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Abstract

Objective—This paper aims to develop a computational model that incorporates the functional 

effects of modulatory covariates (such as context, task, or behavior), which dynamically alter the 

relationship between the stimulus and the neural response.

Methods—We develop a general computational approach along with an efficient estimation 

procedure in the widely used generalized linear model (GLM) framework to characterize such 

nonstationary dynamics in spiking response and spatiotemporal characteristics of a neuron at the 

level of individual trials. The model employs a set of modulatory components, which nonlinearly 

interact with other stimulus-related signals to reproduce such nonstationary effects.

Results—The model is tested for its ability to predict the responses of neurons in the middle 

temporal cortex of macaque monkeys during an eye movement task. The fitted model proves 

successful in capturing the fast temporal modulations in the response, reproducing the spike 
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response temporal statistics, and accurately accounting for the neurons’ dynamic spatiotemporal 

sensitivities, during eye movements.

Conclusion—The nonstationary GLM framework developed in this study can be used in cases 

where a time-varying behavioral or cognitive component makes GLM-based models insufficient to 

describe the dependencies of neural responses on the stimulus-related covariates.

Index Terms

point process models; nonstationary models; generalized linear model; response modulatory 
covariates; neural signal processing

I. Introduction

Task or context-dependent change in the processing of sensory inputs or modulation of 

stimulus-evoked responses is an important function of the brain and is essential in forming 

our sensory perception. For example, acoustic filter properties of primary auditory cortex 

neurons can dynamically adapt to stimulus statistics, classical conditioning, instrumental 

learning and the changing auditory attentional focus [1]. In the retina, when the visual scene 

changes from a low to high contrast, temporal filtering quickly accelerates, sensitivity 

decreases, and the average response increases in retinal neurons [2]. Rapid eye movements 

(saccades) influence many aspects of visual processing, including suppression of overall 

sensitivity [3], as well as spatial [4]–[6], temporal [7], [8] and chromatic [9] perception. 

Studies in the lateral geniculate nucleus (LGN) and the parietal cortex, including the middle 

temporal (MT), medial superior temporal (MST) and lateral intraparietal (LIP) areas have 

revealed suppression of neural activity and thus visual sensitivity before saccades and 

enhancement afterward [10]–[14]. The fact that the transformation of sensory information to 

neuronal responses is influenced by these cognitive variables poses a difficulty for 

understanding the neural code in sensory areas.

By characterizing the influence of different covariates on the stimulus-response relationship, 

statistical model-based approaches provide a powerful means to identify the effect of 

cognitive variables on the neural code of sensory processing. The point process generalized 

linear model (GLM) has been widely used for describing the encoding of stimuli in neuronal 

spike trains as a function of several extrinsic (e.g., sensory stimuli [15], motor variables [16] 

or behavior [17]) or intrinsic covariates (e.g., spike refractoriness or burstiness [18], or 

network states [19], [20]). Although quite powerful in encoding and decoding neuronal 

responses, the GLM framework faces challenges pertaining to modulatory stimulus 

processing. The classical GLM cannot accommodate changes in the spatiotemporal 

properties of the underlying system over time, i.e., time-variant or nonstationary systems. 

Thus, the classical GLM structure fails to capture time-varying characteristics of neural 

systems, for example due to eye movements or adapting stimuli, which may dynamically 

control the spatiotemporal integration of sensory inputs to the system [21]–[23]. Indeed, this 

scenario can no longer benefit from the well-behaved likelihood-based estimation, which is 

guaranteed by the structure of the classical GLM. Therefore, extending the GLM framework 

to account for dynamic and nonlinear modulatory effects on multiple stimulus components is 
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essential to study task- or context-induced changes in the neural representation of the 

sensory environment.

To allow for point process models to capture the temporal nonstationarity of the system up to 

some temporal and spatial resolution, current approaches use adaptive filter algorithms [24]–

[27]. Existing solutions mostly extend methods based on the Least Mean Squares and 

Recursive Least Squares algorithms for dynamic parameter estimation to track changes in 

neural receptive fields (RFs) over time. Although successful in analyzing receptive field 

dynamics, methods based on adaptive filters should trade off accuracy and robustness with 

spatial and temporal resolutions of changes in receptive field structure and spike response 

modulations for parameter estimation purposes. Moreover, existing adaptive filtering 

solutions do not provide an explicit model of how modulatory covariates may interact with 

other covariates to produce the neurons response in nonstationary settings.

To address this issue, we develop a general probabilistic framework to extend the GLM 

approach in order to account for time-varying information about a stimulus from single-trial 

spike trains and incorporate multiple nonlinear subunit inputs. Each input can in principle 

implement different additive or multiplicative modulations over time providing a powerful 

framework for analyzing nonstationary neural systems under a broad range of stimuli. We 

also provide a direct and efficient method to estimate the model parameters from spiking 

data and validate it by fitting the model to neuronal responses. We both employ the classical 

point process goodness-of-fit measures and also extend new measures based on dynamic 

stimulus-related correlation to assess the performance of our nonstationary GLM (NSGLM) 

in accurately predicting novel data from a nonstationary system and to compare it with the 

existing solutions for the nonstationary settings. The fitted NSGLM, with biophysically 

interpretable components, is shown to be capable of accurately describing the encoding 

mechanism of neural responses in visual cortex during a visually guided saccade task. 

Specifically, using the NSGLM combined with a high spatiotemporal resolution 

experimental design we were able to account for the detailed modulation of neuronal 

responses within the MT cortex when influenced by saccadic eye movements. The 

pseudorandom noise patterns used for visual stimulation enabled an unbiased estimation of 

the model parameters and nonlinearities. Taken together, our new data-driven model 

framework provides a general platform to track the modulation of sensory representations by 

both extrinsic and intrinsic variables during brain behavioral and cognitive functions, both 

on a finer time scale and also using much richer nonlinear computations than was possible 

with previous studies.

II. Statistical Framework

The neural spike trains are commonly modeled as point processes. A point process can be 

defined as a sequence of discrete events taking place in continuous time. In a neural spike 

train over a time interval (0, T], a sequence of spiking events occurring at times 0 < e1 < e2 < 

… < eM < T forms a point process [28]. The counting function associated with this point 

process, N(t), can be defined as the number of times the neuron fired a spike between time 0 

and time t, where t ∈ (0, T]. A point process can be fully characterized by its conditional 

intensity function (CIF), λ(t|H(t)), defined as:
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(1)

where H(t) includes spiking history of events up to time t and also other related covariates. 

