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Abstract—Goal: This paper reports a novel electromag-5
netic sensor technique for real-time noninvasive monitoring6
of blood lactate in human subjects. Methods: The technique7
was demonstrated on 34 participants who undertook a cy-8
cling regime, with rest period before and after, to produce a9
rising and falling lactate response curve. Sensors attached10
to the arm and legs of participants gathered spectral data,11
blood samples were measured using a Lactate Pro V2; tem-12
perature and heart rate data was also collected. Results:13
Pointwise mutual information and neural networks are used14
to produce a predictive model. The model shows a good15
correlation (R = 0.78) between the standard invasive and16
novel noninvasive electromagnetic wave based blood lac-17
tate measurements, with an error of 13.4% in the range of18
0–12 mmol/L. Conclusion: The work demonstrates that elec-19
tromagnetic wave sensors are capable of determining blood20
lactate level without the need for invasive blood sampling.21
Significance: Measurement of blood metabolites, such as22
blood lactate, in real-time and noninvasively in hospital en-23
vironments will reduce the risk of infection, increase the fre-24
quency of measurement and ensure timely intervention only25
when necessary. In sports, such tools will enhance training26
of athletes, and enable more effecting training regimes to27
be prescribed.28

Index Terms—Electromagnetic wave, microwave, non-29
invasive, point of care, sensor, wearable.30

I. INTRODUCTION31

LACTATE is key in two fundamental metabolic processes,32

glycolysis and oxidative phosphorylation, which serve as33

the basis for energy production in the human body [1]. Glycol-34

ysis is the process of converting glucose into the intermediate35

molecule pyruvate. Oxidative phosphorylation completes the36

process, in conjunction with oxygen, to form carbon dioxide;37
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both processes also result in the production of adenosine 38

triphosphate (ATP) which provides energy for cells to function. 39

When the body is in a resting and/or healthy non-active state, 40

lactate levels in the blood stream are maintained at a relatively 41

low steady state. According to Andropoulos [2], whole blood 42

lactate should be in the range 0.2–1.7 mmol/L in a healthy pa- 43

tient, with some variation noted based on age. However, when 44

stress is introduced to the body (e.g., via exercise or acute ill- 45

ness) the energy requirements of the body can alter significantly. 46

Typically, glycolysis can accelerate rapidly to meet the new en- 47

ergy demand; however, oxidative phosphorylation does not. This 48

means that the body produces significant amounts of pyruvate, 49

which it must then convert to lactate (via the enzyme lactate 50

dehydrogenase, or LDH) so that glycolysis can continue accel- 51

erating and producing both pyruvate and ATP. Once the lactate 52

level in the cells becomes saturated, it will be transported into 53

the blood stream; during acute exercise lactate may exceed 20 54

mmol/L, as shown by Goodwin et al [3] for example. In a 55

healthy person post-exercise, the lactate level will steadily drop 56

back to normal levels, with oxidative phosphorylation being able 57

to clear the excess lactate. 58

When the stress placed on the body is due to illness, the 59

tendency for the body to accumulate lactate is prolonged, per- 60

haps resulting in lactic acidosis. It is therefore commonplace 61

in contemporary medicine for lactate to be used as a means to 62

evaluate the severity of acute illness, diagnose disease states, 63

predict mortality, and assess response to resuscitation [4]. Fur- 64

thermore, in sport, lactate is one of the most often measured 65

parameters when performance testing athletes and prescribing 66

exercise intensities [3]. 67

Current off-the-shelf Point of Care (PoC) technologies (fur- 68

ther detailed in Section II) necessitate a blood sample. While 69

steps have been taken to speed up the process of measurement 70

and analysis, the requirement of extracting blood is still con- 71

sidered a major inconvenience. In a hospital environment, this 72

carries significant infection control risks, and the frequency of 73

sampling is rarely sufficient for clinicians to understand whether 74

intervention is necessary. Leading clinicians at Alder Hey Chil- 75

drens Hospital (Liverpool, UK) suggest that even if patient blood 76

is sampled and measured 4–6 times per day, as may be the case 77

in intensive care environments, this does not readily enable one 78

to understand if the lactate level is rising (i.e., worsening condi- 79

tion) or falling (i.e., recovery). Furthermore, in cases where the 80

patient is an infant, the amount of blood available is small and 81

so extraction of even 1–3 ml of blood represents a significant 82

0018-9294 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. (a) An example of a Siemens BGA used by the authors, with
capacity to measure and predict 24 different parameters based on an
input of approx. 0.1 ml of blood, and (b) a handheld Abott BGA offering
a greater level of portability and requiring 65 μL blood volume.

