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Abstract

Objective—High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique 

for research and clinical applications. Interpretation of high-resolution GI mapping data relies on 

animations of slow wave propagation, but current methods remain as rudimentary, pixelated 

electrode activation animations. This study aimed to develop improved methods of visualizing 

high-resolution slow wave recordings that increases ease of interpretation.

Methods—The novel method of ‘wavefront-orientation’ interpolation was created to account for 

the planar movement of the slow wave wavefront, negate any need for distance calculations, 

remain robust in atypical wavefronts (i.e., dysrhythmias), and produce an appropriate interpolation 

boundary. The wavefront-orientation method determines the orthogonal wavefront direction and 

calculates interpolated values as the mean slow wave activation-time (AT) of the pair of linearly 

adjacent electrodes along that direction. Stairstep upsampling increased smoothness and clarity.
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Results—Animation accuracy of 17 human high-resolution slow wave recordings (64–256 

electrodes) was verified by visual comparison to the prior method showing a clear improvement in 

wave smoothness that enabled more accurate interpretation of propagation, as confirmed by an 

assessment of clinical applicability performed by 8 GI clinicians. Quantitatively, the new method 

produced accurate interpolation values compared to experimental data (mean difference 0.02 

± 0.05 s) and was accurate when applied solely to dysrhythmic data (0.02 ± 0.06 s), both within 

the error in manual AT marking (mean 0.2 s). Mean interpolation processing time was 6.0 s per 

wave.

Conclusion & Significance—These novel methods provide a validated visualization platform 

that will improve analysis of high-resolution GI mapping in research and clinical translation.

Index Terms

Animation; Wave interpolation; Bioelectrical; Electrophysiology; Stomach; Wave propagation

I. Introduction

Gastrointestinal (GI) motility is governed in part by an underlying bioelectrical activity 

termed slow waves [1]. The contractions that underpin digestion are coordinated by the 

spatiotemporal properties of these slow waves that propagate along the GI tract. Gastric slow 

waves originate from a single pacemaker region and rapidly establish planar ring wavefronts 

that propagate down the stomach [2]. The recent development of high-resolution GI 

mapping is significantly expanding the understanding of slow wave dynamics through 

simultaneous recordings of slow wave activity from dense arrays of many electrodes [3], [4]. 

High-resolution mapping has fueled clinical interest in slow wave dynamics through recent 

descriptions of spatially-complex propagation abnormalities (dysrhythmias) in patients with 

functional gastric disorders [5], [6], and holds potential as a clinical diagnostic method.

Accurate visualization of slow wave activity is critical to the understanding, diagnosis, and 

therapeutic potential of abnormal GI activity. Several visualization tools are currently used 

for defining slow wave activity, including static isochronal activation-time (AT) maps that 

show propagation of a single slow wave as a color map, and animations of the ATs across 

the electrode array [7], [8]. However, animations to date have been simplistic, representing 

each electrode as an individual square and lacking interpolation of propagation between 

electrode locations. These existing animation methods result in a basic, pixelated 

visualization that does not accurately represent inter-electrode wavefront behavior. Missing 

data (e.g., due to incomplete electrode contact) and complex wavefront interactions, may 

also be incorrectly represented or communicated by these existing methods. An improved 

method for realistically visualizing slow wave propagation, including an accurate 

interpolation technique, is therefore needed for both research interpretations and clinical 

translation of GI mapping.

Wavefront interpolation algorithms have been adapted for highly specific conduction 

mediums and wave sources in other fields [9]–[11]. Cardiac wavefront interpolation studies 

have used eikonal-diffusion, but that method is complex and requires an additional boundary 

condition and specified conduction properties, making it non-ideal for GI slow waves [10], 
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[12]. A recent planar wavefront interpolation study in the field of optics demonstrated that 

linear interpolation is an effective method for reducing error and computation-time [9], and 

it has been shown that interpolation error can be reduced in two-dimensional datasets 

containing multiple inflection points by selecting only those neighbors nearest to the 

interpolation target [11], which is applicable to the velocity variations present in 

dysrhythmic slow waves [13].

