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Abstract—Objective: Previous work has shown that differences
in the somatosensory evoked potential (SEP) signals between a
normal spinal pathway and spinal pathway affected by spinal
cord injury (SCI) provide a means to study the degree of
injury. This paper proposes a novel quantitative SCI assessment
method using time-domain SEP signals. Methods: A pruned and
unstructured fit between SEP signals from a normal spinal
pathway and a spinal pathway affected by SCI is developed
using methods inspired by recent results in sparse reconstruction
theory. The coefficients from the resulting fit are used to develop
a quantitative assessment of SCI that is tested on actual SEP
signals collected from rodents that have been subjected to partial
and complete spinal cord transection. Results: The proposed
method provides a rich parametric measure that integrates SEP
amplitude, time latency, and morphology, while exhibiting a high
degree of correlation with existing subjective and quantitative
SCI assessment methods. Conclusion: The proposed SCI encap-
sulates a model of the injury to quantify SCI. Significance: The
proposed SCI quantification method may be used to complement
existing SCI assessment methods.

Keywords —Somatosensory Evoked Potential (SEP),
Spinal Cord Injury (SCI), Sparse Reconstruction

I. INTRODUCTION

All bioelectrical signals between the limbs and the brain
must pass through the spinal cord. Consequently, any spinal
cord injury (SCI) will degrade signal transmission, resulting
in loss or impairment of sensory and/or motor function [1].
Globally, millions of individuals are affected by SCI, with tens
of thousands of new cases arising each year [2]. The preva-
lence of SCI motivates the need to develop novel diagnostic
approaches to facilitate the development of novel therapeutic
methods. In addition to early detection or diagnosis, monitor-
ing of SCI in the clinical recovery and injury management
phases is of paramount importance. This is required to assess
the effectiveness of potential therapeutic procedures [3]. In
addition to the standard rehabilitation regimes used to help
SCI patients, there are several medical and surgical procedures
that may be used to mitigate the effects of injury. Indeed, even
a small number of spared spinal nerve fibers coupled with
immediate diagnosis can greatly improve the quality of life of
patients with SCI. There has also been recent work [4] on the
functional plasticity and neuroanatomical reorganization and
changes of pathways that take place immediately after injury.
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Clearly, there is a pressing need for an accurate, repeatable,
and noninvasive assessment method to quantify the degree of
SCI.

Modalities used for estimating the level of SCI are domi-
nated by electrophysiological [5],[6] and imaging [7],[8] tech-
niques. While imaging approaches provide information about
the location and the anatomical damage of the injury, they
do not provide quantitative information about the functional
integrity of the spinal cord itself.

By contrast, electrophysiological techniques that measure
the evoked potential can provide information about the func-
tional integrity of the spinal cord. The evoked potential is
the electrophysiological response of the neural system to an
external stimulus. The somatosensory evoked potential (SEP)
is the cortical signal recorded from the brain in response to
electrical stimulation usually given to the median nerve at the
wrist or the posterior tibial nerve at the ankle [9]. The SEP is of
particular interest to researchers when evaluating the ongoing
neurophysiological changes throughout the post-SCI period. It
was shown in [10] that the similarity between a SEP signal
from a healthy spinal pathway (which in the event of thoracic
SCI can be obtained by forelimb stimulation) and a SEP signal
from an injured spinal pathway (which can be obtained by
hindlimb stimulation) can be used as an objective measure of
the severity of SCI, thus providing a complementary measure
to qualitative behavioral based assessments in rodents such
as the clinical examination of Basso, Beattie, and Bresnahan
(BBB) [11].

Existing SCI assessment measures tend to be based on the
SEP peak amplitude and/or time latency, without regard to the
overall signal morphology. In this regard, the measure in [10]
accounts for amplitude/power and morphological similarity
between a baseline SEP signal from a healthy spinal pathway
and a SEP signal from a SCI affected spinal pathway, though
time latency is not explicitly considered. This paper builds
upon the work in [10]. In particular, this paper proposes
to model the morphology of the SEP signal from the SCI
affected spinal pathway as a transformation of the baseline
SEP signal that consists of a superposition of time-shifts and
amplitude scales of the baseline SEP signal. It is shown that the
proposed method results in a set of time-shifts and amplitude
scales which encapsulate information that is directly related
to the severity of the injury. A measure is also developed that
integrates both SEP amplitude and time latency into a single
quantity.