percentage of overall blood volume if sampling frequently and83

leads to considerable stress to the patient.84

For athletes, the issue of blood volume is less challenging85

since they are typically adult and in a good state of health. How-86

ever, blood sampling is still cumbersome in sport since athletes87

typically have to reduce exercise intensity (or stop altogether)88

to provide a measurement which prohibits continuous high res-89

olution monitoring during exercise.90

This paper describes the use of a microwave-based sensor for91

the measurement of lactate non-invasively by simple application92

to the skin of a subject. The authors have worked in this area for93

some years [5]–[9] mainly considering in-vitro measurement94

of lactate and the varying types of microwave-based sensor95

design depending on specific applications. This work takes a96

considerable step forward, and shows the potential of in-vivo97

application of the sensor technology with human participants in98

a controlled environment.99

II. STATE OF THE ART IN LACTATE MONITORING100

In a clinical environment blood gas analysis has become an101

integral part of patient monitoring, particularly in the case of102

acute illness (i.e., in emergency wards or intensive care units),103

with clinical staff relying upon inclusion of blood gas analysers104

(BGAs) to assist in diagnostic workups and development of105

treatment plans [10]. A BGA, such as that shown in106

Fig. 1(a), can directly measure pH, partial pressure of oxygen107

(PO2) and carbon dioxide (PCO2), a variety of electrolytes,108

and various metabolites including glucose, lactate, blood urea109

nitrogen, and creatinine [11]. Compared with laboratory anal-110

ysis, a BGA offers rapid measurement time (approx. 1 minute,111

excluding sampling and transit times) and a wealth of informa-112

tion upon which assessment of patient condition can be made.113

It is no surprise therefore that the BGA has become the gold114

standard against which clinicians compare emerging point of115

care technologies.116

Measurement with a BGA is not without its drawbacks how-117

ever, since the process of extracting blood from a patient is118

an invasive procedure, with potential complications which in-119

clude artery occlusion, digital embolisation leading to digital120

Fig. 2. Lactate Pro V2 LT–1730 in use by the authors.

ischemia, sepsis, local infection, pseudoaneurysm, hematoma, 121

bleeding, and skin necrosis [12]. As a result of infection risk, re- 122

source availability, and patient capacity to provide blood, BGA 123

does not give a high resolution assessment of patient condition 124

over time, which many clinicians argue would provide infor- 125

mation relevant to understanding the necessity and form of in- 126

tervention. Furthermore, the drive toward more point of care 127

monitoring equipment located at the patient bedside has clini- 128

cians looking toward smaller and more portable devices. Some 129

attempts to produce portable BGAs, such as the Abott i-STAT 130

device illustrated in Fig. 1(b), have been commercialised and 131

studies show they give levels of accuracy for lactate comparable 132

with larger desktop systems [13]. However, the required blood 133

volume (65 μL), long sampling times (approx. 65 seconds) and 134

skilled handling procedure preclude use at the bedside. 135

BGAs offer a broad range of measurements, but a number 136

of devices have been released to the market that offer sin- 137

gle metabolite measurement. These are typically based on an 138

electrochemical principle, using an electrochemically sensitised 139

strip which, when exposed to blood, changes its electrical prop- 140

erties. When inserted into a device designed to interface with 141

these strips, users are able to obtain a lactate reading within 142

15–60 seconds. While these devices still require blood to be ex- 143

tracted from a subject, the volume requirement is significantly 144

lower than a BGA–for example the Lactate Pro V2 LT–1730 145

system (see Fig. 2) used regularly by the authors requires only 146

5 μL of blood. 147

An in-depth study [14] considered the reliability of such hand- 148

held electrochemical devices, concluding that although all de- 149

vices tested exhibited varying characteristic (error, accuracy), 150

all could be used for longitudinal studies and have particular 151

relevance in prescribing exercise regimes. A smaller study [15] 152

also demonstrated that such electrochemical sensors give ac- 153

ceptable results in clinical settings, and some are approved for 154

medical use, however there is little evidence to show significant 155

uptake in this context. This is perhaps due to uncertainty re- 156

garding the unknown sources of error with point of care devices 157

(e.g., temperature, operator training, equipment condition, etc.) 158

when compared with clinical laboratory facilities [16], and the 159

remaining infection control risk due to extraction of blood, albeit 160

in smaller volumes. In addition, some caution against the use 161

of a fingertip test for lactate due to inferior accuracy. Gaieski 162

et al. [17] note that this may not be an issue in all patients, 163
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Fig. 3. BSX Insight athlete lactate prediction system, (a) with sensor
removed from its wearable sleeve and (b) as worn by a cyclist.