The aims of this study were therefore to develop and validate methods that produce 

smoothed and accurate animations of high-resolution slow wave recordings by developing 

algorithms that: (1) upsample resolution of slow wave animations; (2) account for the 

localized planar nature of the slow wave wavefront; (3) simulate the trailing edge of the slow 

wave; (4) limit error by confining interpolation to regions with reliable neighboring data; (5) 

accurately represent the recorded data in normal and dysrhythmic slow waves containing 

velocity variances.

II. Methods

The development of an improved animation algorithm first necessitated a robust 

interpolation method to calculate ATs at: (1) electrodes missing experimental data, and (2) 

newly inserted data-points during upsampling. Additionally, a large clinically-relevant 

dataset of experimental test cases was needed, including both normal and dysrhythmic slow 

waves.

A. Overview of Wavefront-Orientation Interpolation

AT data points represent the arrival of the slow wave wavefront at each electrode. To 

interpolate an unknown AT point, the time that the wavefront reaches that electrode is 

estimated. The theoretical basis of wavefront-orientation interpolation considers that the 

slow wave wavefront propagates in an approximately planar orientation with neighboring 

wavefront ATs that are closely synchronized. Therefore, the most representative and 

subsequently computationally-effective neighbors to derive an interpolated value from are 

the linear adjacent neighbor pair that is most closely oriented to that of the wavefront. The 

linear pairs that intersect directly at the target (diagonal, vertical or horizontal pairs) and are 

most similar in wavefront AT are selected to estimate the wavefront arrival and interpolate 

the missing value (Fig. 1C). The mean of the ATs of the selected pair provides a linear 

estimation of the missing AT value based on the wavefront orientation. This method of 

interpolation is computationally efficient because the linear electrode pairs are always 

equidistant to the target for a regularly-spaced electrode array; distance and speed 

calculations are thereby unnecessary.

For additional robustness, the algorithm sequences the interpolation points from most to 

least number of ‘good neighbors’ (i.e., data points with valid ATs that were either 

experimentally marked or interpolated). The pool of neighbor data is thereby maximized to 

increase interpolation accuracy.

Stairstep upsampling then inserts alternating rows and columns of empty data cells. 

Wavefront-orientation interpolation is re-applied throughout upsampling to maintain the 
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wavefront dynamics inherent to the experimental data that are identified at the electrode 

interpolation level and thereby reduce discretization error (Fig. 1D–F).

B. Wavefront-Orientation Interpolation Algorithm

Consider a regularly spaced electrode array of dimensions m × n for a single recorded slow 

wave cycle containing measured ATs. At sites where no AT was recorded the value is set to 

‘unknown’. These missing data sites are the targets for interpolation.

For each unknown data point, the number of neighbors with valid AT values, termed ‘good 

neighbors’, is counted and represented by g. G contains the matrix of good neighbors for 

sites at which ATs are missing. X represents the subset of electrode sites from the electrode 

grid with missing AT values xm,n, where the number of good neighbors at point (m, n) is 

gm,n. Electrode sites in X are interpolated in order of descending g with a lower limit of ≥ 2. 

Thus points are sequenced from most to least number of good neighbors for interpolation.

For each interpolation target a 3 × 3 sub-matrix um,n is constructed from the electrode grid 

such that the interpolation target is centrally positioned. The missing value is computed per 

Equation 1. The linearly-adjacent neighboring pair with the smallest time difference is 

averaged to calculate the interpolated value (Fig. 1B and 1C).

xm, n = min{∑l = 1
4 Δt(um, n ∗ Kl)} (1)

Where Kl is the kernel used to compute Δt with l = {1, 2, 3, 4} representing the label for the 

left-right diagonal, right-left diagonal, horizontal and vertical linear pairs.

If an AT for either neighbor of a pair is missing, no time difference is returned for that pair. 