For the sufficiently small time bin Δ such that at most one spike falls in each time bin, it 

follows that the probability of a spike in the time interval (t, t + Δ) can be approximated as:

(2)

The CIF specifies the rate function of a conditionally Poisson process given the covariates 

and spike history, which represents the instantaneous firing rate of the neuron given the 

history of the process and the covariates. Using the fact that the point process is completely 

defined by its CIF enables modeling of the neural spike train in terms of a point process by 

defining its conditional intensity as a function of different covariates [29]. First, by binning 

the counting process, N(t), over the entire time interval (0, T], we construct a discrete-time 

representation of the point process, rt, defined as rt ≜ N(tΔ) − N((t − 1)Δ), where Δ is the 

time bin size and . Second, by choosing a value of Δ small enough such 

that at most one spike falls in each time bin, we define the spike train as a binary sequence 

of zeros and ones, i.e., a Bernoulli process with parameter defined by (2). Finally, the joint 

probability of the discretized spike train is expressed as a product of probability mass 

functions of the Bernoulli events as follows:

(3)

where λt ≜ λ(tΔ|Ht) and Ht ≜ H(tΔ). For small Δ, [1−λtΔ] ≈ exp (−λtΔ) and (3) can be 

expressed as [29]:

(4)

Note that assuming the CIF is constant over any interval ((t−1)Δ, tΔ], then by (4), the 

distribution of each rt represents the probability mass function of a Poisson random variable. 

To model the effects of different covariates on generating the spikes, we define the 

conditional intensity of the spiking point process in discrete time as a parametric function of 

different covariates.

A widely used computational framework to model the CIF is the so-called GLM framework. 

The GLM framework has proven successful in relating the neural spiking responses to 

extrinsic covariates like sensory stimuli as well as intrinsic ones like the spiking history of 
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the neuron [26], [29]–[31]. The structure of this framework also guarantees a 

computationally tractable method for estimating the model parameters. In this framework, 

the instantaneous spiking probability of the neuron as a function of a given input signal s is 

described as:

(5)

where K is a linear operator projecting the high dimensional input vector s onto a lower-

dimensional subspace, and f is a nonlinear function representing nonlinear properties of the 

neuron, parameterized by a set of parameters η, which maps the output of the linear stage to 

the neuron’s instantaneous firing rate [30], [32]. It has been shown that the parameters of 

this model (η, K) can be estimated efficiently in a maximum likelihood (ML) framework 

under some benign conditions on the form of the model nonlinearity and a global maximum 

can be attained using efficient gradient ascent methods [30]. Note that (4) has the same form 

of the likelihood function as a GLM under a Poisson probability model and a log link 

function [29].

Although very powerful in relating the spiking responses of neurons to sensory stimuli, the 

GLM framework is challenged when the relationship between the response and the stimulus 

changes over time due to non-sensory covariates such as behavior or cognition, i.e., a 

nonstationary system. In this paper, we extend the classical GLM framework to capture the 

time-varying stimulus-response relationship and provide an efficient procedure to estimate 

the parameters of this nonstationary GLM, fit to the real data in a computationally tractable 

way. The following sections describe how the NSGLM can generalize the current GLM-

based approaches enabling us to trace the dynamic spatiotemporal properties of the neural 

response in the presence of modulatory non-sensory factors robustly and at the sampling 

resolution of spike trains.

A. NSGLM framework

The NSGLM is an extension of the GLM framework described above (more details can be 

found in [30]). Similar to the classical GLM, the NSGLM assumes that the neuron’s spikes 

are generated according to a nonhomogeneous Poisson point process with instantaneous 

firing rate λt. The NSGLM is comprised of five stages (Fig. 1): (1) the stimulus kernels, ki, 

which characterize the temporal sensitivity of the neuron at the ith spatial dimension of the 

stimulus; (2) the gain kernels, ωi, corresponding to each ki’s output, which determine how 

sensitive the response is to each spatiotemporal feature across time; (3) the offset kernel, b, 

which determines the time-varying baseline activity; (4) the post-spike kernel, h, which 

captures response dependencies on the neuron’s recent spiking history r; (5) the static 

nonlinearity, f(·), which generates the neuron’s instantaneous firing rate. The predicted firing 

rate λt is then given as:

(6)
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where si is the time course of the stimulus at the ith spatial dimension, ωi(t) is the 

instantaneous gain factor at time t associated with the ith spatial dimension and b(t) is the 

instantaneous offset factor at time t. The * and · denote respectively the linear convolution 

operation and the·element-wise multiplication over time. The nonlinearity function, f(·), has 

been chosen to be a fixed exponential function satisfying the conditions for efficient 

optimization [30]. In our case, a comparison of the exponential nonlinear function with the 

empirical mapping of the neuron’s actual firing rate to the filtered stimulus also shows the 

adequacy of this choice of nonlinearity for our spiking data. The exponential nonlinearity 

not only provides an interpretation of how the outputs of model kernels influence each other 

like gain factors in generating the neuron’s firing rate, but is also useful for a 

computationally efficient estimation of the model’s parameters. However, our model is not 

limited to this choice of nonlinearity and any nonlinear function that satisfies the GLM 

optimization requirement can be used for the NSGLM as well. Also note that (6) reduces to 

a classic GLM when the ωis are equal to 1 and b is a constant over time.

B. Model Estimation

A maximum likelihood estimation based method has been used to estimate the model’s 

parameters. The probability of a spike train under the model is given by a Poisson process 

(similar to (4)) as follows:

(7)

where s is the sequence of stimuli driving the spike train, , Δ is the size of time bin 

used to compute the spike count at time bin t, rt, and T is the number of time bins in the trial. 

Therefore, the log-likelihood of the observed spike data given the model parameters is given 

by the point process log-likelihood [33]:

(8)

where θ = {θk, θω, θb, θh} is the set of parameters used to parameterize the model kernels 

for stimulus, gain, offset, and post-spike components (ordered as they appear in the set). The 

time bin size, Δ, is chosen such that at most one spike can occur in each time bin (Δ was 

chosen for discretizing the spike trains). Each kernel was represented as a weighted sum of 

basis functions and parameterized by the weight parameters, θ.

To fit the model in (6), we optimized the parameters by maximizing the log-likelihood of 

observed spike trains given the stimulus according to (8). Note that with fixed gain kernels, 

ωis, over time, the likelihood function, LL(θ), can be optimized in the context of a classical 

GLM. Moreover, for a given set of stimulus kernels, {ki}, the likelihood function will be a 

linear function of ωis and thus can be again optimized in the context of the GLM. However, 

with the addition of modulatory kernels ωis (for capturing the nonstationary effects), the 
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likelihood function becomes more complex and unlike GLMs cannot be optimized using the 

regular gradient ascent method. Indeed, the resulting likelihood function no longer has a 

globally optimal solution.

