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Abstract

Objective—This paper presents a framework for temporal shape analysis to capture the shape 

and changes of anatomical structures from 3D+t(ime) medical scans.

Method—We first encode the shape of a structure at each time point with the spectral signature, 

i.e., the eigenvalues and eigenfunctions of the Laplace operator. We then expand it to capture 

morphing shapes by tracking the eigenmodes across time according to the similarity of their 

eigenfunctions. The similarity metric is motivated by the fact that small shape deformations lead to 

minor changes in the eigenfunctions. Following each eigenmode from the beginning to end results 

in a set of eigenmode curves (eCurves) representing the shape and its changes over time.

Results—We apply our encoding to a cardiac data set consisting of series of segmentations 

outlining the right and left ventricles over time. We measure the accuracy of our encoding by 
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training classifiers on discriminating healthy adults from patients that received reconstructive 

surgery for Tetralogy of Fallot (TOF). The classifiers based on our encoding significantly 

surpasses deformation based encodings of the right ventricle, the structure most impacted by TOF.

Conclusion—The strength of our framework lies in its simplicity: it only assumes pose 

invariance within a time series but does not assume point-to-point correspondence across time 

series or a (statistical or physical) model. In addition, it is easy to implement and only depends on 

a single parameter, i.e., the number of curves.

I. Introduction

The diagnoses and further understanding of medical diseases often rely on accurately 

describing structural changes of anatomy as captured by 3D+t(ime) medical scans. For 

example, Figure 1 visualizes the deformation of ventricles across one heart beat as a series 

of 3D models generated from segmentations of cine MRIs. In the medical imaging domain, 

these changes are frequently quantified based on low-dimensional, volumetric 

measurements, such as ejection fraction [1], [2] or regression based on the volumes of 

anatomical structures [3], [4], or high-dimensional, deformation-based encodings such as 

[5], [6], [7]. We start by reviewing existing temporal shape encodings and then propose an 

alternative by expanding a low-dimensional 3D shape encoding to the time domain.

Compared to volumetric encodings, representations based on deformation maps are 

considered more sensitive towards capturing shape changes of anatomy [8], [9], [10]. These 

encodings non-rigidly register the individual images (i.e., time points) and corresponding 

segmentations of a 3D+t scan so that the resulting deformation maps capture local expansion 

or contraction of anatomical structures between time points. They have been heavily applied 

to anatomical shapes extracted from cardiac MRIs [11], [12], [13]. However, the registration 

of these encodings can bias measurements as they are complex systems that are based on 

simplifying assumptions and expert-based parameter tuning [14]. For disease modeling 

based on the corresponding deformation maps, one furthermore needs to account for the 

‘Curse of Dimensionality’ as the maps are generally high dimensional and describe changes 

only between adjacent time points for each voxel. The computer vision community 

addresses the Curse of Dimensionality by embedding dimensionality reduction methods 

within temporal shape analysis. In the context of human action recognition, shape changes 

are encoded by first generating large sets of features by, for example, matching objects 

across space and time [15], [16], [17], [18] or solving Poisson equations [19]. These maps 

are then reduced to a compact set of ‘shape-time features’ implicitly capturing local 

properties of the changing shapes [19], [20], [21], [22], [23] by approaches such as 

dictionary learning [20].

In this paper, we propose an alternative low-dimensional representation, which encodes 

shape changes with a relatively small number of features to start with. Thus, our encoding 

minimizes the need for dimensionality reduction methods, which should only be used on 

data that complies with their underlying assumptions. Based on the spectral signature [24], 

[25], our proposed encoding describes a 3D shape by the eigensystems of the Laplace 

operator [26], [27], [28] applied to the corresponding binary map. The eigenvalues of that 
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system implicitly carry information about the shape, such as curvature, surface area and 

volume. Their popularity in the vision and graphics community [29], [30], [31] is partly due 

to their versatility as prior statistical or physical modeling is not required. Furthermore, the 

representation is pose invariant [32] so that using eigensystems to compare several shapes 

does not require prior registration of the objects to a common coordinate system. Finally, 

small shape deformations lead to minor refinements in the eigenvalues (see [28] for a 

theoretical discussion and [33] for empirical examples). We use this property to extend 

spectral signatures to the temporal domain and thus create a low dimensional encoding of 

changing shapes.

An overview of our temporal shape representation is given in Figure 2. First, we compute 

the spectral signature for each time point, yielding a family of temporal eigenvalues or 

eValues. We then track these eigenmodes (eTracking) across time points, to ensure that the 

eigenvalues measured at different time points are properly linked. Following a mode from 

the first to the last time point results in an eigenmode Curve (eCurve). The set of eCurves 

across all modes then encodes the temporal shape changes.

The strength of our representation lies in its simplicity. By defining our temporal shape 

representation based on the spectral signature, we assume no spatial correspondence across 

time series (e.g., the beating hearts of different subjects), or prior physical or statistical 

models of the data. Thus, comparing curves across subjects simply reduces to comparing 

eigenvalues across time points (see [33] for an example). Within a time series, however, the 

corresponding eigenfunctions are linearly aligned to a common coordinate system so that 

they (and consequently the eigenvalues) can be compared across time points. In this sense, 

tracking is similar to approaches that match shapes based on finding correspondences 

between spectral signatures, such as [34], [35], [36]. For the sake of simplicity, our tracking 

approach minimizes algorithmic and computational complexity by assuming minor shape 

changes between time points. This rather simple model is supported by experiments. Finally, 

our representation only depends on a single parameter, the number of curves, for which we 

provide a decision criteria. Given these constraints, eCurves is relevant to a wide range of 

applications in medical image analysis.