but compares the case of those undergoing intensive care with164

those presenting at emergency departments. In the former case,165

patients will be given significant volumes of intravenous fluid166

which, coupled with continued capillary leak and decreased in-167

travascular osmotic pressure, can lead to diffuse tissue oedema168

[18]. In the latter case however, patients are often hypovolemic,169

potentially decreasing the amount of extravascular fluid that170

enters a fingertip blood sample.171

Devices such as the Lactate Pro and i-STAT represent the172

current state-of-the-art in terms portable point of care systems173

for determining absolute blood lactate, and work continues in174

this field to improve cost, reliability and accuracy. A compre-175

hensive review of electrochemical sensor techniques to realise176

lactate measurement has been produced by Singh et al [19],177

and work by other researchers continues to improve this field178

through new fabrication techniques and methods to move toward179

wearables, with researchers utilising sweat rather than blood for180

lactate measurements [20], [21]. The desire for devices to be181

wearable is well known across a range of blood metabolites, to182

remove completely the need for blood extraction and revolu-183

tionise healthcare practices.184

The options for non-invasive lactate monitoring remain lim-185

ited for practitioners in either healthcare or sports, and perhaps186

the best example to reach the market is the BSX Insight lactate187

prediction system (see Fig. 3). This is a validated [22] wear-188

able system to predict lactate threshold, the point at which the189

concentration of blood lactate begins to exponentially increase190

during exercise. This system uses near infrared (NIR) sensors191

to monitor oxygenation in the gastrocnemius muscle and, via192

a patented algorithm, detects inflection points in the muscle193

oxygenation curve at increased workloads.194

Other optical based techniques for monitoring lactate are ev-195

ident in the literature [23]–[27], however little of that work196

appears to have made a significant presence on the PoC market.197

Largely speaking, these types of devices combine a chemical198

approach (e.g., a colour change) which then infers a lactate con-199

centration. However, these suffer from the same drawback as200

current electrochemical methods, namely the limited reusabil-201

ity of the sensitive elements of the device themselves. Boldt202

[16] demonstrates that costs from such point of care devices203

depend on many factors which can be categorised in terms of204

pre-analytical, analytical and post-analytical costs which may205

vary from one organisation to the next thus making the cost 206

benefit difficult to establish. 207

III. ELECTROMAGNETIC WAVE SENSORS 208

A review of the current state of the art reveals that techniques 209

available to practitioners in both clinical and sports contexts 210

present challenges for measuring lactate in real-time. Most 211

systems rely upon the extraction of blood, which presents in- 212

fection risks and is a barrier to providing high-resolution lactate 213

information. Furthermore, the single use model of portable 214

electrochemical PoC devices, such as the Lactate Pro and others 215

described in [14] pose challenges for clinical environments in 216

terms of budgeting and training. While there have been steps 217

to move toward wearable devices, those reported recently in 218

the research domain, particularly for monitoring sweat, have a 219

limited lifespan and therefore present similar issues. 220

Therefore, the authors have proposed the use of an electro- 221

magnetic (EM) wave sensor system, operating at microwave 222

frequencies, to provide a chemical-free sensor for real-time 223

monitoring of athletes. Although the main aim of the authors 224

has been to develop the system for medical use, it is clear 225

also that the technology has relevance to sport science, namely 226

the monitoring of athletes to ensure applicability of training 227

regimes, as well as to assist in their prescription. 228

EM wave sensors operating at microwave frequencies are 229

seeing an increasing interest across a variety of applications, 230

including for measurements in the food industry [28]–[31], for 231

water analysis [33], as well as for in-vitro, minimally-invasive 232

[36], [37] and non-invasive [38]–[40] medical purposes. The 233

sensors can typically be characterised as requiring low power 234

(< 1 mW) while retaining a good level of penetration into a 235

target material so that they may assess properties beneath a 236

surface–in this case, determination of blood lactate through the 237

skin of a subject. The sensors are also highly adaptable, with 238

cavities, fluidic channels, flexible and even fabric based devices 239

being demonstrated by researchers. It is these characteristics, 240

combined with their low-cost, that make them an interesting 241

proposition across so many potential application areas. 242

In this work, measurements from the EM wave sensor (de- 243

scribed in Section IV) are captured in the form of S-parameters 244

for reflected (S11) and transmitted (S21) energy. As energy is 245

coupled into the sensor, both the S11 and S21 signals vary de- 246

pending upon properties of the analyte presented to the sensor, 247

such as conductivity and permittivity [40]. Conductivity is a 248

measure of a material’s ability to conduct an electric current, 249

whereas permittivity is a measure of how an electric field is af- 250

fected by a dielectric medium. This is determined by the ability 251

of a material to polarise in response to the field, and reduce the 252

total electric field inside the material. Therefore, permittivity 253

(εr) as defined in (1) relates to a material’s ability to transmit 254

an electric field and is a complex value which varies with fre- 255

quency, and accounts for both the energy stored by a material 256

(ε′) as well as any losses of energy (ε′′) which might occur. 257

εr = ε′ + jε′′ (1)
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The permittivity of a material is derived from a number of258

characteristics (e.g., temperature, chemical structure, molecu-259

lar composition, etc.) and is a measure of various polarisation260

phenomena that occur over different frequency ranges when261

exposed to an alternating EM field [41]. This causes dipolar262

polarisation in polar molecules (such as lactate), which causes263

them to rotate over a time period proportional to their dipole264

moment and local conditions (e.g., viscosity). Since there is a265

delay between the dipolar polarisation and the applied alternat-266

ing EM field, dispersions exist whereby the molecule does not267

have sufficient time to fully align to the field, giving rise to di-268

electric relaxation in the microwave region of the EM spectrum.269

A number of mathematical models have been developed by Cole270

and Cole [42], Cole and Davidson [43], [44] and Havriliak and271

Negami [49] to explain relaxation phenomena. It is based upon272

these principles that EM wave sensors, operating at microwave273

frequencies, can selectively detect molecules such as lactate.274

IV. METHODOLOGY275

This section of the paper describes the sensor used during276

the work, the testing regime employed using cyclists to test the277

sensor response to lactate levels, and detail regarding placement278

of the sensor itself on participants.279

A. Test Regime280

A testing regime was designed to enable the development of a281

lactate profile in participants. The regime was based on the use282

of a Lode Excalibur Sport ergometer, which enables increase283

in pedal resistance up to 1500 W. The protocol adhered to was284

phased as follows:285

1) Begin with a rest period after fitment of sensors and other286

preparation for 5 minutes to enable stabilisation of a base-287

line lactate level;288

2) Warmup for a period of 5 minutes at 80 W, encourag-289

ing participants to maintain a constant cadence (approx.290

70-80 rpm) throughout;291

3) Increment resistance every 2 minutes by 20 W, maintain-292

ing similar cadence, and maintain resistance increment293

regime until cyclist cadence falls below 60 rpm, indicat-294

ing exhaustion.295

4) Conclude with a 10-minute rest period to observe falling296

lactate post-exercise.297

Throughout this test regime, measurements were taken with298

various devices as follows:299

1) EM wave sensor measurements, comprising an S11 and300

S21 spectra, every 30 seconds (see Sections IV-B and301

IV-C for detail of the sensor and placement).302

2) Blood lactate measurements using a Lactate Pro V2 elec-303

trochemical analyser, drawing blood samples from the tip304

of a finger on the left hand. In respect of the test regime,305

measurements were taken at the beginning and end of306

phase 1, the end of phase 2, every minute during phase 3,307

and then every 2 minutes during phase 4. This device was308

chosen not only due to its use in research work noted by309

other authors, but also due to it being one of the only such310

devices with medical approval.311

Fig. 4. The (a) top view and (b) bottom view of the physical sensor
used in this work, and (c) S-parameter measurements (10 MHz–4 GHz).