As a result, we developed an optimization strategy to efficiently estimate the model 

parameters as follows. As explained above for a given set of {ki}, the model reduces to a 

GLM framework, which has a global maximum. Thus, the important task for optimizing this 

nonconcave function is to determine the best choice for the initial guess of the stimulus 

kernels, {ki}. We tried different initialization strategies and found the following method to 

give a stable solution for the data and a well-behaved solution path on the cross-validated 

data through regularization. First, the values for the gain kernel parameters, θω, are set to 1, 

resulting in a uniform gain kernels ωis, which thereby reduces the model to a GLM [30]. 

The reduced model can be optimized for the GLM terms including the stimulus kernel, post-

spike kernel, and offset kernel. Optimization of ωis then proceeds by maximizing the LL 
with the choice of GLM fits for other kernels using a numerical gradient ascent, i.e., finding 

a local maximum by iteratively maximizing the log-likelihood of the model by searching 

along the ascent direction in the parameter space. We found that ωi and ki specifying each 

probe location do not need to be optimized jointly. Instead, alternating between the 

optimization of ωi and ki (in which the output of each stage is used to initialize the next 

stage to update the other set of parameters) turns out to be more computationally efficient, 

producing a stable solution with regard to different initializations of the GLM terms {θk, θb, 

θh} (similar to [34]), and benefits the convergence time of the fitting procedure. Specifically, 

we fit the model using coordinate descent [35], alternating between fitting the gain kernels 

and other kernels as a whole, and optimizing over each set of parameters with gradient 

ascent.

Using smooth basis functions to parametrize the kernels results in smooth fitted kernels, and 

so the overfitting problem due to possible sharp fluctuations in the kernels is not an issue 

here. To verify this, we ensured that the solution path was well behaved and the model was 

not overfitted to the training data through regularization, using a cross-validated ridge prior 

for the gain kernel and offset kernel and a cross-validated L1 regularization for the stimulus 

kernel. Specifically, we add general smoothness and sparseness penalty terms of the 

following form to the likelihood function LL(θ) in (8):

(9)

where  is the set of parameters used for estimating the ith stimulus kernel, ωi and b 
represent respectively the ith gain kernel and the offset kernel, and μω, μb, μk are 

hyperparameters which determine the strength of gain kernel and offset kernel smoothness 

over time, and sparseness regularization of the stimulus kernel, respectively. We estimated 

the hyperparameters by maximizing the likelihood using a separate cross-validation dataset; 

however, our results were not very sensitive to the selection of hyperparameters. Evaluating 

the performance of the model on the cross-validated data (which was withheld from the 

training set) showed similar accuracy and prediction power as for the unregularized model; 
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accuracy and prediction power on cross-validated data were also comparable with those for 

the training data, demonstrating the generalization power of the model and that the 

parameters have not been overfitted to the training data. Therefore, the reported results here 

and the corresponding Fig. 4, 5, 6 and 7 are based on the model’s performance on the test 

data (not used for fitting) for a model with no regularizing term.

C. Model Evaluation

Since our model works on spiking data represented by a binary point process at the 

resolution of single trials for individual neurons, regular goodness-of-fit methods, such as 

mean squared error, used for continuous-valued processes are insufficient to provide a 

quantitative measure for the performance of our point process model to its full capacity. 

Several solutions have been proposed to measure the goodness of fit of a point process 

framework, which quantify how much congruency exists between the observed response and 

the prediction of the model [29], [36]. In order to examine how well the model reproduces 

and predicts the neuron’s spiking activity we employed and extended different goodness-of-

fit measures to quantify different aspects of our model’s precision: (1) using a Kolmogorov-

Smirnov test, we confirmed the congruency between the neuron’s response and the model 

prediction at a fine timescale in terms of the interspike intervals statistics; (2) we verified 

that the model sufficiently describes most of structure in the data by showing that the point 

process residual between the model prediction and the neuron’s response does not contain 

information about the external variables; and lastly (3) we verified the trial-by-trial 

congruency between the model and the neuronal response in terms of their correlation 

pattern over time using a joint peristimulus time histogram (JPSTH) method.

1) Kolmogorov-Smirnov (K-S) Goodness-of-fit Analysis—To assess how accurately 

the model can predict the spike train data, we used a similarity measure designed for point 

process data based on the time-rescaling theorem [36]. This method has been used to assess 

goodness of fit in several studies [29], [37] to test model goodness of fit for spike train data.

Here we briefly describe this method. Considering a sequence of spiking events represented 

as a point process occurring at times e1, e2, …eM, let λ(t|H(t), θ) be the conditional intensity 

function of the spiking process estimated using a model fit to the spiking data and 

parametrized by θ. Using the estimated CIF, rescaled times zk can be computed as follows,

(10)

where

(11)

The zk values obtained by this transformation will form an independent uniform distribution 

over the unit interval if and only if the estimated CIF corresponds to the true CIF underlying 

the spiking process [36]. The so-called K-S plots are used to measure this agreement by 

plotting the ordered quantiles of zk values versus the values of the cumulative distribution 
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function of the uniform density function [29]. To evaluate how well the model CIF 

approximates the true CIF, the points’ deviation from an expected 45° line is measured and 

the K-S statistic is used to construct the corresponding confidence intervals [38].

To assess how well the model performs in terms of the original interspike intervals (ISIs), we 

computed a mean ratio (R) quantity for each bin of ISI values, which is defined as the mean 

of all the ratios of the empirical density of the zk values corresponding to that ISI to the 

expected uniform density in the related bin [29]. A mean ratio R = 1 implies that the model 

estimated CIF perfectly estimates the distribution of the original ISIs. To also quantify the 

divergence of the model predicted distribution of the rescaled ISIs from the expected 

‘independent’ distribution, we assessed the temporal correlations measured by the 

autocorrelation function of zks. The correlation values should be zero for independent zks. 

For visualization purposes zks are plotted versus zk+1s, which demonstrates the second-order 

correlation values.

2) Point Process Residual Analysis—To evaluate the full account of the model in 

explaining the relationship between task and behavioral variables and spiking activity, it is 

also important to examine structure in the data that is not described by the model. For this 

purpose, we measured the correlations among the point process residuals (the difference 

between actual and predicted responses) and the visual stimulus.