This paper is an extension of our work in [37]. The main novelty is the introduction of 

eTracking: dropping the assumption that the order of the eigenmodes does not change across 

time, i.e., constructing eCurves does not simply follow the eigenvalue of a mode across time 

but instead carefully matches them. As we show on a new synthetic example in Section II, 

the changes of eigenmodes across time do not necessarily relate to the changes in the 

deforming shape. We capture these changes by first tracking them across modes and time via 

eTracking and then constructing the curves from the tracked modes. In addition to 

introducing eTracking, we derive a criteria for setting the dimension of the eCurves in 

Section III. As in [37], we apply our encoding to a cardiac data set consisting of healthy 

controls and adult patients that received reconstructive surgery for Tetralogy of Fallot (TOF) 

during infancy. However, we generalize the results by increasing the data set from 20 to 88 

hearts, replacing the leave-one-out validation with nested two-fold cross-validation, and 

analyze the accuracy of not only one but three different classifiers. To further improve the 

scientific rigor of the experiments, we omit methods reducing the dimensionality of the 
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curves and instead directly train the classifiers on the curves of volumetric, deformation-

based, and our encoding.

We choose a data set consisting of TOF and healthy control subjects as a testing 

environment for our encoding for several reasons. First, the diagnosis of the subjects 

provides ground truth for the classifier as only TOF patients received reconstructive surgery 

during infancy. In addition, the task of identifying abnormal shape motion in this population 

is nontrivial. While reconstructive surgery during infancy often leads to abnormal ventricular 

shapes that are quite different from healthy hearts, i.e., the patch created at the right 

ventricular outflow tract results in expansion of that area, the impact of reconstructive 

surgery in some cases is so subtle (dilation of the right ventricular combined with a 

flattening of the interventricular septum during diastole) that the ventricular shape motion of 

TOF patients is indiscernible from healthy hearts based on volumetric scores, the clinical 

standard for quantifying cine MRIs. The third and final reason for choosing this data set is 

that the clinical literature fails to define clear guidelines regarding the need of surgical 

intervention on the pulmonary valve based on the severity level of regurgitation within hearts 

of patients that had reconstructive surgery for TOF [38]. Improving measurements of the 

shape and function of patients’ beating hearts, such as through our proposed representation, 

may allow clinicians to better quantify the long-term impact of this reconstructive surgery 

and thus better the decision process regarding follow-up surgery during adolescence or 

adulthood.

The paper is organized as follows: in Section II, we introduce the Laplacian operator and 

extend it to encode temporal changes. In Section III, we present the experiments, in which 

we show that eCurves is significantly better than deformation-based encodings of the right 

ventricle, the structure most relevant to TOF. In Section V, we end the article highlighting 

the potential of our representation and the importance of accurately capturing shape changes.

II. Temporal Shape Encoding

We now describe our representation for capturing a 3D shape and its changes across time. 

Specifically, Section II-A provides a brief introduction to the Laplace operator, which we 

use to compute the signatures of the 3D shapes at each time point (see also Figure 2). We 

then extend the signature to the temporal domain in Section II-B by ensuring consistency of 

the shape encoding across adjacent time points. In essence, we link the eigenmodes at 

adjacent time points by measuring similarity between the corresponding eigenfunctions. In 

Section II-C, we follow those links from the first to the last time point to create eCurves.

A. eValues: Capturing Shapes via the Spectrum of Laplace Operator

We represent each shape in the time series via the eigenvalues and eigenfunctions of the 

Laplace operator [37]. We start with a brief overview of the Laplace operator (see [28], [24] 

for a more thorough discussion) and then outline how to use this encoding to represent the 

series of shapes.
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Let the segmentation of each anatomical structure be viewed as a closed bounded domain Ω 
⊂ ℝd with piece-wise smooth boundaries. The Laplace operator ΔΩ for a twice differentiable 

function f on Ω is then defined as

(1)

with  spatial coordinates. We can use this operator to describe shapes, whose 

boundaries are denoted by ∂Ω, by solving the Helmholtz equation with Dirichlet type 

boundary conditions,

(2)

where λ ∈ ℝ. A shape Ω is then encoded by the infinite series of eigenpairs 

satisfying Equation 2. Note, their are many alternatives to computing the Laplace operator, 

such as omitting the need for boundary conditions by solving the Helmholtz equation with 

respect to a mesh [24], [39], [40], [35]. Regardless of the specific model, the diverging 

sequence of non-trivial eigenvalues  is called the spectrum of Ω.

Just using the eigenvalues alone results in a shape representation that has many desirable 

properties for medical imaging studies. First, they are invariant to isometric transformations 

and this fact can also be extended to scaling [24]. This property is very important for the 

analysis of shape series, as one can eliminate pose correction of the individual shapes, a 

frequent source of noise in 4D analysis. Second, the heat-trace

(3)

links the eigenvalues  to an object’s geometry as the coefficients am/2 are related to 

geometric properties of Ω, such as its volume or its surface mean curvature [41]. 

Furthermore, eigenvalues and eigenfunctions associated with the lower modes are influenced 

by the overall shape of an object, while they are more influenced by regional shape 

fluctuations at higher modes. Finally, the eigenvalues change continuously when 

infinitesimal small deformations are applied to the object’s boundary (see [33] for 

examples).

The property of continuity is an important factor for choosing the Laplacian spectrum as the 

basis of our temporal shape encoding. The aim of our representation is to accurately encode 

objects that continuously change their shape over time. Let Ω(t) be the shape of an object at 

time t and  be the corresponding spectrum, with respective 

eigenfunctions . The series of Λ(·) is therefore able to capture both 
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geometry and change of an object Ω(·). In other words, we can use Λ(·) to encode the 

changes of a shape between time points.