If all pairs fail to return AT differences, interpolation fails for the target and the next 

unknown in the sequence is interpolated (i.e., interpolation requires a minimum of one 

linearly adjacent pair of valid ATs). After all targets have had interpolation attempted, the 

algorithm is repeated with only those that failed because some of the previously missing 

pairs may now have been assigned a value. If interpolation still fails for xm,n it is removed 

from X and remains unknown. The requirement for an interpolation target to possess at least 

one linearly adjacent pair with valid ATs creates an automated and robust interpolation 

boundary.

C. Upsampling

To increase the precision of the image and reduce discretization error, single columns and 

rows of unknowns are added in each upsampling step to double the resolution of the image. 

This upsampling step is repeated with the interpolation described above in a stairstep fashion 

(i.e., repeated 1-fold increases in dimension followed by interpolation), and can be iterated 

to user preference.
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D. High-Resolution Mapping Data

Previously recorded high-resolution mapping data of gastric slow wave activity was used to 

develop and validate the new animation algorithms [5], [6], [14]. This high-resolution 

mapping data was acquired intra-operatively using flexible-printed-circuit electrode arrays 

(64–256 electrodes; 4 mm inter-electrode spacing; 8–36 cm2 array) placed directly on the 

gastric serosa [4]. Signals were acquired using a passive ActiveTwo system (Biosemi, 

Amsterdam, Netherlands).

The validation dataset for this study encompassed 17 recordings that included a total of 96 

individual slow wave cycles, across 14 patients. 8 of the patients had healthy stomachs (4 

undergoing surgery for abdominal malignancies not involving the GI tract [14]; 4 

undergoing obesity surgery [15]). The remaining 6 patients had been diagnosed with 

functional GI disorders associated with slow wave dysrhythmias (3 diagnosed with 

gastroparesis [6]; 3 diagnosed with chronic unexplained nausea and vomiting [5]). These 

data thereby encompassed both normal and dysrhythmic slow wave propagation, enabling 

robust test cases for the algorithm development. Slow wave activity was analyzed in GEMS 

v1.5 [7], including the automated identification and grouping of ATs into wavefronts with 

manual review to ensure accuracy [16], [17]. ATs at each electrode location were exported as 

a matrix for each slow wave and passed into the subsequent visualization steps.

E. Interpolation of High-Resolution Mapping Dataset

The wavefront-orientation interpolation algorithm described above was applied to the 

validation dataset of 96 slow wave cycles. Interpolation was conducted with a resolution 

multiplier of 2-fold to 6-fold for accuracy validation. A 6-fold interpolation was used for 

published animations, figures, and computation-time calculations.

F. Validation using Inverted Interpolation

Inverted interpolation was performed to quantitatively validate the interpolation. That is, 

post-interpolation the original known AT values were removed, and the interpolation 

algorithms were applied to the inverted data (Fig. 2) [18].

G. Processing Time of Wavefront-Orientation Interpolation

The computational cost of wavefront-orientation interpolation was measured using the time 

taken to interpolate the validation dataset of 96 total slow wave cycles and the average 

interpolation time per wave was calculated. Interpolation processing was performed on an 

Intel Core i5 2GHz. Time was measured for 5-fold and 6-fold increases in resolution.

H. Animation

The interpolated AT 2D matrix was expanded to 3D by an added time dimension at 0.1 s per 

frame. All elements were set to 0, except in their active time frame they were set to 1. To 

simulate the slow wave trailing edge (i.e., recovery time window), a Gaussian filter with a 

sigma value of 12 was applied to the time dimension in a retrograde fashion to fade the slow 

waves over approximately 4.2 seconds, representing a constant activation-recovery period 

consistent with physiological averages [19], [20]. Slow wave matrices were merged in time 
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and accounted for multiple slow wave cycles appearing in the same activation-time window. 