The standard approach of residual analysis is used to analyze the structure in the data not 

described by the model. The point process residual [29], [39] over non-overlapping moving 

time windows was used to evaluate the difference between the actual and model predicted 

data for spike trains as follows:

(12)

where res(Bk) denotes the value of the residual signal in time bin Bk = ((k − 1)Δ, kΔ], where 

Δ is the bin size, Nk denotes the spike count in the time bin Bk and λ(t|θ, H(t)) is the model 

estimated CIF given the model parameters θ and the spike history and the covariates H(t). 
We then computed the cross-correlation function between the residual signal and the 

corresponding stimulus covariates to quantify their relationship. If the correlations were 

nonzero, there would be some structure in the data not explained by the model and so left in 

the residual. These correlations were also compared to the cross-correlation between the 

neuron’s response and the stimulus covariates to measure their significance.

3) JPSTH Analysis—The JPSTH analysis is a method for visualizing the relationship 

between the spike trains of two simultaneously recorded neurons, and can reveal the 

dynamic correlation between the neurons’ responses [40], [41]. As the name implies, JPSTH 

provides the two-dimensional peristimulus time histogram (PSTH) of two neurons with 

respect to an event where the histogram is computed over different time shifts of action 

potentials of the two neurons. We extended this concept to assess the similarity of the 

model’s prediction and the neuron’s response by computing a JPSTH between actual spike 

trains and the simulated spike trains generated according to the model’s predicted firing rate 
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as locked to the presentation of each stimulus probe. A JPSTH is computed by constructing 

a matrix of spike incidences where each entry of the matrix is incremented by one for the 

cases when the neuron fired a spike and the model predicted a spike at the corresponding 

time incidences of that matrix entry, relative to probe onset. If the model is able to predict 

the timing of actual spikes, this will be reflected in high values along the diagonal of the 

JPSTH. In the ideal JPSTH, all other entries will be zero, showing that the model’s predicted 

spike times successfully coincide with the neuron’s actual spikes.

The JPSTH enabled us to infer the dynamics of the actual and predicted spike response’s 

covariation over time, which is not possible using the ordinary cross correlation based on the 

PSTH or relative time-shifted versions of the two responses. While the conventional cross 

correlation measures average covariation over the entire length of data, the JPSTH measures 

dynamic covariation associated with repeated presentation of the stimulus. Thus, the JPSTH 

gives us a more detailed picture of the correlation structure than the conventional PSTH- or 

shift-based correlation methods [41].

III. Results

We sought to develop a computational framework that could accurately predict the responses 

of neurons and also capture the dynamic changes in their spatiotemporal characteristics in a 

single model in important scenarios which a classical GLM could not describe. We applied 

our NSGLM framework to the responses of 40 MT neurons recorded in two macaque 

monkeys during a visually guided saccade task. Neurons in MT area are visually selective to 

spatiotemporal stimulus features such as motion direction. This area also contains both 

motor and visual information and thus is a good candidate for investigating the impact of eye 

movements on processing the visual signals [42]. Previous studies have also shown evidence 

of saccadic suppression in MT neurons [13].

In this section, we demonstrate the prediction power of the NSGLM by applying the model 

to the responses of neurons in the MT cortex despite the fact that a change in the eye 

position alters the spatiotemporal sensitivity of the neuron during the time course of a trial. 

This allows us to quantitatively characterize perisaccadic changes in MT visual processing, 

which is also applicable to other visually selective brain areas that are involved in processing 

eye movements [43]–[45]. Moreover, this general computational framework is applicable to 

other brain areas undergoing nonstationary changes under arbitrary task or behavioral 

conditions. Using different measures of goodness of fit on cross-validated data we 

quantitatively assess how precisely the NSGLM can describe the temporal modulation of the 

spike response, spike timing statistics, and the statistical structure in the spike data. We also 

quantitatively compare the performance of the NSGLM in describing the real spiking 

response of a sample neuron during an eye movement task to other, widely used or state-of-

the-art methods for point process filter estimation.

A. Application to real data: The NSGLM can precisely describe the neuron’s spiking 
response during a behavioral task

1) Visually guided saccade task—Two adult male rhesus monkeys (Macaca mulatta) 

were used in this study. All experimental procedures were in accordance with the National 
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Institutes of Health Guide for the Care and Use of Laboratory Animals, the Society for 

Neuroscience Guidelines and Policies. The protocols for all experimental, surgical, and 

behavioral procedures were approved by the Montana State University Institutional Animal 

Care and Use Committee. In our experiment the monkey performed a visually guided 

saccade task while the activity of MT neurons was recorded (Fig. 2A, B). In this task, a 

fixation point appeared at the center of the screen. After the monkey fixated on the initial 

fixation point, a target point appeared 10 degrees away horizontally. While the monkey kept 

its eyes on the fixation point, probes flashed on the screen in a 9 by 9 grid of possible 

locations (Fixation 1). The grid was positioned such that it covered the estimated pre-

saccadic and post-saccadic receptive fields of the neuron as well as the initial fixation point 

and the saccade target point. At each time point, there was just one probe on the screen, and 

its position changed every 7 ms (at the frame rate of the monitor). The precise timing of the 

probes was verified using a photodiode. Each probe was a white square (100% contrast), 0.5 

by 0.5 degrees of visual angle (dva), against a black background. The grid of possible probe 

locations was scaled in each recording session based on the estimated RF positions; spacing 

between adjacent grid locations ranged from 1.5 dva – 2.5 dva. The locations of consecutive 

probes followed a pseudorandom order. A condition was defined by the complete sequence 

of probes presented throughout the length of the trial (81 conditions were presented). 

Conditions were designed so that each probe appeared at every time point. After a 

randomized interval of approximately 600 ms – 750 ms, the initial fixation point disappeared 

as a cue for the monkey to make a saccade to the target point. After the saccade, the monkey 

had to hold fixation on the target point for 600 ms (Fixation 2). Probes continued flashing 

during the saccade and during Fixation 2. Each trial lasted a total of 2100 ms – 2300 ms; at 

the end of the trial the monkey was rewarded with a drop of juice. Fig. 2C shows, from top 

to bottom, the presented probe sequences, the eye position, and the recorded spikes in a 

sample trial.

2) Fitting the NSGLM to experimentally recorded neural data—To fit the model, 

kernels were represented as a weighted sum of basis functions and parameterized by the 

weight parameters. The basis functions were chosen as smooth temporal functions in the 

form of shifted raised cosines separated by π/2 radians spanning the trial time. The specified 

length and total duration of basis functions were as follows: 7-ms raised cosine covering a 

100-ms window after probe onset for stimulus kernels, and 100-ms raised cosine covering a 

1100-ms window around the time of saccade for gain and offset kernels. The length of basis 

functions for the stimulus kernel was in accordance with the monitor’s 144 Hz frame rate. 