Our goal is to encode a series of 3D binary segmentations outlining the same anatomy of a 

subject sampled at T different time points. We compute the first N eigenvalues and 

eigenfunctions for each of the segmentations. This results in a series of eigenpairs 

, i.e., pairs of eigenvalues and 

eigenfunctions that encode information of the object’s shape at specific time points. Figure 

3a shows the eigenseries {(Λ(1), F(1)),…, (Λ(10), F(10))} capturing the changes of an 

asymmetric shape (a torus with an additional small bump) at 10 different time points. The 

figure shows eigenfunctions F(t) (top) and corresponding eigenvalues Λ(t) (bottom) at 

modes j = 1, 5, 8, 17, 20 (y-axis) with a line connecting eigenvalues associated with the 

same mode to visualize the changes over time (x-axis). Inline with the mathematical proof of 

[33], the eigenfunctions nicely display how lower order modes capture coarser shape 

information through a few sinks and sources shown in dark red and blue, while higher 

modes contain many more sinks and sources making them sensitive to local fluctuations 

along the boundary, i.e., the increase in the radius of the torus’ tube over time.

B. eTracking: Tracking Eigenmodes across Time-Points

To correctly encode shape changes, we have to ensure that the eigenpairs between adjacent 

time points are properly correlated, as mode j at time point t does not necessarily have to 

correspond to mode j at time point t + 1. For example, the eigenfunctions in Figure 3a do not 

properly reflect the small deformations of the torus between adjacent time points, as 

eigenfunctions of modes 17 and 20 drastically change over time. We resolve this issue via 

eTracking: first compare eigenpairs at adjacent time points and then link the most similar 

ones.

eTracking is based on the property that the eigenfunctions of the Laplacian are orthonormal 

to each other, i.e., given two eigenfunctions of Ω(t), fa(t) and fb(t), then

(4)

where |·| is the absolute value and 〈·,·〉 is the dot product between the eigenfunctions. Note, 

the absolute value of the inner product accounts for the ambiguity in sign of eigenfunctions, 

i.e., fa(t) and −fa(t) are both valid eigenfunctions.

Assuming the time series does not contain any pose changes and the shape does not change 

between two time points (i.e., Ω(t) = Ω(t + 1)), then the same property would hold for all 

pairs of eigenfunctions across time points:

(5)

where the product is defined by the union of the domains defined by the two eigenfunctions. 

Thus, one way to track eigenpairs between adjacent time points is according to their degree 
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of orthogonality, i.e. one minus the absolute value of the inner product between the 

corresponding eigenfunctions. A mode at time t is then linked to the one at time t+1 with 

whom it has the lowest degree of orthogonality or, equivalently, the highest absolute inner 

product. Now, let ϕa(t) represent the mode at time t + 1 to which mode a at time t is linked 

to, i.e., the mode at time t + 1 with whom mode a at time t has the highest absolute inner 

product:

(6)

As we assume small shape deformations between time points and due to the orthonormal 

properties of eigenfunctions of the Laplacian, then the absolute inner product between linked 

modes will not only be much larger than the absolute inner product of Mode ‘a’ to the other 

modes at time t + 1, i.e.,

(7)

but the absolute inner product of the linked modes should also be close to one, i.e.,,

(8)

The robustness of this tracking model depends on the signal-to-noise ratio (SNR) with lower 

order modes being generally more robust than higher order modes (given the same SNR). To 

gain a better understanding of this property, Figure 4 shows on the left a torus with a ”bump 

of interest” (reference), whose inner product (see plot at the bottom of Figure 4) is computed 

with respect to the tori on the right (i.e., the shape at the next time point) with a larger bump 

of interest and two additional bumps. The size difference in the bump of interest between the 

reference and the shapes to the right represents the actual shape changes to be tracked, or 

the ’signal level’ in our tracking model. The size of the two additional bumps relates to the 

“noise level”. As the additional bumps become larger, the SNR decreases and the tracking is 

less reliable as the noise causes a reduction in the inner product especially for higher order 

modes. As previously mentioned, higher order eigenfunctions carry information on finer 

shape details while lower order ones carry information on coarser shape details. Naturally, a 

reduction in SNR causes the tracking of finer shape details (and corresponding temporal 

changes) to become harder.

Very low SNR can also reduce the reliability of tracking lower order modes. For example, if 

the two additional bumps are equal or larger in size than the shape of the bump of interest 

(not shown) then the eigenfunction of the first mode would contain multiple sinks or 

sources. This would result in a low inner product with respect to the corresponding 

eigenfunction of the reference shape, which contains a single sink. In this low SNR scenario, 

the inner product would capture the influence of noise rather than the actual changes of the 

shape. Thus, the tracking of the modes would be unreliable across time. To account for the 

reliability issue with respect to the SNR, we associate proper linkage (or orthonormality) by 

Bernardis et al. Page 7

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



defining a minimum threshold τ for the absolute inner product . Modes 

that do not meet this threshold are omitted from our representation to minimize the risk of 

corrupting the proceeding analysis. Since the threshold is application dependent, we provide 

a criteria for setting τ on real data in Section III.

We complete the definition of eTracking by introducing  to capture 

the links of all the modes between time t and t+1. If we let  denote the 

eigentriplet of mode a at time t, then eTracking at time t is defined as the eigentriplets across 

all modes:

(9)

Note, that the order of the eigentriplets is defined by the ascending order of the eigenvalues 

at the first time point, i.e., . While in theory, the eigenvalues of two 

modes can be the same, i.e., , in practice we have not encounter this scenario 

so that the order across the triplets was unambiguous.