Intensity values were normalized (0 to 1) and a fourth dimension added to enable overlays of 

RGB colors. Electrodes were represented as overlaid dots that were color-coded to signify 

known ATs, unknown ATs, and currently ‘activated’ electrodes time-synced to the original, 

un-interpolated AT data (Figs. 3 and 4). The final animation was rendered using matplotlib 

1.5.3 at 50 frames per second [21].

I. Assessment of Clinical Applicability

GI clinicians were invited to complete a survey to assess the ease of interpretation and 

clinical applicability of the new animation method versus the previous pixelated GEMS 

animation method. Slow wave propagation patterns (n = 4) were presented to the clinicians, 

encompassing the same data included in Fig. 3 and Fig. 4 (Supplementary Animations 1–4). 

Each propagation sequence was presented simultaneously in side-by-side panels with one 

panel showing the new animation method and the other panel showing the previous GEMS 

animation method, presented in a counterbalanced fashion to prevent order bias. Clinicians 

were blinded to the animation type (i.e., were not told which animation was new vs. previous 

GEMS method), and were asked to use a 5-point Likert scale to rank the ‘ease of 

interpretation’ (1 = uninterpretable, 5 = clear and obvious) and ‘applicability to clinical 

assessment’ (1 = not useful, 5 = extremely useful) of each animation. Clinicians were also 

asked ‘which animation provides more information about the wavefront propagation’, 

‘which animation would you prefer to use for interpretation’, and for general comment on 

the animation methods.

Likert scale rankings were compared between the new animation method vs. the previous 

GEMS method using paired Student’s t-test with significance threshold of P < 0.05.

III. Results

A. Animations

Animations were viewed across the 17 datasets and compared with the previous pixelated 

style of animations rendered in GEMS (Figs. 3 and 4). Visual comparison of slow wave 

activation patterns showed improvement in the precision of the wavefront edge using the 

new methods across both normal (Fig. 3; Supplementary Animation 1) and dysrhythmic 

cases (Fig. 4; Supplementary Animations 2–4). The new animations presented slow wave 

propagation data as continuous wavefronts with fading color intensity representing a typical 

slow wave recovery period [19], and electrode data as color-coded dots. The slow wave 

wavefront was accurately represented as a continuous wavefront by the newly developed 

animation methods, displaying a coherent wavefront orientation that presented an obvious 

and substantial improvement over the previous pixelated animations.

Computationally, the animation rendering and compression took a mean of 774 s per dataset, 

which equated to 137 s per wave.
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B. Interpolation Validation

The wavefront-orientation interpolation method was accurate compared to experimental 

values with a mean difference across all waves of 0.02 ± 0.05 s for the 6-fold increase in 

resolution used for final animations. Interpolation accuracy increased with each stairstep 

interpolation iteration such that the mean difference between experimental data and re-

interpolated values decreased by about 50% for each successive iteration (Fig. 5; n = 7856; 

0.17 ± 0.23 s for 2-fold interpolation; 0.09 ± 0.13 s for 3-fold; 0.05 ± 0.08 s for 4-fold; 0.03 

± 0.06 s for 5-fold; 0.02 ± 0.05 s for 6-fold; 0.01 ± 0.05 s for 7-fold). Importantly, the mean 

difference for 6-fold interpolation is well within the level of accuracy found in manual 

marking of slow waves (mean 0.2 s; [16]).

Wavefront-orientation interpolation was designed to be computationally efficient; therefore, 

interpolation time was assessed across the validation dataset of 96 slow wave cycles. The 

average interpolation time was 6.0s per slow wave for 6-fold increases in resolution.

C. Dysrhythmic Slow Wave Propagation

The animation and interpolation algorithms were applied to recordings of both normal and 

dysrhythmic slow wave propagation. Normal slow wave propagation is uniform and 

cohesive, and was therefore straight-forward for accurate, successful interpolation and 

animation of all recordings (Fig. 3; Supplementary Animation 1). The non-uniform, variable 

dysrhythmic propagation presented more challenging test-cases for the algorithms.