The rest of this paper is organized as follows: Section II
describes the protocol for collecting the SEP signals from
rodents. Section III describes the proposed SCI assessment
method. Section IV presents the results of applying the method



0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2017.2700498, IEEE
Transactions on Biomedical Engineering

in Section III to the data described in Section II.

II. PROTOCOL AND DATA COLLECTION

Animals: Female adult Sprague-Dawley rats weighing be-
tween 200-225g were used. Two types of thoracic spinal tran-
section, namely T7/T8 left hemitransection and T8 complete
transection, were performed. All procedures were approved by
the Institutional Animal Care and Use Committee (IACUC) at
the National University of Singapore.

Electrode Implantation: To induce general anesthesia, the
rodents were anesthetized intraperitoneally with a mixture of
ketamine (75mg/kg) and xylazine (10mg/kg) at 0.2ml/100g. A
midline incision through the skin of the head was made and the
skull was exposed and cleaned. The rodents were implanted
with transcranial stainless steel screw electrodes corresponding
to forelimb and hindlimb somatosensory cortices, such that
they made light contact with the dura mater without com-
pressing the brain. A micro drill was used to create burr holes
with the bregma and lambda used as references to fix the
positions of the electrodes. Carboxylate dental cement was
subsequently applied to hold the screw electrodes in place and
seal the exposed skull.

Injury: General anaesthesia as reported above was used dur-
ing all surgical procedures. Limb withdrawal to pinch stimuli
and the corneal reflex were monitored in order to ascertain
that the animal was adequately anesthetised. Laminectomy was
performed to expose the dorsal surface of the spinal cord.
Care was taken to maintain the integrity of the dura mater.
A stainless steel disposable scalpel was used to carry out the
transection injuries.

Post-operative Care: Analgesic Buprenorphine (0.06 mg/kg)
and antibiotic Gentamicin (8 mg/kg) at 0.2ml/100g volume
were administered sub-cutaneously twice a day for five days
following transection injury. The rodents’ bladders were ex-
pressed twice daily until they regained the ability to urinate.

Electrophysiological recording: A Tucker-Davis Technolo-
gies (TDT) workstation was used to record the SEP signals.
The SEP baseline recordings were carried out one week after
electrode implantation, and post-injury SEP recordings were
performed one week after inflicting SCI. The median and tibial
nerves were stimulated using stainless steel subdermal needle
electrodes, and SEP signals were recorded from the implanted
electrodes at a sampling frequency of 4882 Hz. The stimula-
tion of each limb was carried out using 156 consecutive pulses
with an amplitude of 3.5 mA and a duration of 200 µsec.
During SEP recording, a mixture of 1.5% isoflurane and 98%
oxygen at a flow rate of 1.3L/min was supplied through an
isoflurane vaporizer. The anesthesia was maintained through a
rodent-sized anesthesia mask, connected to a diaphragm with
a C-pram circuit designed to administer and evacuate the gas.
Rodents were moved onto a heating pad to maintain a body
temperature of 37±0.5◦C.

BBB analysis: A 21 score BBB locomotion rating scale was
used to assess the motor behavior of the rodents before and
after injury. Rats were placed in a 90-cm plastic open field
for 4 minutes. Two blinded examiners proficient in the method
evaluated and scored the animals individually.

III. SCI ASSESSMENT METHOD

Let bn, n = 0 . . . N − 1 denote the baseline SEP signal
collected from a healthy spinal pathway, and let dn, n =
0 . . . N − 1 denote the SEP signal collected from a spinal
pathway that has been subjected to SCI. It is assumed that
dn can be modeled as the output of a moving average system
excited by bn. That is, dn can be modeled as a superposition
of time-shifted and amplitude scaled versions of bn. From
a systems perspective, bn can be viewed as the input to a
finite-impulse-response filter with coefficients hn, and dn is
the resulting filter output that is obtained by convolving bn
with hn, that is:

dn ≈ h−Mbn+M + h−M+1bn+M−1 + · · ·+ hMbn−M

=
M∑

m=−M
hmbn−m (1)

where M is the maximum time-shift. Now define the vectors

h =


h−M
h−M+1

...
hM

 ,bn =


bn+M

bn+M−S
...

