n2m),
where n is the row size and m is the column size of the
matrix (n < m). One of the computational bottlenecks in
the proposed method is FFT, which has the complexity of
O(nlogn). The process of particle filter does not involve
computationally intensive matrix manipulations at all. Thus,
the proposed method is much faster than JOSS.

V. CONCLUSION

In this paper, we proposed a novel method called PARHE-
LIA, a particle filter-based HR estimation algorithm that uses
PPG signals and simultaneously recorded acceleration signals
using a wrist-type sensor. By applying the particle filter,
multiple BPM candidates can be tracked, ensuring robustness
to incorrect estimations. In addition, the acceleration signal is
used in the weight calculation stage of the particle filter. By
reducing the weight of the particles according to the accel-
eration spectrum, the noise caused by MAs is reduced. The
experimental results for 12 subjects, though limited, showed
that PARHELIA achieved 8.6% better estimation accuracy and
20 times faster performance than JOSS, which is a recent
reference method in this field. Our future work includes
adding more test cases on larger number of subjects under
various exercises in order to more comprehensively evaluate
the strength and weakness of various HR estimation methods.
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