The newly developed animation and interpolation algorithms were applied to 11 recordings 

of dysrhythmic slow wave propagation, which included examples of each of the following 

established gastric dysrhythmia classifications [5], [6], [22]: stable ectopic pacemakers 

(present in n = 5 recordings), unstable ectopic pacemakers (n = 2), retrograde propagation (n 
= 7), circumferential propagation (n = 11), wavefront collisions (n = 4), abnormal velocity (n 
= 4), re-entry (n = 1), and conduction blocks (n = 6). As shown in Figure 4, the algorithms 

accurately interpolated and animated the stable and unstable ectopic pacemakers, retrograde 

and circumferential propagation, abnormal velocity, wavefront collisions, and conduction 

blocks that spanned more than one electrode width (i.e., wider than 4 mm). The animations 

of these dysrhythmias accurately presented continuous wavefronts with coherent orientation, 

representing an apparent and substantial improvement over the previous pixelated 

animations and thereby making these dysrhythmic propagation sequences more intuitive to 

accurately interpret (Fig. 4; Supplementary Animations 2–4). However, the algorithms 

incorrectly interpolated across conduction blocks that were one electrode wide or narrower 

(i.e., manifested as a single row of unknown in the high-resolution mapping data), 

representing these narrow conduction blocks as regions of slow conduction rather than 

complete block, which was also an issue with the previous pixelated animation methods.

The wavefront-orientation interpolation method was accurate when compared to 

experimental values of only dysrhythmic slow wave activity, with a mean difference of 0.02 

± 0.06 s between experimental and inverted-interpolation values (e.g., Fig. 2) for a 6-fold 

increase.
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D. Assessment of Clinical Applicability

Assessment was performed by 8 GI clinicians, with clinical experience levels ranging from 

Trainee to Consultant Surgeon with over 30 years of experience, and assessment comprised 

32 total comparisons (each of the 8 clinicians assessed all 4 animations). Results showed 

that the new visualization method was clinically preferred compared to the previous GEMS 

method across all assessed rankings and questions. The new method was rated as easier to 

interpret with a mean difference in Likert score of 1.0 (4.7 ± 0.5 vs. 3.7 ± 0.9; P < 0.001), 

and more applicable to clinical assessment with a mean difference in Likert score of 1.3 (4.8 

± 0.5 vs. 3.4 ± 0.8; P < 0.001). Clinicians also reported that the new animation method 

provided more information about the wavefront propagation in 21 of the 32 total 

comparisons (vs. 0 of 32 for the previous GEMS method, with 11 of 32 reporting no 

difference), and that the new method was preferred for clinical interpretation in 29 of the 32 

comparisons (vs. 1 of 32 for the previous GEMS method, with 2 of 32 reporting no 

difference).

IV. DISCUSSION

In this study, new methods were developed to interpolate and visualize gastric slow wave 

propagation data obtained through high-resolution bioelectrical mapping. These methods 

accurately interpolated missing data points in the experimental recordings using a robust 

algorithm that accounts for the localized planar wavefront inherent in both normal and 

dysrhythmic propagation, while remaining computationally efficient. The animations 

produced increased precision of the wavefront edge that remained correlated with the 

original experimental data. Importantly, these animation methods were able to accurately 

represent the range of dysrhythmias observed in functional GI disorders and resulting from 

surgical intervention [5], [6], [23], and were deemed to offer superior interpretation of GI 

slow wave propagation by GI clinicians, compared to previous animation methods.