Returning to the deforming torus of Figure 3, the right side (b) shows the eTracked 

eigenvalues and eigenfunctions of the left side (a) according to ϕ. For the lower modes 

(1,4,8), the tracking did not change the order of the eigenfunctions and corresponding 

eigenvalues (see Figure 3a) as the eigenfunctions capture global changes in shape that are 

unaffected by the change in size of the torus and thus stable across time. The eigenfunctions 

of modes 17 and 20 are sensitive to the variations yielding drastic changes between adjacent 

time points when tracking is ignored. Organizing the modes based on eTracking, the 

corresponding eigenfunctions smoothly vary across time which results in the absolute values 

of the inner products of eigenfunctions of adjacent time points being close to 1. For 

example, the mean and standard deviation of the inner-products defined by the original order 

of Mode 20, i.e., Figure 3a), is 0.82 ± 0.33 while for the eTracked series it is 0.94 ± 0.08. 

The higher inner product is also reflected in the tracked eigenfunction, which now, like the 

modifications to the torus, gradually change over time. The corresponding series of the 

eigenvalues thus more accurately encode the changes of the torus across time, which, for the 

higher modes, are more distinct over time compared to the original series of eigenvalues.

C. eCurves: Capturing the Eigenseries as Curves across Time

Instead of just analyzing neighboring time points, we now construct eCurves, which capture 

both shape and its changes across all time points. For each mode a at the first time point, we 

define the eCurve as the set of eigenvalues that are linked according to Φ(t),

(10)

With  and for 1 < t < T
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To comply with previous notation, Λ(a)(t) refers to the tth entry of Λ(a). An important feature 

of this encoding is that it allows comparison of eCurves across time series without requiring 

any alignment between the time series. eCurves inherits this property from the eValues, 

which are pose invariant.

In summary, we encode temporal shape changes by first computing the eValues at each time 

point, tracking these values across adjacent time points (eTracking) and, finally, composing 

the eCurves from the resulting curves.

III. Experiments

We analyze the accuracy of our temporal shape encoding with respect to the right and left 

ventricles across one heart cycle of healthy and diseased subjects. The heart cycle of each 

subject is captured by segmentations of the ventricles at 30 time points (see also sample 

series in Figure 1). We next infer the accuracy of eCurves from that of three different 

automatic classifier. Specifically, we apply eCurves to the data set, feed the encodings into 

the classifiers and then record the sensitivity, specificity, and the accuracy of the classifier in 

discriminating healthy versus diseased subjects. Comparing these scores to the ones obtained 

from alternative temporal shape descriptors highlights the strength of eCurves. We describe 

our experimental setup in Section III-A and analyze the results in further detail in Sections 

III-B.

A. Experimental Setup

In our experiments, we evaluate eCurves and alternative temporal shape encodings on the 

cardiac data set. We review the experimental setup, in particular details on data acquisition 

and implementations of the temporal shape encodings, and the training and testing of the 

classifier via two-fold crossvalidation.

1) Data Set—The cardiac data set consists of segmentations of the left and right ventricle 

(such as in Figure 1) extracted from short-axis cine MRI scans of 42 healthy controls and 46 

adult patients that received reconstructive surgery of Tetralogy of Fallot (TOF) during 

infancy. The cine MRI are acquired via a sequence of balanced steady state free precision 

short-axis images of the heart using breath holds in a 1.5 Tesla Siemens Avanto scanner with 

the following setting: 30 ms TR, 1.3 ms TE, 360 × 270 mm FOV; 8 mm slice thickness, 2 

mm skip, 60–90 degree flip, 192 × 192 resolution and 1.25 mm in-plane resolution. We 

confine the spatial positions of these short-axis scans to the mid-portion of the ventricles (12 

slices), where the pathologies are usually prominent. Additional details about the image 

acquisition of the cine MRI are described in [42]. [42] also outlines the procedure for 

segmenting the MRI at the enddiastole into the left ventricle (LV), consisting of myocardium 

and blood pool, and into the blood pool of the right ventricle (RV). Each label map of the 

end-diastole is propagated to the other time points via non-rigid registration [43]. Holes and 
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islands due to registration errors are removed by semi-automatically dilating and eroding the 

aligned registrations.

2) Computing Temporal Shape Encodings—We now describe in further detail the 

implementations of eCurves following the work flow outlined in Figure 2, as well as 

alternative encodings that we will use for comparisons: eValues, a deformation-based 

encoding, and a volumetric score.

In all of our experiments, a subject is represented by a series of segmentations over time that 

are rigidly aligned with each other. For each segmentation of a specific time point, we first 

compute a large number of eigenvalues and eigenfunctions (e.g., 100), that solve the 

Helmholtz equation with Dirichlet type boundary conditions (Equation 2). Using the 

implementation of [33], we compute the Laplacian operator on the grid native to the image. 

Thus, we avoid the need of interpolation or mesh generation and work only with the 

information available in the images. Assuming a series consists of T time points, the 

anatomy of the subject across time is then represented by 100 T eigenvalues (eValues).