bn−M


Then (1) can be compactly expressed as:

dn ≈ hTbn

The solution for the unknown model parameter vector h is
obtained by solving the least-squares optimization problem:

argmin
h

N−1∑
n=0

‖dn − hTbn‖22 (2)

which yields the solution:

h =

[
N−1∑
n=0

bnb
T
n

]−1 [N−1∑
n=0

dnbn

]
(3)

The mth element of h has the effect of shifting bn by m−M−
1 time units and scaling the amplitude by hm. It is apparent
that if dn is similar to bn (implying a low level of SCI), then
h should consist of mostly zero valued elements except for the
(M + 1)th element (corresponding to zero time-shift) which
should have a value around one (i.e. h is essentially a unit
impulse). On the other hand, if dn is very dissimilar to bn
(implying a high level of SCI), then the structure of h will be
more complex, since combining a variety of time-shifts and
amplitude scales of bn is needed to accurately model dn.

Figures 1(a)-(d) show how various forms of the elements
hm of the vector h affect the transformation of bn to dn. In
Figure 1(a), the only non-zero element in h has a value of 1.3
and is located at a time-shift of 0. Hence, dn has no time-
shift relative to bn, but the amplitude of dn has increased by
a factor of 1.3. In Figure 1(b), the only non-zero element in h
has a value of 0.9 and is located at a time-shift of -10. Hence,
dn time advanced (shifted to the left) relative to bn by 10 time
samples, and the amplitude of dn is decreased by a factor of
0.9. Similarly, in Figure 1(c), the only non-zero element in h
has a value of 2 and is located at a time-shift of +10. Hence,
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Fig. 1: (a)-(d) The effect of various forms of hm on transforming bn into dn.

dn time delayed (shifted to the right) relative to bn by 10 time
samples, and the amplitude of dn is increased by a factor of
2. Finally, Figure 1(d) depicts a situation in which there are
several non-zero elements of h located at various time-shifts.
The shape of dn, therefore, is not simply a time-shift and/or
amplitude scale of bn, resulting in the emergence of a more
complex structure.

The solution for h in (3) is the conventional least squares fit
between bn and dn. However, (3) suffers from the problems
of overfitting and sensitivity to effects that cause dn to deviate
from the model in (1). That is, the parameter vector h contains
excess degrees of freedom; indeed, though only a subset of
time-shifts from −M to +M may be needed to model the
transformation, (3) will attempt to use all possible time-shifts.
As an illustration, consider again the signals bn and dn in
Figure 1(d). Inserting the values for bn and dn in (3) will
indeed yield exactly the same set of values for the elements of
h shown in the right-hand panel of Figure 1(d). Now consider
the signals bn and dn in Figure 2(a). While the signal bn is the
same as in Figure 1(d), the signal dn has been perturbed by a
small amount of random noise. While this random perturbation
does not have much visual effect on dn compared to Figure

1(d), the resulting set of coefficients generated using (3) is
markedly different, as can be seen in Figure 2(b).

One possibility to alleviate this problem is to use some
form of structured pruning of h. That is, the model in (1)
could be modified in order to include only a subset of the
time-shifts from −M to +M , thereby limiting the degrees of
freedom. However, there is no apparent way to methodically
choose the appropriate subset of time-shifts. A better approach
would thus be to use unstructured pruning in which the fitting
method automatically selects the most appropriate subset of
time-shifts. This objective can be mathematically expressed
using the l0-norm of h, denoted as ‖h‖0, which is simply
the number of non-zero elements in h. The l0-norm can be
used to promote a sparse solution for h, since attempting to
minimize ‖h‖0 effectively minimizes the degrees of freedom
(and hence the size of the subset of time-shifts) that are used.
This minimization, however, must be subject to a goodness-
of-fit constraint so that the error between the actual and fitted
data resulting from a sparse h does not exceed some tolerance
level δ. The formal mathematical expression for the desired
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Fig. 2: (a) bn is the same as in Figure 1(d) but dn has been perturbed by random noise. (b) Example of over-fitting using
conventional least squares (3). (c) Example of fitting improvement using (5).