To parameterize the post-spike kernel, a set of both high and low temporal resolution basis 

functions were used including ten 1-ms uniform functions to capture rapid changes 

immediately following spike generation (e.g. refractory effects), and ten 7-ms raised cosine 

functions to capture longer-timescale dependencies on the response history (similar to [20]).

The input to the model includes the spatiotemporal patterns of the flashing probes on the 

screen. At each instant of time the flashing probes can take one of the 81 probe locations (on 

the 9 by 9 grid of possible locations). s1, s2, …, s81 inputs in Fig. 3 denote the pattern of 

each probe appearance on the screen in a sample trial. Appearance of the probes in different 

locations evoked different patterns of neural responses. During fixation 1, probes in the 

Akbarian et al. Page 11

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neuron’s initial RF (RF1) evoke a higher firing rate, while during fixation 2, after the eye has 

shifted to the target point, probes in the new location of the neuron’s RF (RF2) evoke a 

stronger response. A classical GLM is insufficient to describe the changes in the neural 

response due to the dynamic spatiotemporal properties of the neuron caused by the shift of 

gaze. However, using the NSGLM, the fitted stimulus kernels and gain kernels capture the 

neuron’s dynamic spatiotemporal sensitivity across eye movements. Sample fits are shown 

in Fig. 3.

In our model, the visual stimulus is passed through a bank of temporal stimulus linear 

kernels corresponding to each probe location, which together construct the neuron’s 

spatiotemporal RF. Specifically, the visual stimulus is convolved with the stimulus kernels 

and the filtered stimulus is then combined multiplicatively with a bank of gain kernels 

associated with each probe location, which modulates the neuron’s sensitivity to probes at 

each location and at each time point relative to the time of the saccade. The set of gain 

kernel outputs captures the neuron’s spatial sensitivity changes over the course of a trial due 

to the change in eye position. The set of saccade-modulated outputs are then summed across 

spatial positions to obtain a ’generator potential’ (e.g., time-varying membrane potential as a 

result of the sum of synaptic currents) in response to the visual stimulation during an eye 

movement. Another signal that contributes to the generator potential fluctuations is the 

neuron’s baseline firing rate, which is modulated by saccade events and combined with the 

outputs of the linear kernels via an offset kernel. Finally, the spike aftercurrent is 

incorporated in the form of the spike train history filtered by a post-spike kernel. For each 

neuron, the summed outputs of all the kernels are passed through an exponential nonlinearity 

to obtain an instantaneous firing rate underlying the predicted spike train (Fig. 3).

Here, we verify the model’s performance in predicting responses to test stimuli, held out 

from the data used for training, in terms of different aspects of response characteristics by 

evaluating the model’s ability to capture (1) the interspike interval statistics using the K-S 

test (Fig. 4), (2) the statistical structure in spiking activity using the residual analysis (Fig. 

5), and (3) the temporal precision of the response using the JPSTH analysis (Fig. 6).

It should be noted that all these model performance measures were evaluated on the test 

data, which was held out from the data used to train the model. This is essential because 

spiking responses contain both a signal component driven by the task variables and a noise 

component reflecting the inherent variability of the neuronal responses or the effects of 

unmodeled covariates (e.g., the state of the brain). Therefore, a good performance on the test 

data demonstrates that the model was fit to the signal and not the noise. These measures are 

described below.

B. Model’s ability to predict temporal patterns of spiking activity using the K-S goodness-
of-fit analysis

We used a K-S test to quantitatively assess how the model describes the spike train data at 

the level of single trials [29]. Fig. 4A shows the K-S plots for two representative sample 

neurons showing different degrees of agreement between the model’s predicted rescaled ISIs 

distribution (denoted by quantiles along the x-axis) and the expected ’uniform’ distribution 

under the true spiking process (denoted by CDF (cumulative distribution function) along the 
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y-axis). For the example neuron on the left, the points lie within the 95% confidence interval 

of the 45° line, indicating that the model-predicted CIF corresponds to the true CIF 

underlying the spike process; however, for the example neuron on the right, the model tends 

to overestimate the true CIF, reflected in the points lying below the 95% confidence error 

bounds.

To assess how well the model performs in terms of the original ISIs, we computed the mean 

ratio (R) values as the mean of the ratios of the empirical probability density of the time-

rescaled ISIs to the expected uniform density over bins of the ISI values. Fig. 4B shows the 

R values across the values of ISI for the same two neurons in panel (A). Under the model, 

for the neuron on the left, the spike rate is underestimated (R > 1) for lower ISI values and 

the estimation improves (R reaches to 1) for larger ISI values, indicating the agreement 

between the model estimated rate underlying the spike train and the true spiking process. 

However, for the neuron on the right, the spike rate is overestimated (R < 1) under the model 

for all ISI values. For the population of 40 neurons, the average of mean ratios over ISI 

values was 0.94 ± 0.008 indicating that overall the model was successful in reproducing the 

ISI statistics of the spike train data (Fig. 4C). To check for the independence of rescaled 

times under the model, we measured the temporal correlation between every consecutive 

time-rescaled ISIs. Fig. 4D shows scatter plots for consecutive ISI values for the two sample 

neurons above. The correlation between consecutive ISIs is 0.008 ± 0.001 for the population, 

indicating that overall the model was successful in capturing the temporal structure of the 

spike train data (Fig. 4E). The result for correlations at different lags (i.e., higher-order 

correlations) was consistent with the result for lag 1 (i.e., second-order correlation).

C. Model’s ability to capture statistical information in spiking activity about stimulus using 
the point process residual analysis

Fig. 5A shows the temporal correlation functions between the probe stimulus inside the 

neuron’s RF and the residuals, compared to the correlation of the same stimulus and the 

spike data for a typical MT neuron. The response window is defined as a window centered at 

the time of the maximum stimulus-response correlation value with the width defined as the 

time lags whose associated correlations are higher than that of the shuffled data. As shown 

in the Fig. 5A, in the response window of the neuron, correlation between the stimulus and 

the response rises, showing that for this neuron the stimulus-response correlation conveys 

information about the probe stimulus inside the RF. Most of the correlation is captured by 

the model predicted response, and the remaining stimulus-residual correlation is only a small 

fraction of the original correlation.