Since the eCurves proposed in Section II explicitly account for temporal constraints by 

tracking the modes across time, we compute the inner product between the eigenfunctions of 

the modes of adjacent time points and then link those with the highest inner product. While 

in theory each mode is uniquely linked with a mode at the next time point (unique match), in 

practice, the highest inner product of several modes may match with the same mode at the 

next time point (multiple matches). For example, Figure 5 shows two examples (left and 

right) of modes of the RV, whose highest inner product across all modes at the next time 

point matches with the same mode. While in the first example (left) Mode 12 at time point 

15 will be linked to Mode 12 at time point 16, in the second example Mode 12 at time point 

21 will be linked to Mode 13 at the next time point as its inner product is higher than that of 

Mode 13 at time point 21. To better understand the phenomena of multiple matches, we plot 

all modes across all 88 subjects (see Figure 6, first row) with the coordinate of each mode 

defined by its highest (x-coordinate) and second highest (y-coordinate) inner product across 

all 100 modes of the previous time point. Uniquely matched modes are plotted in orange 

while the blue dots depict multiple matched modes, i.e., the presence of more modes at the 

previous time point whose highest inner product links to the same mode. The distribution of 

uniquely and multiple matched modes is very similar across the two structures, specifically 

3.52% for LV and 6.58% for RV. As expected, the highest concentration of uniquely 

matched modes has the highest inner product close to 1 and second highest inner product 

close to zero. Interestingly enough, the difference between the highest and second highest 

inner product does not seem to predict if a mode is uniquely matched, as there are many 

uniquely matched modes with similar highest and second highest inner product. As multiple 

matches occur only in less than 7% across all modes and subjects, we reliably resolve the 

multiple match issue by applying the Gale-Shapley matching algorithm [44] to the inner 

products across all modes. The algorithm does so by recording, for each mode at time point 

‘t-1’, the mode at ‘t’ yielding the highest inner product. Two scenarios can then occur: (a) 

The mode at time point ‘t’ temporarily accepts the possible link if the inner product is higher 

than that one of the mode it is currently linked to at time point ‘t-1’ (e.g., Mode 12 in the 

example to the left of Figure 5), which is then annulled (called ”trade up”). (b) If the link is 
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not accepted (e.g., Mode 10 in the example on the left of Figure 5), then for the mode at time 

point ‘t-1’ the mode at time point ‘t’ is determined, which has the highest inner product of 

those the mode at time point ‘t-1’ has not been linked to yet. The process between (a) and 

(b) repeats until all modes at ‘t-1’ are temporarily linked to a mode at time point ‘t’. Note, 

other methods than the Gale-Shapley approach [44] exist for matching modes, such as the 

computationally more complex Hungarian algorithm used in [34], [40].

Having tracked the modes across time, we compute the eCurves for each case according to 

Equation 10 only keeping the first N curves, where N is set in correspondence to the 

‘robustness threshold’ τ via a data-driven approach. To review, we only keep a subset of 

curves as we have previously shown [33] that higher modes correspond to progressively 

finer details of the shape that are not necessarily informative for distinguishing cohorts. 

Defining the subset by confining tracking to the first 25 modes, the issue of multiple 

matches is reduced according to Figure 6. Multiple matches only arises in 0.3% of matches 

associated with the LV and 0.9% of matches associated with the RV. This observation is in 

line with the discussion of Figure 4, which provides an example for the robustness of 

tracking of higher order modes being more sensitive to noise than the tracking of lower 

ordered ones. To insure the analysis not being corrupted by noise, eCurves omits all curves 

whose robustness scores are below the threshold τ. We then measure the robustness of 

curves by computing the 5th percentile score of the inner products between their tracked 

modes. Note, we choose the 5th percentile score over the overall minimum inner score so 

that the robustness measure is not influenced by noisy outliers. Setting τ via parameter 

exploration in combination with nested cross-validation (see Section III-A3 for details) then 

infers the setting of the optimal N, which is the highest order mode for which the curves 

associated with that and lower order modes receive robustness measures across all (training) 

subjects that are above τ. For example, Figure 7 plots the robustness measures for the first 

100 modes across all samples. If τ would be set to 50%, the optimal N would then be 15.

We complete the construction of eCurves by sampling each curve associated with the 

ventricles at T = 30 time points ensuring that each subject is represented by the same 

temporal resolution. The scans were acquired in the clinical setting and thus vary with 

respect to the number of time points covering a heart beat (starting and ending at end-

diastole). Curves constructed from time series with more or less than 30 time points are 

represented in the continuous domain through linear interpolation between time points. 

Their values at the 30 equally spaced time points are then recorded to ensure a uniform 

temporal resolution across all scans.

Figure 8 shows the eCurves for six subjects (3 healthy and 3 TOF), visualizing for each 

subject 3D models of the right (red) and left (green) ventricles at three different time points. 

The curves cover an entire cardiac cycle starting at the enddiastole and peaking at the end-

systole. In comparison to the 3 healthy hearts, the peaks in the eCurves of the 3 TOF hearts 

seem less prominent in the right ventricle.

In addition to implementations based on eValues, we encode the shape changes of the 

ventricles via a deformation-based representation [42]. For each case and time point, we first 

reduce each image to the cardiac structures based on the segmentations of the RV and LV by 
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masking the rest of the image. We non-rigidly register the LV of the resulting image to the 

first time point of the time series via the Diffeomorphic Demons algorithm [45] and repeat 

the process for the RV. We compute the Jacobian Determinant from the resulting 

deformation map. We separate the LV of the first time point into 16 smaller regions based on 

the Bullseye plot suggested by the American Heart Association [46] and apply 66% of the 

bullseye plot to the RV resulting in 11 regions. For each subregion and time point, we 

compute the average of the Jacobian Determinant over that region. For each subject and 

subregion, we then interpret the average Jacobian values across time as a curve (referred to 

as jCurves). Thus, the shape changes of the heart are encoded by a similar number of curves 

as for eCurves, as LV are now represented by 16 jCurves and the RV by 11 jCurves.

The third and final type of encoding we use for comparison are the volumetric 

measurements frequently used in clinical settings, i.e., we extract the volume (Volume) of 

each structure and time point directly from the corresponding segmentations masks.