optimization problem thus becomes:

argmin
h

‖h‖0 3
N−1∑
n=0

‖dn − hTbn‖2 < δ (4)

The optimization problem in (4) is quite difficult to solve due
to the presence of the l0-norm in the objective function. To
alleviate this problem, consider substituting the l0-norm with
the l1-norm, so that the objective function instead becomes
‖h‖1. As such, (5) may be recast as:

argmin
h

‖h‖1 3 ‖Bh− d‖2 < δ (5)

where

B =


bT
0

bT
1
...

bT
N−1

 ,d =


d0
d1
...

dN−1


This substitution in (5) of the l0-norm with the l1-norm is
motivated by recent developments in the field of compressed
sensing (CS) [12], which is closely related to sparse re-

construction. CS is a novel signal processing technique for
solving an underdetermined system whose underlying solution
is known to be sparse. It may be noted that in (5), there are
typically more measurements than unknowns, leading to an
overdetermined rather than an undetermined system. Hence,
the usual requirement from CS theory that the columns of
the matrix B should be uncorrelated can be relaxed. As
such, while (5) does not have a closed form solution like its
counterpart (2), various efficient numerical methods such as
Chaining Pursuit [13], Orthogonal Matching Pursuit [14], and
Compressive Sampling Matching Pursuit (CoSaMP) [15],[16]
that have been developed for CS problems can be applied.
Due to its relatively low computational complexity, CoSaMP
is used in this paper to approximate the solution to (5). The
operation of CoSaMP is show in the Algorithm inset and can
be summarized as follows:

• Line 1: Use a trivial initialization for h, resulting in the
initial error e being equal to the desired signal d; initialize
the loop counter k

• Line 2: Continue loop until error magnitude decreases to
a desired level δ

4
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• Line 3: For a desired sparsity level s, store the indices
of the s largest elements of the proxy signal BTe in the
set I1.

• Line 4: Store the indices of the non-zero elements in the
current estimate of h in the set I2.

• Line 5: Merge the newly identified indices I1 with the
existing indices I2 into the set I.

• Line 6: Update the estimate of h to retain the s largest
elements at the appropriate indices using the least squares
estimate B(:, I)#d

• Line 7: Update the estimate of the error e
• Lines 8-9: Increment the counter / end of loop.

Algorithm for approximating solution to (5)

1: Set h(0) ← 0, e← d, k ← 0
2: while ‖e‖2 ≤ δ do
3: I1 ← Indices of largest s elements in BTe
4: I2 ← Indices of non-zero elements in h(k)

5: I ← I1 ∪ I2
6: h(k) ← Retain s largest elements in B(:, I)#d
7: e← d−Bh(k)

8: k ← k + 1

Figure 2(c) shows the elements of h resulting from solving
(5). It can be seen that the set of coefficients is nearly identical
to that in the right hand panel of Figure 1(d), which suggests
that (5) is robust to model perturbations. Since (5) generates
a solution for h that automatically selects only the significant
subset of time-shifts in an unstructured manner, the resulting
solution for h may be viewed as encapsulating a model for
the injury. For mild forms of SCI, dn will likely be well
approximated as a shifted and scaled version of bn, and h
should thus essentially be a unit impulse. However, a more
severe form of SCI will cause dn to be dissimilar to bn,
necessitating the use of increased degrees of freedom, resulting
in a solution for h that contains more non-zero elements. As
such, the sparsity of h provides an indication of the level
of SCI. Moreover, the specific placement and magnitude of
the non-zero elements in h provides a model of the injury.
Whereas bn is considered to be from a single reference
neural path with unit magnitude, dn is formed from multiple
paths (with respect to the reference path of bn) due to the
injury, each of which exhibits a time-shift and scaling effect.
The output of these paths, when superposed at the cortex,
forms the signal dn. As such, the placement of the non-zero
elements of h provides information related to latency, while the
magnitude of the non-zero elements of h provides information
related amplitude/power. The vector h thus provides a richer
description of the injury.