Fig. 5B shows the correlation between the response and the stimulus, and also the 

correlation between the residual and the stimulus, for the population of 40 MT neurons over 

the time lags used for computing the correlation. The correlation between stimuli and the 

residuals is very small and significantly less than the correlation between stimuli and the 

responses (mean stimulus-response correlation = 0.078 ± 0.004, p < 0.001; mean stimulus-

residual correlation = 0.003±0.003, p = 0.18; mean difference between response and residual 

= 0.074 ± 0.003, p < 0.001). These results indicate that the model’s predicted response 

captures most of the correlation between the stimulus and the neural response.
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D. Model’s ability to capture temporal precision of spiking response using the JPSTH 
analysis

We computed the relative timing of actual and predicted spikes by constructing JPSTH 

matrices based on the response to probes in the RF1. Using the JPSTH measure, we see that 

the NSGLM captured the fine temporal features of the neural response as shown in the 

scatter diagram for stimuli presented inside the RF for a sample MT neuron in Fig. 6A (left 

panel). The high density cloud parallel to the principal diagonal represents the coincidence 

of actual and predicted spikes at the visual latency and over the response window of the 

neuron, indicating an agreement between the actual and predicted response latencies. In Fig. 

6A (right panel) the histograms along the abscissa and ordinate axes approximate the 

ordinary PSTH of the actual and predicted spikes, respectively. The peristimulus time (PST) 

coincidence histogram along the principal diagonal represents the probability of 

coincidences in the actual and predicted trains of spikes. As expected, the probability of the 

coincidences rises rapidly around the time of neuron’s response latency and decays slowly 

subsequently. The histogram on the upper right in Fig. 6A (right panel) represents the 

ordinary cross-correlogram of the actual and predicted spike trains, which is obtained by 

summing along the para-diagonal bins of the JPSTH matrix and shows a central peak, 

consistent with the coincident spikes in the actual and predicted trains. The time precision of 

the model exists across the population of recorded neurons, as visualized using the average 

normalized JPSTH matrices over all the neurons in Fig. 6B (n=40). Fig. 6C shows the values 

of the cross-correlation coefficient between the actual and predicted responses 

(corresponding to the central peak of the cross-correlogram) for 40 neurons.

E. Comparison with other studies: NSGLM outperforms existing approaches

There exist several approaches for incorporating time-varying properties and the effects of 

modulatory covariates when modeling nonstationary neural systems. A major difference 

between the existing ideas, however, is the temporal and spatial resolution at which each 

model can operate robustly. There have been extensions to the GLM framework by 

incorporating time-varying modulatory signals to describe nonstationarity in the data. 

However, the capabilities of these extensions have been limited in several respects. Some are 

limited to low temporal resolution, where the firing rate is modulated by a multiplicative 

interaction with a positive, smooth, and slowly varying signal as state variables [46]. 

Moreover, this form of modulation structure will limit the possible underlying mechanisms 

driving response nonstationarities. Some other extensions to the GLM framework allow 

higher temporal resolution in capturing nonstationarity by introducing time-dependent 

multiplicative and additive factors modulating the stimulus drive, however, their effects act 

so globally that they may distort the sensitivity of the response to stimulus [47]. Non-GLM-

based approaches such as nonstationary dynamics models have been proposed to capture 

slow modulations in firing rates across trials [48]. Lastly, adaptive filtering approaches, 

although successful in capturing receptive field plasticity [24]–[27], are challenged when 

trying to track fast changes in the system. The higher the learning rate of these algorithms 

are, the fewer observations will be available to estimate the filter parameters. This will affect 

the precision of these algorithms in tracking smaller changes and also their robustness when 

very few spikes are available during short periods of observation. No existing models 
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capture nonstationary dynamics with the combination of high spatial and high temporal 

resolution of the NSGLM described here.

In this section, we analyze the performance of the NSGLM versus a few of the existing 

methods representing the widely-used or state-of-the-art approaches that have proven 

successful for modeling point processes or estimating the system’s spatiotemporal 

characteristics. These methods include the classical GLM for static filter estimation [30], the 

steepest descent point process filter (SDPPF) for adaptive filter estimation [27], and a recent 

GLM-based method by Zanos et al. with modulatory factors to account for saccadic 

suppression effects [47]. The classical GLM provides an optimal estimation in ML sense of 

the fixed spatiotemporal filters describing the neuron’s spiking response over the entire trial. 

The SDPPF-based model provides an optimal estimation of the adaptive filters representing 

the spatiotemporal sensitivity of the neuron obtained by a steepest descent procedure. The 

Zanos model employs a two-step procedure for first estimating the neuron’s static 

spatiotemporal RFs and second estimating additional time-dependent gain and offset terms 

given the RF estimates from the first step to account for saccadic suppression effects.

Fig. 7 shows the comparison between the performance of these methods for a sample MT 

neuron over test data (not used for training the models). First these models were evaluated in 

terms of how well a model can reproduce the measured firing rate of the neuron as obtained 

by averaging over spike trains from several repeated trials. Fig. 7A shows the average 

stimulus-evoked response on the trials where a probe has been presented inside the RF1 of 

the neuron before and after the eye movement, respectively, along with the model-predicted 

firing rate response for GLM, NSGLM, Zanos, and SDPPF models. While all the models 

can predict the firing rate during fixation 1, the classical GLM and the SDPPF-based model 

fail to predict the different response to the same stimulus during fixation 2 due to the eye 

movement. The classical GLM with static components is not capable of capturing 

nonstationarity in the system, e.g., the neuron’s changing spatiotemporal RF with respect to 

the saccade time. The adaptive filtering approach, although providing a dynamic estimation 

of the neuron’s spatiotemporal receptive fields, shows insufficient to capture the very fast 

dynamics of the system induced by the saccade due to its limited robustness in filter 

estimation when the observation window reflecting those fast dynamics is too short. The 

Zanos model successfully follows the overall firing rate response, both before and after the 

saccade due to the presence of a modulatory gain component, enabling to capture the global 

effects of eye movements on the neuron’s RF.

To further analyze the capabilities of the models with an intrinsic ability to account for 

nonstationarity of the system (i.e., NSGLM, Zanos, and SDPPF models) we compare their 

performance on the timescale of spiking events at the level of single spike trains. The 

NSGLM outperforms the two other nonstationary models in describing both the statistical 

structure in the spike data and spike timing statistics as shown by the temporal correlation 

function between stimulus and residual and K-S plots, respectively (Fig. 7B, C). The 

adaptive filter approach falls short in accurately tracking the response temporal statistics on 

the timescale of the saccade execution and saccade-induced modulations for filter 

estimation. This is due to the adaptive filter’s limited precision when its observation window 

is too short to capture the fast response modulation or robustly estimate the neuron’s 
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changing spatiotemporal sensitivity across the saccade. Although the results here are shown 

for the SDPPF algorithm, other adaptive filtering algorithms suffer from similar shortcoming 

in terms of limited robustness and accuracy in capturing and estimating fast changes. The 

Zanos model with single temporal modulatory component for all locations makes it 

insufficient to track the change in the neuron’s sensitivity across space with respect to the 

instantaneous position of the eye, which has been the case for our experiment. Moreover, the 

Zanos approach does not enable an optimization framework for simultaneous estimation of 

the model parameters and solves for the time-dependent components assuming a fixed RF 

envelope for the course of the trial.