3) Computing Accuracy Scores via Nested Cross-Validation—We infer the 

accuracy of a temporal shape encoding from agreement among the accuracy scores of three 

different classifiers in distinguishing healthy cases from diseased subjects based on that 

encoding. The three classifiers are a sparsity-constrained, logistic regressor (LOG-REG) 

[47] as well as Matlab’s linear Support Vector Machine (LIN-SVM) [48] and non-linear 

Support Vector Machine with Gaussian Radial Basis Function kernel (RBF-SVM) [49]. We 

determine the optimal parameter setting and the testing accuracy of each classifier via nested 

two-fold cross-validation. To determine the optimal parameter setting, each classifier with a 

specific parameter setting is trained on 30 cases of the training fold and the remaining 14 

cases of that fold are used to compute the training accuracy. The classifier with the highest 

training accuracy is then applied to the other fold in order to determine the testing accuracy. 

The process is repeated one more time after switching the training and testing fold. The 

remainder of this section will review in detail the parameter search space, which is defined 

with respect to the parameters specific of each classifier and temporal shape encoding, and 

the computation of the accuracy scores.

For LIN-SVM and RBF-SVM, we use the default parameters of their Matlab 

implementation (e.g., the default implementation of RBF-SVM used the scaling factor σ =1) 

with the exception of the margin parameter C, whose search space is {−3, −1,…, 7}. We 

again use the default parameters for LOG-REG with the exception of the regularization 

parameter λ, whose search space is {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}.

With respect to the temporal shape encodings, the search space specific to jCurves is 

confined to the regularization parameter  associated with Demons based 

non-rigid registration [45]. For the eValue based measurements, the search space is defined 

with respect to the threshold τ ∈ {50%, 60%, 70%}. We determine the lower bound of this 

search space by carefully reviewing the tracking for the first 25 tracked modes across all 

time points and subjects, which, according to Figure 7, is the mode around which the 

robustness scores level off. The review reveals several example of pairs of eigenfunctions 

with inner products below 50% that show large differences (see examples in Figure 9). Thus, 

we set the lower bound of the search space to 50%.
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Given τ, we determine the search space for N, the number of modes used by the classifier, 

based on the robustness score (i.e., 5th percentile of the minimum inner product) with respect 

to the training data. Using the first fold for training, the search space for N is {4, 10, 18} for 

the RV and {4, 12, 29} for the LV. With respect to the second fold, the search space for N is 

{3, 7, 12} for the RV and N ∈ {3, 19, 32} for the LV.

After training classifiers, we compute their (training or testing) accuracy via the normalized 

accuracy score (nAcc):

(11)

For simplicity, we refer to this score as accuracy. Note, that this accuracy score accounts for 

the asymmetry in the patient group sizes and is equivalent to the Area under the Curve for 

binary classifiers, such as SVM.

During testing, we also record the specificity and sensitivity of each classifier. In addition, 

we compute the Yates’ Chi-Square test [50] and interpret the information stored by a 

temporal shape encoding significantly more informative than random noise if the 

corresponding p-values are below 2% for all three classifiers (LIN-SVM, RBF-SVM, and 

LOG-REG). For (target) encodings that are more informative than noise, we also record 

alternative encodings that are significantly less informative. Specifically, we confine the 

investigation to alternative encodings, which have lower nAcc scores for all three classifiers 

than the target encoding. We then compare those alternative encodings to the target encoding 

by computing the DeLong’s Test [51] for each classifier type. If for all three classifiers the 

DeLong’s Test return p-values below 2%, we view the target encoding significantly more 

informative than the alternative encoding.

B. Comparing Temporal Shape Encodings on the TOF Data Set

Table I summarizes the accuracy scores for the different temporal shape encodings of the left 

and right ventricles of 46 healthy controls and 42 TOF patients. The accuracy scores of all 

encodings agree with respect to being insignificantly better (gray) than chance for the LV 

and significantly better (black and red) than chance for the RV. These findings are also in 

agreement with the medical literature that reports that only the RV is impacted by TOF [52], 

[53], [54]. The remainder of this section focuses on the significant findings, i.e., those of the 

RV.

For the RV, the accuracy scores for each encoding are consistent across the three classifiers 

(nAcc score vary by no more than 3.6%) with the exception of Volume. Volume not only 

achieves a high accuracy score (87.4%) with respect to the LIN-SVM but also is awarded the 

lowest accuracy score across all encodings and classifier for the RV, i.e., the 76.8% with 

respect to the RBF-SVM. This instability in the performance of the classifiers indicates that 

the volumetric encoding contains, as expected, provides valuable information about the 

long-term impact of TOF but the information does not generalize well, i.e., automatic 

inference based on the information is highly susceptible to the setting of the classifier. This 
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finding is not surprising when comparing the curves of the different encodings plotted in 

Figure 10. Volume is the only encoding characterizing the changes in the shape of the RV by 

a single curve, which limits the information that can be captured.

jCurves, on the other side, uses a set of curves to encode the shape changes. However, most 

of those curves highly fluctuate over time. This fluctuation does not reflect the subtle shape 

changes of the RV across time but rather indicates that the encoding is highly sensitive to 

noise. This sensitivity is also reflected in the accuracy scores of the three classifier whose 

average, unlike for the other three encodings, is below 80%. The fluctuations are most likely 

a result of the way the deformation maps of jCurves are computed. Log-Demons [45] 

requires finding the optimum to an objective functions composed of a data and 

regularization term. The minimum of this objective function needs to satisfy both criteria up 

to some extent. This trade-off decreases the sensitivity of the measures derived from the 

deformation fields. Defining an objective function just by a data term is a possible solution 

to this issue (see also the recently published registration methods based on shape signatures 

[55], [40]). Unfortunately, the popular implementation chosen for this experiment, i.e., [45], 

only well-behaves in the presence of a regularization term.