3) Temperature measurements using a thermocouple taped 312

to the arm and leg of participants. 313

4) Heart rate via a Polar V800 chest strap and watch com- 314

bination. 315

All data was date and time stamped so that it could be ret- 316

rospectively synchronised for comparison and analysis. Testing 317

took place between December 2015 and May 2016, with 34 318

participants being recruited for the trial. The majority of the 319

participants were male and aged between 25 and 40; 20% of 320

the test subjects were female. There is no significant difference 321

noted in expected blood lactate levels in these groups [2]. In to- 322

tal, from all participants, 367 lactate measurements were taken 323

using the Lactate Pro V2 device, which acted as the reference 324

method in this study. 325

B. Electromagnetic Wave Sensor 326

For this work, a so-called hairpin resonator configuration 327

of sensor has been designed and constructed as illustrated 328

in Fig. 4(a). The sensor dimensions are 40 mm × 40 mm × 329

1.6 mm (l × w × h), with coaxial (SMA) feeds to the decou- 330

pled hairpin conductors. 331

The sensor is manufactured via a standard etching process, 332

and the substrate is FR4 epoxy glass coated with a biocompati- 333

ble mask that helps to prevent leeching of the copper conductor 334

when worn by test subjects. The SMA connector contacts, 335

shown as exposed in Fig. 4(a) were also masked with insulating 336

tape when in use to prevent direct conductor contact with the 337

skin. The rear of the sensor has a discontinuous ground plane 338

that isolates ports 1 from port 2, as pictured in Fig. 4(b). This 339

is to enable resonance of the device, while also ensuring that 340
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the generated EM energy is directed toward the test material341

and providing the hairpin pattern with shielding from outside342

sources of interference.343

S-parameter measurements for the sensor in air are illustrated344

in Fig. 4(c), showing that the senor tends to resonate at approx.345

2 GHz. The sensor is designed such that the EM field closely346

coupled to the surface of the sensor, so that the field may pen-347

etrate through the skin of a target and interact with the fluids348

beneath. Maintaining a field close to the sensor surface has some349

advantages, namely that of reducing interference from objects350

other than the surface to which it is directly attached. The hair-351

pin configuration of the device supports this notion well, and352

has the primary reason for its use.353

Each sensor was connected to a separate Rohde and Schwarz354

ZVL13 Vector Network Analyser (VNA), and S11 and S21355

measurements were recorded every 30 seconds via a bespoke356

LabView interface. The equipment was configured to capture357

data between 10 MHz and 4 GHz, with 4000 discrete data points358

recorded. The equipment was set to output 0 dBm (1 mW)359

power. The system configuration was selected based upon dis-360

cussion with the project partners, as well as knowledge obtained361

in prior published (e.g., [5], [6], [8], [39]) and unpublished362

work. Previous work suggested that lactate and similar metabo-363

lites were quantifiable within this selected frequency range,364

although some uncertainty of the precise response frequency365

was present due previous work being ex-situ. From a commer-366

cial perspective, it was desirable to have an upper limit of 4367

GHz to limit unit cost and size of a future “all-in-one” wearable368

solution.369

C. Sensor Placement370

The sensor was placed on the left arm and leg of each partici-371

pant; the leg due to this being the source of lactic acid production372

during exercise, and the arm due to blood being drawn from the373

finger tip for lactate measurement. Specific placement on the374

leg was over the Rectus femoris muscle and on the wrist approx.375

one-third distance between the wrist and elbow joints, where376

there would be significant blood flow owing to the Arteriove-377

nous fistula. The left side of each participant was chosen simply378

due to accessibility within the testing space itself; the setup is379

shown in Fig. 5(a), with a closer view of the sensors adhered to380

a participant in Fig. 5(b).381

The sensors were fixed to the participant using 75 mm ×382

100 mm surgical dressings, modified by cutting to allow the383

right-angled SMA connectors to protrude. Cables were secured384

to the limbs of the participant using a surgical tape, primarily385

for mechanical strength. Prior to placement, the sensor and area386

under test was cleansed with an alcohol wipe. No shaving or387

other preparation of the skin was undertaken.388

V. RESULTS AND DISCUSSION389

With 34 participants and a total of 367 blood lactate mea-390

surements, on average there were 11 blood samples taken per391

participant. Naturally, this varied depending on the fitness level392

of participants, and thus their ability to maintain a steady ca-393

dence despite the increasing work rate. Fig. 6 gives an indicative394

Fig. 5. (a) Experimental setup, with participant on ergometer and sen-
sors attached to data acquisition hardware; (b) illustrates placement of
sensors on both arm and leg with another participant.