Thus, by enabling dynamic estimation of the neuron’s spatiotemporal sensitivity with a high 

temporal and spatial resolution, the NSGLM can capture the neural dynamics on the scale of 

saccade-induced spatiotemporal modulations and single spike trains where the existing 

approaches prove insufficient.

IV. Discussion

Our goal was to develop a model that includes time-varying covariates that modulate the 

relationship between the stimulus and response. We extended the widely used GLM 

framework to incorporate these nonstationary components. GLMs have been successfully 

used to characterize the stimulus sensitivity of neurons in early sensory areas (e.g. the retina 

[20], thalamus [49], primary auditory cortex [50], primary visual cortex [51], primary 

somatosensory cortex [50], or primary motor cortex [29]). However, classical GLMs are 

unable to accommodate modulatory factors that change over time, altering the nature of the 

relationship between the stimulus and neural activity. Previous attempts to incorporate 

modulatory factors into the GLM framework have not taken into account how these factors 

interact with other covariates to alter the stimulus-response relationship. The NSGLM 

introduced in this paper incorporates these interactions, extending the GLM framework to 

include time-varying modulatory components. One aspect of the GLM framework that 

makes it popular is its computational tractability in terms of efficiently finding the unique 

optimal solution. Introducing the modulatory components, however, makes a simultaneous 

maximization of the parameters to no longer be computationally tractable. Instead, by 

alternating between separate sets of parameters, we maintained the concavity of the 

likelihood function over each parameter set, enabling the algorithm to converge to an 

optimal set of parameters. Combining this alternating optimization method with an efficient 

initialization procedure proved successful, and the fitted model precisely captured the time 

course of the stimulus-response relationship in the presence of time-varying non-sensory 

covariates.

This model can be used to describe neural responses in different sensory modalities and 

cognitive tasks in which the non-sensory variables could change the stimulus-response 

relationship. In our case, we validated the model by fitting it to the spiking responses of MT 

neurons recorded during a visually guided saccade task. The fitted model successfully 

describes the neural response while the spatiotemporal sensitivity of neurons changes over 

time due to the movement of the eye. The model (1) predicts the instantaneous firing rates 

for individual trials, evaluated by the distribution of interspike intervals and a KS test; (2) 
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captures the majority of the correlation between the stimulus and the neural response, based 

on the residual analysis; and (3) matches the temporal pattern of the neural response, 

measured using the joint distribution of the predicted and actual responses.

Whereas the model itself provides a phenomenological description of the neuronal 

responses, its components can also provide plausible interpretations in terms of the 

underlying biophysical mechanisms. The stimulus kernel represents the spatiotemporal 

features that the afferent neurons are most sensitive to. The gain kernel reflects a time-

dependent multiplicative control signal along each stimulus dimension. Incorporating this 

gain kernel provides a means to capture the changes in the neuron’s sensitivity induced by a 

time-varying factor (in this case, an eye movement). The offset kernel captures any additive 

effects induced by stimulus-independent global changes of response sensitivity across time. 

The post-spike kernel reflects temporal changes in neuronal excitability due to spike history 

dependent effects such as refractoriness, burstiness, or adaptation.

The NSGLM offers several advantages over existing approaches, some of which we discuss 

here. By introducing time-dependent modulatory components, the NSGLM is able to capture 

the nonlinear dependencies of neural responses on multiple covariates, as well as the 

dynamic relationship between the response and the stimulus. In the NSGLM, we do not 

impose any assumptions about the stimulus statistics or the filter arrangement. The 

parameterization of the model using smooth basis functions allows kernels to take arbitrary 

forms, improving the ability of the model to generalize across a broad range of response 

characteristics. By defining explicit interactions between the modulatory components and 

stimulus-driven signals, the NSGLM provides a means to describe the functional role of 

each modulatory component in the stimulus processing; whereas models employing adaptive 

filtering to describe the nonstationary nature of the data do not provide such a functional 

understanding of these interactions. Moreover, the NSGLM can be easily modified or 

expanded to suit particular experimental questions. Future extensions of the model could 

incorporate the population level information, which can be reflected in the correlated activity 

of neurons or synchrony with local field potential oscillations. In the NSGLM framework, 

these types of extensions are straightforward and can be implemented by adding 

corresponding kernels to account for population level information. Moreover, although we 

used the exponential nonlinearity for Poisson spike generation, other choices of nonlinear 

functions or non-Poisson distributions could also be substituted into this framework without 

sacrificing the computational tractability. Lastly, the general probabilistic framework of the 

NSGLM provides a means to design a statistically optimal decoder, enabling us to readout 

the visual scene based on the responses.

V. Conclusion

In this article, we introduced a nonstationary GLM framework, which can be used in cases 

where a time-varying behavioral or cognitive component makes GLM-based models 

insufficient to describe the dependencies of neural responses on the interactions between 

internal and external covariates. Moreover, we developed a maximum likelihood based 

method for the model fitting, which proved computationally tractable for robustly estimating 

the model parameters. We validated the NSGLM approach by fitting the model to the spike 
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trains of 40 MT neurons recorded during a visually guided saccade task, where a regular 

GLM model could not account for the neurons’ changing spatiotemporal sensitivity due to 

the shift in the eye position. Using multiple goodness-of-fit measures, we have shown that 

the fitted NSGLM model successfully reproduced different aspects of the neural response, 

including the average firing rate to repeated stimulus presentations, the interspike interval 

statistics, the correlation between the stimulus and response, and the temporal precision of 

the response. The fitted model, with biologically-plausible components, provides a 

descriptive means to understand the functional effects of modulatory signals in sensory 

processing. Furthermore, this approach will provide a model-based decoder, which will 

enable us to have a readout of the sensory stimulus during behavioral tasks. This combined 

encoding and decoding approach, enabled by the general framework of the NSGLM, can 

provide a powerful tool to study a variety of context- or task-dependent effects on sensory 

processing.
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Significance

In addition to being quite powerful in encoding time-varying response modulations, this 

general framework also enables a readout of the neural code while dissociating the 

influence of other non-stimulus covariates. This framework will advance our ability to 

understand sensory processing in higher brain areas when modulated by several 

behavioral or cognitive variables.
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Fig. 1. 
NSGLM structure. A schematic of the model structure illustrating the order in which the 

stimulus is filtered and modulated by the fitted kernels to generate the model’s prediction. 