An improvement over jCurves and Volume are the sensitivity and accuracy scores of eValues 

(at least 10.4% higher accuracy than jCurves and 3.8% higher than Volume). eValues also 

achieves at least 6.5% higher specificity than JCurves. The reason for the improvement can 

be seen in Figure 10, where eValues not only encodes temporal shape changes with multiple 

curves but these curves are also smooth as is the motion of the RV. The smoothness of the 

curves is not surprising since the eigenvalue sequence has explicit ties to the geometric 

invariant integrated over the surface of the object (see also Equation 3). By not sacrificing its 

representation power (for example via regularization), eValues yields a highly descriptive 

features set to distinguish the two cohorts. Note that the accuracy of eValues drops 

significantly when only applied to a single time point (not included in the table: 

nAcc=80.7% for LIN-SVM, nAcc=81.8% for RBF-SVM, nAcc=80.7% for LOG-REG) 

indicating that TOF not only impacts the shape of the RV but also its motion.

eCurves not only achieves the highest accuracy scores but is also the only encoding that 

always receives accuracy scores above 90%. It is also the only encoding that is significantly 

more accurate than another encoding, i.e., jCurves, for all three classifiers (p≤ 0.012). 

Furthermore, Figure 10 shows that the tracking produces curves that are very different from 

those of eValues, especially those of higher order modes. Our results seem to indicate that 

these differences in the curves of eCurves lead to a more accurate temporal shape encoding 

as analyzing changes in the spectrum of the Laplacian operator across time is not only based 

on principled mathematical model but also results in a more accurately encoding of the 

shape changes due to TOF.

In summary, these experiments highlight the importance of eTracking and temporal 

consistency across measurements of a deforming shape. While there are a different ways of 

modeling these two issues, we achieve the highest accuracy for the RV by first computing 

the eValues for each time point and then performing eTracking across neighboring time 

points. Not only do eCurves record significant improvement over the deformation-based 
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encoding jCurves for the experiments involving the RV, but the technology needed for 

computing eCurves is also much simpler (a couple of lines of Matlab code). Finally, our 

results indicate that the long-term impact of reconstructive surgery of TOF not only is 

confined to the shape of the RV but also its motion, which may positively impact the 

decision process regarding follow up surgery for TOF patients.

IV. Future work

More refined discoveries would require improving the analysis, for example by adding 

additional shape measures to the analysis that can be explicitly linked to anatomical or 

functional changes. Alternatively, one could experiment with replacing the Laplacian 

spectrum with other popular shape encodings such as the 3D Zernike moments [56]. 

Furthermore, we could apply more sophisticated technology for matching the spectral 

signatures of the deforming heart chambers across time, such as those previously tested on 

matching 3D brain structures across subjects, whose shape can differ quite a lot [34], [35], 

[39], [36]. These technologies could also be applied for matching of curves across subjects 

to define the order of curves within a subject. Currently, this order is defined by the 

ascending ranking of eigenvalues at the first (end-diastole) time point. This increases the risk 

of biasing the analysis similar to the strategy in atlas construction of a priori selecting a fixed 

template [57]. Another possibility of reducing this risk is by tracking eigenpairs across time 

points taking both adjacent time points into account, e.g., time point i − 1 and i + 1 for time 

point i. This problem relates to multi-way graph matching, which is considered a NP-hard 

problem whose solution can only be approximated. Finally, we could reduce the redundancy 

of eCurves, i.e., making the representation more compact, by identifying characteristic 

eCurves across a data set via dimensionality reduction approaches (such as Principal 

Component Analysis) and then encode each individual curve of eCurves as a combination of 

characteristic curves. This would not only reduce the redundancy across the eCurves but also 

provide a mechanism for explicitly recording temporal change patterns as shown by our 

preliminary results in [37].

V. Conclusions

We present a new representation for temporal shape analysis that exploits the inherent 

properties of spectral signatures to capture morphological changes over time. We first 

compute the signatures (eValues) for each shape and at each time point. We then link the 

eValues between adjacent time points via eTracking, which is based on measuring the 

similarity of the eigenfunctions associated with the eValues. eTracking not only insures 

consistency of our shape scores across time points but also enables us to construct eCurves 

by following each eValue from the first to the last time point. The strength of our temporal 

shape lies in its simplicity. It only requires the time points within the series to be rigidly 

aligned to enable the tracking based on the spectral eigenfunctions. More importantly, it 

does not require prior registration across subjects since the spectral signature is pose 

invariant. In addition, eCurves only relies on one parameter: the number of modes for 

computing the spectrum, which we link to the lowest acceptable threshold for the inner 

product between eigenfunctions of linked modes. Finally, our representation does not 

involve statistical or physical modeling and only assumes a smooth transition of the shapes 
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between time points, so eCurves can potentially be used for a variety of applications in 

medical imaging.

We apply the temporal shape representation to encode the changes in the shape of the heart. 

We use eCurves to encode the shape changes of the right and left ventricles across 30 time 

points of 42 TOF patients and 46 healthy controls. We measure its sensitivity, specificity, 

and accuracy based on two-fold, nested cross-validation of three different classifiers and 

compare the classification results to those generated from series of 3D volumetric 

measurements and deformation-based encodings. All encodings receive insignificantly better 

accuracy scores than chance for the LV and significantly better ones for the RV, the structure 

most relevant for TOF. With respect to the RV, our proposed encoding achieves the highest 

accuracy scores and is significantly more accurate than the deformation-based encoding. 