Fig. 6. Illustrating the test regime implemented, as described in
Section IV.

lactate profile, with markers denoting the four phases discussed 395

in the methodology section. 396

Separating the collected data into the groups 0–5 (48.2%), 397

6–10 (22.1%), 11–15 (26.3%) and >16 (5.8%) by lactate con- 398

centration (in mmol/L) gave an indication of data distribution. 399

The majority of data collected is in the range of 0–5 mmol/L, 400

with an approximately even split then between the 6–10 and 401

11–15 mmol/L groups. This is reasonable given participants 402

would spend 5 minutes resting at the beginning and end of the 403

resting regime, and a further 5 minutes warming up with little 404

exertion (for most) experienced in this period. Few participants 405

were able to raise their lactate level above 15 mmol/L, and so 406

the data availability > 15 mmol/L for the purposes of creating 407

relevant models linking EM sensor output with actual lactate 408

level is limited. 409

A number of techniques were considered for providing robust 410

analysis and models to test the correlation between EM wave 411

sensor outputs and lactate level measured via Lactate Pro V2. 412

Typical linear models, which have proven successful for in-vitro 413

laboratory based tests (for example, see previous work of the 414

authors in this field [5]–[9]) yielded relatively low correlation 415

across the complete data set. 416

Therefore, for this work, the authors applied the approach 417

of Pointwise Mutual Information (PMI), combined with Neural 418
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Networks (NNs). PMI is a useful method for establishing the re-419

lationship between datasets and their supposed target data, and420

producing rankings that indicate the prominence of relation-421

ships. In this work, PMI was used to consider the relationship422

between the lactate value measured with the Lactate Pro V2,423

and the corresponding spectral data captured using the EM wave424

sensor. By doing this, it was possible to rank the spectral data425

by frequency in order of its relevance, and therefore reduce the426

spectral dataset being provided to the NN. This has significance427

for two reasons since: 1) it reduces the amount of irrelevant428

information being provided to the NN, thereby improving the429

likelihood of a suitable model being generated and; 2) it assists430

in the commercial objectives of the work since limiting the fre-431

quency of operation reduces cost, size and power requirements,432

all of which are barriers to implementing a wearable system.433

A number of reduced datasets were produced using the PMI434

method, based on the top 10, 20, 50, 100, 250 and 500 frequen-435

cies of interest per measurement with the EM sensor, where436

originally data was acquired at 4000 discrete frequencies be-437

tween 10 MHz and 4 GHz. This was replicated for data collected438

from both the arm and leg of each participant, as well as for each439

measurement mode, i.e., S11 and S21 .440

The NN approach was applied in Mathworks MatLab soft-441

ware for each dataset. The data was split into a training set442

(225 values, 65%), validation set (75 values, 22%) and test set443

(45 values, 13%). Splitting of the data was performed at random444

and 10-fold cross validation was performed. It is noted that the445

volume of data available for lactate levels exceeding 15 mmol/L446

is limited and so this part of the dataset was excluded from447

this machine learning exercise. Thus, the total number of lactate448

measurements available was reduced from 367 to 345. Results449

corresponding to each mode of measurement (i.e., S11 or S21),450

each location (i.e., arm or leg) and each frequency ranking (i.e.,451

10, 20, 50, 100, 250 and 500) were recorded, and are shown452

in Table I. On average, the best performing measurement was453

achieved with the sensor located on the arm, and with the S11454

mode of measurement; this consistently achieves an Rtest >455

0.75 once the number of discrete frequencies used for training456

approaches or exceeds 100. Typically speaking, the results pro-457

duced from the NN modelling indicate that once 100 frequencies458

of interest are exceeded, there is a little relative improvement459

in model performance with further increase in the number of460

frequencies–this is evident in the plateau effect for both R and461

RMSE shown in Fig. 7.462

The measurements conducted on the leg, also in the S11 mode,463

tend to give next best performance, achieving an R-value of ap-464

prox. 0.7 with 100 frequencies of interest fed into the training465

model. It is noted that the error in this case is reported to be466

higher, which is thought to be a result of the sensor (and par-467

ticularly the cables) moving during the exercise, which increase468

noise apparent in the acquired data. A better mechanical fit of469

the sensor to the skin might resolve such issues, as might the470

future integration of the electronics into an all-in-one wearable471

device, which would completely remove the need for cables.472

Fig. 8(a) illustrates the training model created for the top473

100 ranked frequencies of interest using the S11 arm combina-474

tion, which tended to be most significantly concentrated in the475

TABLE I
NEURAL NETWORK TRAINING AND TEST R AND RMSE VALUES FOR EACH
MODEL CREATED ACROSS THE MEASUREMENT MODES, LOCATIONS AND

NUMBER OF TOP RANKED FREQUENCIES FROM THE INPUT DATASET

No. Data S11 S21 S11 S21

Freq Type Arm Arm Leg Leg Ave.

10 Rtra in in g 0.8719 0.7191 0.7669 0.7252 0.7708
R t e s t 0.5543 0.4268 0.5936 0.3682 0.4857

RMSEtra in in g 2.0721 2.9301 2.7149 2.9213 2.6596
RMSEte s t 4.4068 4.1791 3.7223 4.7677 4.2690

20 Rtra in in g 0.8311 0.8897 0.8140 0.7998 0.8337
R t e s t 0.5267 0.2213 0.6107 0.2734 0.4080

RMSEtra in in g 2.3543 1.9321 2.4589 2.5413 2.3217
RMSEte s t 4.775 5.6949 3.7047 5.4118 4.8966

50 Rtra in in g 0.9529 0.8424 0.9245 0.8016 0.8804
R t e s t 0.6456 0.50900 0.7060 0.5160 0.5942

RMSEtra in in g 1.2949 2.2721 1.6149 2.5297 1.9279
RMSEte s t 4.0165 4.0477 3.8603 4.278 4.0506

100 Rtra in in g 0.9653 0.9225 0.8571 0.9469 0.9230
R t e s t 0.7827 0.3274 0.7270 0.2575 0.5237

RMSEtra in in g 1.1087 1.6316 2.1857 1.3698 1.5740
RMSEte s t 2.8786 5.1848 3.081 8.7872 4.9829