In order to compare the proposed method with existing
assessment techniques, however, it is necessary to condense
h into a single number. As discussed earlier, the sparsity or
similarity of h to a unit impulse provides an indication of the
level of SCI. The proximity of h to a unit impulse will be
quantified as:

ID = αJ (k∗) + (1− α)
∣∣∣∣k∗M

∣∣∣∣ (6)

where 0 ≤ α ≤ 1, and

k∗ = argmin
k∈[−M,M ]

J (k)

and

J (k) =

M∑
m=−M

|hm − δm−k|

1 +
M∑

m=−M
|hm|

In this manner, ID, which will be termed as the impulse
distance, attempts to measure the similarity of h to a shifted
unit impulse with a penalty for impulse locations away from
m = 0. Note also that in (6), J(k∗) and

∣∣∣k∗

M

∣∣∣ are assigned a
weighting term of α and 1− α, respectively. While J(k∗) is
associated with the SEP amplitude characteristics, the term∣∣∣k∗

M

∣∣∣ is associated with the time characteristics. Thus, the
weighting of each term may be suitably adjusted through the
value of α in order to emphasize/de-emphasize the amplitude
and/or time characteristics. In Section IV, the value of α is
set to 0.5 in order to given equal weighting to the two terms.

IV. RESULTS

All SEP signals used in this paper are the ensemble av-
erage of 156 single-trial signals. Figure 3 shows the baseline
hindlimb SEP signal bn and SCI affected hindlimb SEP signal
dn for the cohort used in this paper. The top row of Figure
3 shows the SEP signals of rodents that were inflicted with
partial SCI (spinal hemitransection), while the bottom row of
Figure 3 shows the SEP signals of rodents that were inflicted
with the more severe complete SCI (full spinal transection).
As discussed in the previous section, the nature of the vector
h resulting from solving (5) reflects the level of SCI. Towards
this end, δ was set to 10−3, and M was set to 20 samples.
The choice for M was determined empirically as it was found
that further increasing the value for M did not provide any
improvement to the quality of the fit.

Figure 4 shows plots of the elements {h−M , . . . , hM} of h
obtained from solving (5), where the time-shift in samples
has been converted to time in milliseconds. The top row
of plots shows the elements of h for rodents with spinal
hemitransection, while the bottom row shows the elements
of h for rodents with full spinal transection. The significance
of an element is primarily based on its amplitude relative
to the other elements, since the amplitude is proportional to
the contribution that the corresponding amplitude scaled/time
shifted version of bn makes to the overall shape of the dn.
Moreover, if bn and dn are similar (as is the case for moderate
SCI), it is expected that h will be similar to an impulse
function and contain only one significant element. Conversely,
if bn and dn are dissimilar (as is the case for severe SCI), it
is expected that h will contain several elements that are all
relatively small in value. It can be seen that for the top row
in Figure 4, the elements of h contain only one significant
element at a small or zero time-shift, which implies that dn
is largely similar in shape and temporal alignment to bn, as
can be verified by visually examining the corresponding SEP
signals in the top row of Figure 3. This is consistent with
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Fig. 3: Baseline hindlimb SEP and SCI affected hindlimb SEP signal for rodents with spinal hemitransection (top row) and
full spinal transection (bottom row).

the fact that the rodents in this case have been subjected to
a spinal hemitransection, rather than a full spinal transection.
On the other hand, it can be seen that for the bottom row in
Figure 4, several elements of h with small values are located at
a variety of time-shifts, implying dn to be largely dissimilar
in shape and temporal alignment to bn. This can again be
verified by examining the corresponding SEP signals in the
bottom row of Figure 3. It is also consistent with the fact that
the rodents in this case have been subjected to a full spinal
transection. Thus, when h consists of only a few significant
non-zero elements located at time-shifts close to zero, the
degree of SCI is relatively mild. However, when h consists
of many relatively small non-zero elements located at various
time-shifts, the degree of SCI is more severe.