The model describes the probability of a spike train response given a set of input stimulus 

variables along time and space dimension. The temporal sequence of the stimulus along each 

spatial dimension i, si(t) passes through the stimulus kernels ki(t) and is then modulated 

multiplicatively by temporal gain kernels for each spatial dimension i, ωi(t). The output of 

all kernels are summed with a temporal offset kernel b(t) and also a feedback signal, i.e. the 

neural response filtered by a post-spike kernel. The summed output is then passes through 

the nonlinearity function f to generate the instantaneous spike rate prediction.
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Fig. 2. 
Illustration of the experimental paradigm. (A) Illustrates visually guided saccade task. Inset 

shows recording area in the brain, MT area. The pseudorandom white noise stimulus in 

space and time and the intrinsic timing variability of the saccade are important in order to 

model their effects on generating neural responses independently. (B) The sequence of 

different events in the visually guided saccade task. (C) The sequence of presented probes, 

actual eye position and the neural response in a sample trial (from top to bottom). ’t’ in the 

table shows the time of each probe presentation while ’x’ and ’y’ show the index of each 

probe along x and y coordinates on the 9 by 9 grid of possible probe locations.
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Fig. 3. 
Visualization of the fitted kernels of the NSGLM for a sample MT neuron. Illustrates the 

fitted model components: stimulus kernels, gain kernels, offset kernel, post-spike kernel, and 

exponential nonlinearity. The input stimulus is filtered through the stimulus kernels and then 

scaled multiplicatively by the temporal gain kernels. The outputs of all kernels are summed 

with an offset kernel as well as a feedback signal via the post-spike kernel, and passed 

through an exponential nonlinear function to produce the instantaneous spike rate. The 

spiking response is generated according to a conditionally Poisson process under the model 

predicted time-varying spike rate. Example of the model-predicted and actual response for a 

single trial from test data has been illustrated. Black vertical bars mark actual spike times.
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Fig. 4. 
The K-S analysis for model goodness of fit. (A) K-S goodness-of-fit plots for two example 

MT neurons. Quantiles refer to the time-rescaled ISIs and CDF refers to the expected 

uniform distribution when the model-estimated CIF corresponds to the true one. For the 

neuron on the left, the K-S plot shows that the estimated model passed the goodness-of-fit 

test: the points lie within the 95% confidence interval of the 45° line (dotted); two-sided 

95% confidence error bounds of the K-S statistics are denoted by the parallel dashed lines. 

The model for the neuron on the right tends to overestimate the true CIF. (B) Mean ratio R 

shows that the estimated model for the neuron on the left underestimated the intensity 

function (R > 1) for lower ISI values and reaches to 1 for larger ISI values, indicating the 

agreement between the model and data; and the estimated model for the neuron on the right 

overestimated the spike rate (R < 1) for all ISI values. The top plot shows the histogram of 

ISI values for each neuron. (C) Histogram of the mean ratios for the population (n=40) 

(average R = 0.94 ± 0.008), indicating that overall the model was successful in reproducing 

the ISI statistics of the spike train data (cross-validated data). (D) Scatter plot of the 

consecutive time-rescaled ISIs; correlation value is shown at the top. Lower correlation 

values correspond to a more independent time-rescaled distribution, which is expected under 

an accurate model. (E) Histogram of correlation values between consecutive time-rescaled 

ISIs (r = 0.008 ± 0.001) for the population (n=40), indicating that overall the model was 

successful in capturing the temporal structure of the spike train data (cross-validated data).

Akbarian et al. Page 25

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Residual analysis of the model’s prediction. (A) Illustrates temporal correlation function 

between stimulus and response (blue) and between stimulus and residual (red), for an 

example MT neuron when the stimulus was presented inside the RF1. The gray bar indicates 

analysis window used in (B), and the yellow area shows the correlation between the stimulus 

and the shuffled response (mean ± standard error). The absence of correlation between the 

stimulus and residual indicates that there is no structure left in the data that is statistically 

related to the stimulus. (B) Correlation values for the population, between stimulus and 

response (blue), and between stimulus and residual (red). The correlation between stimuli 

and residuals is very small and significantly less than the correlation between stimuli and 

response (cross-validated data). The histograms show the distribution of correlation values 

across the population of 40 neurons.
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Fig. 6. 
Time precision analysis of the model’s prediction. (A) (left) Heatmap diagram of the JPSTH 

matrix for stimuli inside the RF of a sample neuron. Each point represents the number of 

times both the model and the neuron fired a spike at the corresponding time incidences, 

relative to probe onset (summed across all presentations of that probe). (right) Histograms of 

values of the JPSTH diagram on the left along different dimensions; the coordinates of 

histogram grouping are the same as those for the JPSTH diagram. Histograms along the 

abscissa and ordinate approximate the ordinary PSTH of the actual and predicted spikes, 

respectively. Histogram along the principal diagonal represents the probability of 

coincidences in the actual and predicted trains of spikes with respect to the stimulus onset. 

Histogram on the upper right represents the cross-correlogram of the actual and predicted 

spike trains. (B) Average of normalized JPSTHs for the population (n=40). Each JPSTH was 

normalized to its range of values before averaging for the population analysis. The high 

density cloud spans over the response window of the neurons on average. (C) Each point 

corresponds to the cross correlation coefficient between the actual and predicted PSTH 

responses for each of 40 neurons (cross-validated data).
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Fig. 7. 
Performance comparison of the NSGLM versus widely-used existing approaches for a 

sample MT neuron. (A) Firing rate analysis, for model predicted firing rate response over 

repeated probe presentation in the RF1 during fixation 1 (left) and fixation 2 (right). While 

all the models can predict the firing rate response to probes at RF1 during fixation 1, the 

GLM and the SDPPF-based model fail to correctly predict the firing rate response during 

fixation 2. (B) Residual analysis of predictions from the nonstationary models: The absence 

of correlation between stimulus in RF1 and residual of the NSGLM prediction (solid black) 

indicates that the NSGLM captured all the structure in the data that was statistically related 

to the stimulus; while the remaining stimulus-residual correlations for Zanos (blue) and 

SDPPF-based (red) models are significantly nonzero in the response window (gray bar). 

Dashed black trace illustrates temporal correlation function between the same stimulus and 

the neuron’s response, and the yellow area shows the correlation between the stimulus and 

the shuffled response (mean ± standard error). (C) K-S goodness-of-fit plots for the 

nonstationary models: NSGLM outperforms both models in reproducing the ISI statistics of 

the spike train data. The parallel dashed lines denote two-sided 95% confidence error bounds 

of the K-S statistics.
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