250 Rtra in in g 0.9486 0.9607 0.9247 0.9765 0.9526
R t e s t 0.8047 0.4747 0.5700 0.3718 0.5553

RMSEtra in in g 1.3589 1.1724 1.625 0.9148 1.2678
RMSEte s t 2.7426 4.8635 4.6707 5.4387 4.4289

500 Rtra in in g 0.9163 0.9589 0.7968 0.9606 0.9082
R t e s t 0.7632 0.5449 0.6871 0.3945 0.5974

RMSEtra in in g 1.7621 1.228 2.5578 1.2061 1.6885
RMSEte s t 3.242 5.0805 3.2657 5.743 4.3328

Ave. Rtra in in g 0.9144 0.8822 0.8473 0.8684 -
R t e s t 0.6795 0.4174 0.6491 0.3636 -

RMSEtra in in g 1.6585 1.8611 2.1929 1.9138 -
RMSEte s t 3.6769 4.8418 3.7175 5.7377 -

Fig. 7. Average R and RMSE values for all modes of measurement vs.
number of frequencies used to create a prediction model.

Fig. 8. Correlation for the top 100 frequencies selected via the PMI
method for S11 arm; (a) training model and (b) test data fit in the range
0-15 mmol/L
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3.4–3.6 GHz region of the measured spectra. It is noted that the476

RMSE reported for the test data (see Table I) is typically higher477

than that for the training mode, which is to be expected with NN478

methods.479

The data contained in Table I is relevant for the range480

0–15 mmol/L, based upon the categories used to represent the481

distribution of lactate values collected. The best performing482

combination of sensor position and measurement mode in this483

study was the S11 arm combination, which in part is thought484

to be a result of the arm location having little movement dur-485

ing the experimentation. Using the top 100 ranked frequen-486

cies, the training model error is 7.4%, and the test error 19.2%487

in the range 0–15 mmol/L. However, Fig. 8(b) demonstrates488

that the NN model does not perform well at lactate levels >12489

mmol/L; in the range 0–12 mmol/L the test error is reduced490

to 13.4%.491

It is planned to conduct further trials to augment the current492

collected data, which it is hoped will reduce the sensor error493

at higher lactate levels. Trial of the sensor on athletes for ex-494

ample will assist in this, since they will be able to maintain495

high lactate levels for longer and therefore provide more data496

in the range >12 mmol/L. Ideally this additional data collec-497

tion should be coupled with the earlier suggestions regarding498

improved mechanical fit of the sensor to the skin.499

A parallel study, conducted by the authors at Alder Hey Chil-500

dren’s Hospital to assess the expected levels of blood lactate501

in patients undergoing intensive care, found that only 0.87% of502

blood samples reported a lactate concentration >12 mmol/L.503

This was based on 1,000 blood samples taken over a 3 month504

period and measured using the standard BGA method. This505

therefore suggests that the sensor, even in its current form, can506

report clinically relevant information.507

A major benefit of real-time on-patient monitoring noted ear-508

lier was the potential to be able to monitor live patient informa-509

tion. Current blood sampling does not give enough resolution to510

understand whether a patient’s lactate level is rising or falling,511

and therefore deciding on an intervention strategy can be chal-512

lenging. Thus, being able to track the direction of lactate change513

is perhaps as important as knowing its absolute value. The capa-514

bility of the sensor to do this is illustrated in Fig. 9, where all of515

the collected data from the 34 participants is overlaid with the516

predicted data from the NN model, trained using 100 discrete517

frequencies.518

Temperature and heart rate were measured in this study to519

understand if they influenced the sensor output. It is known that520

temperature is crucial in the use of EM wave devices, particu-521

larly due to the resultant change in εr [46]. During this study,522

it was noted that the average absolute skin temperature varia-523

tion between the end of phase 1 and beginning of phase 4 was524

2.28 °C (min 0.92 °C, max 4.30 °C). It was also noted that the525

temperature recorded by the thermocouple sensors tended to fall526

during exercise, most likely due to participant perspiration [47].527

Heart rate on the other hand, tended to rise as work output in-528

creased from a resting average of 85 bpm to a maximum of 172529

bpm. Notably however, whereas heart rate tended to fall almost530

immediately post-exercise, lactate level would continue to rise531

due to the latency inherent in lactate metabolism. As a result,532

Fig. 9. Actual data measured vs. neural network model, highlighting
the capability of the model to predict the lactate profile, not only absolute
value.