To verify the proposed methodology for quantifying SCI,
the value of the impulse distance ID in (6) will be compared
with both the quantitative assessment technique of spectral
coherence [10] as well as the qualitative assessment method
of BBB. Figure 5(a) shows the impulse distance for the rodent
cohort while Figure 5(b) shows the spectral coherence for the
rodent cohort. The magnitude-squared spectral coherence is
defined as:

C (f) =
|Sbd (f)|2

Sbb (f)Sdd (f)

where Sbd(f) is the cross spectral power spectrum of bn and
dn, Sbb(f) is the power spectrum of bn, and Sdd(f) is the

power spectrum of dn. The spectral coherence is computed
by integrating C(f) over the half-power bandwidth, which
occurs from around 75-225 Hz. It should be noted that a
higher impulse distance value corresponds to an h that is
more dissimilar to a unit impulse and thus represents a higher
level of injury, and vice-versa. However, a higher spectral
coherence value corresponds to a lower level of injury, and
vice-versa. As such, it can be seen that both measures depicted
in Figures 5(a) and 5(b) in fact agree very well with each other,
with an overall Pearson Correlation Coefficient magnitude
of 0.93 between the two (obviously an increased number of
animals would improve the statistical significance). The major
advantage of the proposed method over the spectral coherence,
however, is that it provides a closer inspection of the change
in morphology of the SEP signal caused by injury. Moreover,
quantitative changes in SEP morphology may have useful
clinical applications.

Although the subjective BBB test does not provide a direct
measure of the accuracy of the proposed method, it will
be used in this paper to compare the overall correlation
between the opinion of experienced electrophysiologists and
the proposed quantitative method. Figure 5(c) shows the BBB
scores for the rodent cohort, while Table I shows the Pearson
Correlation Coefficient magnitude of the BBB score with the
impulse distance and spectral coherence. The general trend
of the BBB score is consistent with the impulse distance and
spectral coherence values, resulting in the Pearson Correlation
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Fig. 4: Elements of h from solving (5) for rodents with spinal hemitransection (top row) and full spinal transection (bottom
row) using the SEP signals in Figure 3.

Coefficient magnitude with both the impulse distance and
spectral coherence to be around 0.7, thus raising confidence
about the proposed methodology.

The post-SCI SEP signal in Figure 3 of Rodent 8 appears
to show some resilience to the inflicted injury, a fact which
is reflected in Figures 5(a)-5(c) across the impulse distance,
spectral coherence, and BBB score. On the other hand, the
post-SCI SEP signal in Figure 3 of Rodent 3 shows a very
modest recovery. The degree of this recovery is more closely
reflected in the impulse distance value compared to the score
of the BBB complement, for which there is essentially no
motor function recovery. As noted in [10], a recovery in the
shape of the SEP waveform reflects the health of the spinal
pathway.

TABLE I: Pearson Correlation Coefficient magnitude for SCI
assessment methods using the SEP signals in Figure 3

Spectral Coherence BBB Score
Impulse Distance 0.92 0.67

Spectral Coherence 1 0.71

The preceding discussion is based on the availability of
a baseline SEP signal which is recorded prior to SCI. This
scenario is applicable in a laboratory setting, and is useful in
monitoring the effects and progression of SCI. In a clinical
setting, however, it is very unlikely that a baseline SEP signal

will be available for an SCI patient. It may be noted, however,
that SCI most commonly occurs at the cervical and thoracic
vertebrae [17]. The spinal pathway from the forelimb to the
cortex as such will exhibit injury for cervical SCI, whereas
it will remain intact for SCI at or below the thoracic region.
Thus, the SCI assessment method proposed in this paper may
be applied in a clinical setting to thoracic SCI, wherein the
SEP signal recorded in response to forelimb stimulation can
serve as a surrogate for the hindlimb baseline SEP signal. This
approach was also adopted in [10].

Figure 6 shows the same SCI affected hindlimb SEP signal
dn as in Figure 3 along with the baseline forelimb SEP
signal bn that was acquired by stimulating the forelimb after
inflicting SCI. Figures 7-8 show the elements of h, the impulse
distance, and the spectral coherence resulting from using the
SEP signals in Figure 6. It can be seen that the results in
Figures 7-8 are quite similar to those in Figures 4-5, which
lends credence to using the forelimb SEP signal as a surrogate
for the baseline hindlimb SEP signal in cases of thoracic SCI.
Table II shows the resulting Pearson Correlation Coefficient
Magnitudes, which are also similar to those in shown Table
I.