Furthermore, our encoding provides new insight regarding the long term effects of TOF as it 

documents that the reconstructive surgery not only impacts the morphometry but also 

function of the right ventricle.
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Fig. 1. 
3D models representing the left (green) and right ventricle (red) at different time points in 

the cardiac cycle according to a single cine MR scan of a healthy patient. Notice the relative 

small changes in the shape of the anatomy between adjacent time points.
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Fig. 2. 
Encoding a series of 3D shapes overview. a: First, we encode the 3D shape at each time 

point by computing the eigensystem of the Laplace operator applied to the corresponding 

segmentation (eValues). Each column corresponds to the eigenvalues of one time point in the 

image sequence. Colors correspond to the modes at which the eigenvalue was computed, i.e., 

the eigenvalues of nth mode are plotted in the same color across time. While with respect to 

a single time point the order of the eigenvalues is clearly defined, this order is not 

guaranteed to hold across time point, e.g., the nth mode at time t does not necessarily relate 

to the nth mode at time t + 1. b: We track eigenvalues between adjacent time points by 

pairing those whose eigenfunctions are most similar (eTracking). Tracking of the modes 

across time points is delineated with gray lines, the darker the line, the higher the mode. 

Original mode colors are left to highlight the effects of tracking. To focus on tracking, 

eigenvalues show in ‘a:’ are omitted in ‘b:’ if they were not part of the first 16 tracked 

modes. c: Finally, following the tracked eigenvalues, we obtain eigenvalue Curves 

(eCurves). eCurves represent the shapes and its changes of the object in a.
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Fig. 3. 
4D eigenseries of a small bump attached to a torus, whose radius of the tube is increasing 

with time (i.e., the 10 time points). a: Eigenvalues Λ(t) and eigenfunctions F(t) for 

increasing eigenmodes j = 1, 4, 8, 17, 20. b: The same modes after eTracking. While the 

lower modes (1,4,8) are equivalent to a), the eigenfunctions associated with mode 17 and 20 

now smoothly vary across time, properly reflecting the deforming shape. Interestingly, the 

corresponding eigenvalues now change more drastically over time compared to the original 

series of eigenvalues.
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Fig. 4. 
The impact of small shape changes on the inner product between the corresponding 

eigenfunctions. The shape on the left (reference) is a torus with an additional small bump 

(bump of interest). The tori to the right have a larger bump at that location simulating a small 

change of the original shape. To model a source of noise, the torus includes two additional, 

smaller bumps, whose height increases from 10% to 90% with respect to the radius of the 

torus. For all these shapes, the eigenfunctions of the first, fifth and tenth mode are shown 

below. Their inner products to the corresponding eigenfunctions of the reference (on the left) 

are plotted in the graph below. Note, the eigenfunctions of higher modes (e.g., Mode 10) are 

more sensitive towards small shape changes than those of lower modes (e.g., Mode 1). 

However, the eigenfunctions of the lower modes (e.g., Mode 1) are also impacted by small 

changes, which is difficult to visualize due to the limiting color spectrum but is implied by 

the corresponding plot of the inner product being slightly slanted.
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Fig. 5. 
Examples of two modes that have their highest inner product (in percent on the left: 58% 

and 72%; in percent on the right: 66% and 56%) across all modes at the next time point with 

the same mode. In the example on the left, mode 12 at time point 15 will be linked to mode 

12 at time point 16, while in the right example mode 12 at time point 21 will be linked to 

mode 13 at time point 22.
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Fig. 6. 
Plotting modes according to highest and second highest inner product with modes of the 

previous time points for a: LV and b: RV. Uniquely matched modes are marked in orange 

while in blue are multiple matched mode, i.e., the ones for which two or more modes of the 

previous time point have a highest inner product with the same mode at the next time point. 

The first row plots all 100 modes across all data sets. In all cases, the number of multiple 

matches is less than 7% when considering all modes. The second row shows the same plot 

for the first 25 modes of each subject. The percentage of multiple matched modes now 

decreases by up to a factor of 10.

Bernardis et al. Page 25

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
For the first 100 modes, the plot shows the robustness measure of the tracking, i.e., the 5th 

percentile of the minimum inner product across all subjects. The score levels of around 40% 

at the 25th mode and then drops off around the 90th mode. Then setting the threshold τ to 

50%, the optimal N would be 15 based on all samples.
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Fig. 8. 
The 3D models of the RV (red) and LV (green) at three different time points of three healthy 

and three TOF subjects. The corresponding eCurves of the first 15 modes are plotted to the 

right. The eCurves in the red color scheme encode the series of RV shapes and the ones in 

the green color scheme encode the series of LV shapes. The end diastole corresponds to the 

first time point, while the peak in the eCurves corresponds to the end systole of the cardiac 

cycle. In comparison to the 3 healthy hearts, the peaks in the eCurves of the 3 TOF hearts 

seem less prominent in the right ventricle.
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Fig. 9. 
Eigenfunctions of the RV between two matched modes (first and second row) and associated 

inner product (third row) in six different cases. Note the large discrepancy in the patterns 

defined by the eigenfunctions below 50%, while their differences decrease as their inner 

product increases.
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Fig. 10. 
Four different encodings capturing the temporal changes in the shape of the RV in one case. 

While Volume confines capturing the shape changes by single, smooth curve, jCurves 

potentially can capture more complex shape changes by relying on multiple curves. 

However, some of those curves highly fluctuate over time, which is not in agreement with 

the rather small changes observed in the RV shape between neighboring time points. The 

only representations that capture shape changes through multiple smooth curves are those 

based on the signatures, i.e., eValues and eCurves, which also explains the higher accuracy 

scores of those encodings. The consistency across time (tracking) enforced by eCurves 

results in curves that deviate from those of eValues (especially those associated with higher 

modes). These deviations seem to reflect more accurately the temporal shape changes of the 

RV, as eCurves achieves the overall highest accuracy scores.
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