both temperature and heart rate failed to yield a significant cor- 533

relation with the EM wave sensor measurements, with R < 0.4 534

in both cases. This adds further weight to the previously dis- 535

cussed correlation between the EM wave sensor and blood lac- 536

tate, as it shows that other parameters such as temperature and 537

heart rate do not significantly influence the sensor. 538

VI. CONCLUSION 539

This work has demonstrated the novel application of an 540

EM wave sensor for the non-invasive real-time monitoring of 541

blood lactate, as correlated with the well-known Lactate Pro V2 542

electrochemical analyser. In total 34 participants, generating a 543

dataset of 367 blood lactate measurements, took part in the study 544

through a static cycling test regime designed to promote a trace- 545

able blood lactate profile. Using a PMI method to reduce the 546

necessary dataset acquired from the sensor, and a NN machine 547

learning algorithm to create a predictive model, it was demon- 548

strated that a reliable correlation (R = 0.78) could be obtained 549

when the sensor was configured in the S11 measurement mode, 550

and located on the arm of the test subjects. In the range 0–12 551

mmol/L lactate, the sensor was shown to have an error of 13.4%. 552

In addition, it was demonstrated that this model has relevance 553

in not only predicting absolute lactate values, but also tracking 554

their direction for the purposes of, for example, prescribing pa- 555

tient interventions. Furthermore, it was shown that participant 556

temperature and heart rate did not have a significant influence 557

on the results. This work therefore shows the potential for EM 558

wave sensors as PoC systems. Future work in this area will fo- 559

cus on two areas: (1) the collection of further data to improve 560

the predictive model and; (2) the improvement of the sensor 561

design toward an “all-in-one” wearable solution. The present 562

study has provided useful information in this regard, since the 563

best performance was noted in the S11 measurement mode, and 564

in the range of 3.4–3.6 GHz. This information will enable re- 565

duction of the number of cables (and the associated electronics) 566

required for a commercial solution, in addition to focusing ef- 567
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forts to enhance the sensor design in the noted frequency range568

for improved sensitivity and robustness of measurement, as well569

as a reduction in sensor size.570

ACKNOWLEDGMENT571

The authors would like to thank Alder Hey Children’s Hospi-572

tal (Liverpool, U.K.), in particular R. Guerrero, for their clinical573

support and guidance during this project.574

REFERENCES575

[1] J. Bakker et al., “Clinical use of lactate monitoring in critically ill patients,”576
Ann. Intensive Care, vol. 3, 2013, Art. no. 12.577

[2] D. B. Andropoulos, “Appendix B: Pediatric normal laboratory values,”578
in Gregory’s Pediatric Anesthesia, ed. Hoboken, NJ, USA: Wiley, 2012,579
pp. 1300–1314.580

[3] M. L. Goodwin et al., “Blood lactate measurements and analysis dur-581
ing exercise: A guide for clinicians,” J. Diabetes Sci. Technol., vol. 1,582
pp. 558–569, 2007.583

[4] N. C. Watson and S. O. Heard, “The use of lactate as a biomarker,” J.584
Intensive Care Med., vol. 25, pp. 301–302, 2010.585

[5] J. H. Goh et al., “Non invasive microwave sensor for the detection of586
lactic acid in cerebrospinal fluid (CSF),” J. Phys., Conf. Series, vol. 307,587
2011, Art. no. 012017.588

[6] A. Mason et al., “Real-Time monitoring of bodily fluids using589
novel electromagnetic wave sensor,” J. Public Health Frontier, vol. 2,590
pp. 201–206, 2013.591

[7] R. T. Blakey et al., “A fluidic cell embedded electromagnetic wave sensor592
for online indication of neurological impairment during surgical proce-593
dures,” J. Phys., Conf. Series, vol. 450, 2013, Art. no. 012024.594

[8] J. H. Goh et al., “Using a microwave sensor as an online indicator of595
neurological impairment during surgical procedures,” Key Eng. Mater.,596
vol. 453, pp. 368–372, 2013.597

[9] M. Fok et al., “A novel microwave sensor to detect specific biomarkers598
in human cerebrospinal fluid and their relationship to cellular ischemia599
during thoracoabdominal aortic aneurysm repair,” J. Med. Syst., vol. 39,600
2015, Art. no. 37.601

[10] A. Arias-Oliveras, “Neonatal blood gas interpretation,” Newborn Infant602
Nursing Rev., vol. 16, pp. 119–121, 2016.603

[11] A. L. Gonzalez and L. S. Waddell, “Blood gas analyzers,” Topics Com-604
panion Animal Med., vol. 31, pp. 27–34, 2016.605

[12] M. Brzezinski et al., “Radial artery cannulation: A comprehensive review606
of recent anatomic and physiologic investigations,” Anesthesia Analgesia,607
vol. 109, pp. 1763–1781, 2009.608

[13] F. Ismail et al., “The accuracy and timeliness of a point of care lactate mea-609
surement in patients with Sepsis,” Scandinavian J. Trauma, Resuscitation610
Emergency Med., vol. 23, 2015, Art. no. 68.611

[14] J. M. Bonaventura et al., “Reliability and accuracy of six hand-held blood612
lactate analysers,” J. Sports Sci. Med., vol. 14, pp. 203–214, 2015.613

[15] S. Singh et al., “The handheld blood lactate analyser versus the blood gas614
based analyser for measurement of serum lactate and its prognostic signif-615
icance in severe sepsis,” Med. J. Armed Forces India, vol. 72, pp. 325–331,616
2016.617

[16] J. Boldt et al., “Point-of-care (POC) testing of lactate in the intensive618
care patient,” Acta Anaesthesiologica Scandinavica, vol. 45, pp. 194–199,619
2001.620

[17] D. F. Gaieski et al., “Accuracy of handheld point-of-care fingertip lactate621
measurement in the emergency department,” Western J. Emergency Med.,622
vol. 14, pp. 58–62, 2013.623

[18] H. A. Koomans and W. H. Boer, “Causes of edema in the intensive care624
unit,” Kidney Int. Suppl., vol. 59, pp. S105–10, 1997.625

[19] K. Rathee et al., “Biosensors based on electrochemical lactate detection:626
A comprehensive review,” Biochem. Biophys. Rep., vol. 5, pp. 35–54,627
2015.628

[20] W. Gao et al., “Fully integrated wearable sensor arrays for multiplexed629
in situ perspiration analysis,” Nature, vol. 529, pp. 509–514, 2016.630