A quantifiable measure of the SEP signal morphology that
can be related to the level of SCI is useful because it can be
easily interpreted, whereas inspecting the signal morphology
requires a trained examiner. It may be noted that demyelination
is a consequence of nerve injury, which causes reduced propa-
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Fig. 5: (a) Impulse distance values using the SEP signals in Figure 3. (b) Spectral coherence values using the SEP signals
in Figure 3. (c) BBB Test Values for rodent cohort.
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Fig. 6: Baseline forelimb SEP and SCI affected hindlimb SEP signal for rodents with spinal hemitransection (top row) and
full spinal transection (bottom row).

8



0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2017.2700498, IEEE
Transactions on Biomedical Engineering

−5 0 5
0

0.5

1

1.5

2
h

Rodent 1

−5 0 5
0

0.5

1

1.5

2
Rodent 2

−5 0 5
0

0.5

1

1.5

2
Rodent 3

−5 0 5
0

0.5

1

1.5

2
Rodent 4

−5 0 5
0

0.5

1

1.5

2
Rodent 5

−5 0 5
0

0.5

1

1.5

2

Time Shift (ms)

h

Rodent 6

−5 0 5
0

0.5

1

1.5

2

Time Shift (ms)

Rodent 7

−5 0 5
0

0.5

1

1.5

2

Time Shift (ms)

Rodent 8

−5 0 5
0

0.5

1

1.5

2

Time Shift (ms)

Rodent 9

−5 0 5
0

0.5

1

1.5

2

Time Shift (ms)

Rodent 10

Fig. 7: Elements of h from solving (5) for rodents with spinal hemitransection (top row) and full spinal transection (bottom
row) using the SEP signals in Figure 6.
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Fig. 8: (a) Impulse distance values using the SEP signals in Figure 6. (b) Spectral coherence values using the SEP signals
in Figure 6.

TABLE II: Pearson Correlation Coefficient magnitude for SCI
assessment methods using the SEP signals in Figure 6

Spectral Coherence BBB Score
Impulse Distance 0.82 0.79

Spectral Coherence 1 0.65

gation velocity of an action potential. This results in a delayed
SEP which also often has reduced amplitude. The proposed
method accounts for both the amplitude and temporal aspects
of the signal morphology, whereas spectral coherence accounts

for only the amplitude characteristics. Indeed, the nature of
the solution vector h provides a simplified representation of
the SCI affected SEP signal vis-à-vis the baseline SEP signal,
while the impulse distance measure further consolidates this
representation as a single number. To illustrate the difference
in the behavior of the spectral coherence and the proposed
impulse distance measure, Figure 9 shows the resulting values
of both measures for a temporal shift of the SCI affected SEP
signal with respect the baseline SEP signal ranging from 0ms
to 3ms. It can be seen that the spectral coherence value is
relatively insensitive across time shifts, whereas the impulse
distance exhibits a more representative change in value.
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Finally, it may be noted that the impulse distance and
spectral coherence are both quantitative assessment measures
based on SEP signals that reflect the health of the sensory func-
tion, while the BBB reflects the status of the motor recovery.
Moreover, various stages of sensory function may manifest as
a similar level of motor skill. Hence, a quantitative measure
of SCI such as the impulse distance coupled with a qualitative
assessment such as the BBB may be viewed as complementary
information that provides a more comprehensive assessment of
SCI.
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Fig. 9: Dependence of spectral coherence and impulse distance
values on time shift between baseline and SCI affected SEP
signals.

V. CONCLUSION

The similarity between the characteristics of SEP signals
from a healthy spinal pathway and injured spinal cord pathway
provides an indicator of the level of SCI. A method to assess
the level of SCI was proposed that models the SEP signal
from an injured pathway as a superposition of time-shifted
and amplitude scaled versions of the SEP signal from a
healthy spinal pathway. The time-shift and amplitude scaling
parameters were determined by solving a sparse reconstruc-
tion problem. Using actual experimental data collected from
rodents subject to SCI, it was shown for mild SCI, only a
few significant elements located at time-shifts close to zero
are needed to model the injury, whereas for severe SCI, many
non-zero elements located at various time-shifts are required.
The nature of the elements thus encapsulates information
about the level of SCI. A measure was developed to express
the elements as a single number, and it was shown that the
values yielded by this measure are consistent with existing
quantitative and qualitative SCI assessment methods, while
simultaneously providing a closer inspection of morphological
changes of the SEP signal induced by SCI.
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