[21] E. L. Tur-Garcı́a et al., “Novel flexible enzyme laminate-based sensor631
for analysis of lactate in sweat,” Sensors Actuators B, Chem., vol. 242,632
pp. 502–510, 2017.633

[22] N. R. Borges and M. W. Driller, “Wearable lactate threshold predicting 634
device is valid and reliable in runners,” J. Strength Conditioning Res., 635
vol. 30, pp. 2212–2218, 2016. 636

[23] T. McCormack et al., “Optical immunosensing of lactate dehydrogenase 637
(LDH),” Sensors Actuators B, Chem., vol. 41, pp. 89–96, 1997. 638

[24] X. Wang et al., “Glucose oxidase-incorporated hydrogel thin film for fast 639
optical glucose detecting under physiological conditions,” Mater. Today 640
Chem., vol. 1–2, pp. 7–14, 2016. 641

[25] C.-I. Li et al., “Sol–gel encapsulation of lactate dehydrogenase for optical 642
sensing of l-lactate,” Biosensors Bioelectron., vol. 17, pp. 323–330, 2002. 643

[26] S. A. Arnold et al., “In-situ near infrared spectroscopy to monitor key 644
analytes in mammalian cell cultivation,” Biotechnol. Bioeng., vol. 84, 645
pp. 13–19, 2003. 646

[27] D. Lafrance et al., “In vivo lactate measurement in human tissue by 647
near-infrared diffuse reflectance spectroscopy,” Vibrational Spectroscopy, 648
vol. 36, pp. 195–202, 2004. 649

[28] A. Mason et al., “Theoretical Basis and application for measuring pork 650
loin drip loss using microwave spectroscopy,” Sensors, vol. 16, 2016, 651
Art. no. 182. 652

[29] S. G. Bjarnadottir et al., “Assessing quality parameters in dry-cured ham 653
using microwave spectroscopy,” Meat Sci., vol. 108, pp. 109–114, 2015. 654

[30] J. Yang et al., “Rapid determination of the moisture content of milk 655
powder by microwave sensor,” Measurement, vol. 87, pp. 83–86, 2016. 656

[31] D. Agranovich et al., “A microwave sensor for the characterization of 657
bovine milk,” Food Control, vol. 63, pp. 195–200, 2016. 658

[32] M. Jilani et al., “A microwave ring-resonator sensor for non-invasive 659
assessment of meat aging,” Sensors, vol. 16, 2016, Art. no. 52. 660

[33] O. Korostynska et al., “Electromagnetic wave sensing of NO3 and COD 661
concentrations for real-time environmental and industrial monitoring,” 662
Sensors Actuators B, Chem., vol. 198, pp. 49–54, 2014. 663

[34] B. Camli et al., “A microwave ring resonator based glucose sensor,” 664
Procedia Eng., vol. 168, pp. 465–468, 2016. 665

[35] T. Chretiennot et al., “Microwave-Based microfluidic sensor for non- 666
destructive and quantitative glucose monitoring in aqueous solution,” Sen- 667
sors, vol. 16, 2016, Art. no. 1733. 668

[36] R. Blakey et al., “Real-Time monitoring of pseudomonas aeruginosa 669
concentration using a novel electromagnetic sensors microfluidic cell 670
structure,” IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3291–3297, 671
Dec. 2013. 672

[37] O. Korostynska et al., “Microwave sensors for the non-invasive mon- 673
itoring of industrial and medical applications,” Sensor Rev., vol. 34, 674
pp. 182–191, 2014. 675

[38] M. Salazar-Alvarez et al., “Label free detection of specific protein binding 676
using a microwave sensor,” Analyst, vol. 139, pp. 5335–5338, 2014. 677

[39] A. Mason et al., “A resonant co-planar sensor at microwave frequen- 678
cies for biomedical applications,” Sensors Actuators A, Phys., vol. 202, 679
pp. 170–175, 2013. 680

[40] H. Choi et al., “Design and in vitro interference test of microwave non- 681
invasive blood glucose monitoring sensor,” IEEE Trans. Microw. Theory 682
Tech., vol. 63, no. 10, pp. 3016–3025, Oct. 2015. 683

[41] R. T. Blakey and A. M. Morales-Partera, “Microwave dielectric 684
spectroscopy–A versatile methodology for online, non-destructive food 685
analysis, monitoring and process control,” Eng. Agriculture, Environ. 686
Food, vol. 9, pp. 264–273, 2016. 687

[42] K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics I. 688
Alternating current characteristics,” J. Chem. Phys., vol. 9, pp. 341–351, 689
1941. 690

[43] D. W. Davidson and R. H. Cole, “Dielectric relaxation in glycerine,” J. 691
Chem. Phys., vol. 18, pp. 1417–1417, 1950. 692

[44] D. W. Davidson and R. H. Cole, “Dielectric relaxation in glycerol, propy- 693
lene glycol, and n-propanol,” J. Chem. Phys., vol. 19, pp. 1484–1490, 694
1951. 695

[45] S. Havriliak and S. Negami, “A complex plane representation of dielectric 696
and mechanical relaxation processes in some polymers,” Polymer, vol. 8, 697
pp. 161–210, 1967. 698

[46] G. P. Srivastava and Y. P. Varshni, “Variation of dielectric constant with 699
temperature,” Physica, vol. 22, pp. 584–586, 1956. 700

[47] M. Torii et al., “Fall in skin temperature of exercising man,” Brit. J. Sports 701
Med., vol. 26, pp. 29–32, 1992. 702

Authors’ photographs and biographies not available at the time of pub- 703
lication. 704

705