A range of existing interpolation methods have been previously published, but were 

designed for non-GI fields (e.g., optics [9] and cardiology [10], [12]) with distinct 

conduction mediums and wave propagation characteristics that were not directly applicable 

to slow wave propagation. Therefore, we developed a robust method that accounts for the 

localized planar dynamics of gastric slow wave by constraining interpolation to the pair of 

adjacent neighbors that were closest in activation time and thereby most closely oriented to 

the direction of the wavefront. This method of interpolating across only the directly adjacent 

neighbors of the interpolation target was not only robust and accurate, but also negated the 

need for distance calculations because of the regularly-spaced electrode array, making it 

computationally efficient and enabling significantly higher resolutions with minimal 

computational cost. Additionally, this method of interpolation featured decreased error 

(increased accuracy) with each successive upsampling, further validating the method as an 

accurate means by which to increase the quality of visualizing slow wave propagation. The 

increased accuracy of the successive upsampling and interpolation is likely due to the 

minimization of spatial discretization error, whereby the increased spatial resolution of the 

animations yields a better fit of the interpolated data to the actual wavefront orientation.
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A significant benefit of the new interpolation method presented in this study is the 

production of an objective and visible indicator of inter-electrode slow wave propagation. 

The current high-resolution electrode arrays have an electrode size of 0.07 mm2 (0.3 mm 

diameter circular contact) with 4 mm inter-electrode spacing [4]–[6]. The previous pixelated 

animation method was essentially up-scaling the electrodes to an effective area of 16 mm2 

by representing them as squares that fill the entire area of the electrode array without 

representing the inter-electrode space, nor interpolating the activity within that space [7]. 

The new methods at 6-fold interpolation more accurately approximate the effective electrode 

size as 0.06 mm2 and interpolate the surrounding activity in the inter-electrode space, 

thereby providing increased information that may help the interpretation of gastric slow 

wave propagation, particularly in cases of dysrhythmias where propagation is non-uniform 

[5], [6], [15]. This was confirmed by the clinical applicability assessment and in additional 

comments by two clinicians who said that the increased resolution and plotting of electrodes 

provide “extra information” and “confidence” when interpreting wavefront propagation. 

Another clinician specifically remarked that the wavefront edge was more discernible.

The methods developed in this study accurately interpolated and visualized all dysrhythmic 

test cases based on established gastric dysrhythmia classifications [5], [22], except for 

narrow conduction blocks spanning a single electrode width or less, which were presented as 

regions of slow conduction instead of complete block. This limitation was not surprising, 

and resulted from the algorithm interpolating across single unknown data points (i.e., a 

single electrode) irrespective of changes in the speed of the wave. In the future, an additional 

method of detecting and visualizing conduction blocks would be complimentary to the 

animation and interpolation algorithms presented in this paper. Importantly, our new 

interpolation method is sensitive to changes in velocity, as are seen at sites of conduction 

block, thereby enabling possible extension of these methods to detect conduction blocks 

using a velocity-threshold technique [24], [25] and/or a curvature-based technique [26].

The algorithms developed in this study were limited to gastric data obtained from 2-

dimensional (2D) electrode arrays with uniform electrode spacing, applied via open surgery 

[5], [6], [23]. Minimally-invasive methods of endoscopic and laparoscopic mapping hold 

great promise as a diagnostic tool for gastric dysrhythmias, but endoscopic mapping 

employs non-uniform, 3D electrode arrays [27], and some laparoscopic approaches also use 

non-uniform arrays [28]. The principles and techniques developed in this study could likely 

be adapted in future for application to non-uniform and 3D electrode arrays, intestinal slow 

wave propagation [29]–[31], and spike propagation [32], [33].

V. CONCLUSION

This study presents improved methods for visualizing and interpolating high-resolution 

gastric electrical mapping data that substantially enhance the presentation, accuracy, and 

interpretation of slow wave propagation. The newly-developed wavefront-orientation 

algorithm enables accurate, computationally-efficient interpolation of unknown data points 

based on physiologically-relevant wavefront propagation. These methods upsample the data 

to a resolution that accords with the realistic electrode size and accurately interpolates 

propagation in the inter-electrode space. Importantly, the methods developed in this study 
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were validated across experimental datasets from healthy and diseased human patients, 

demonstrating vastly improved animations of both normal and dysrhythmic slow wave 

propagation and thereby improving the interpretation of these clinical data. This work now 

offers the potential for translation of these innovative methods to other research fields and 

into clinical application, for example to visualize diagnostic mapping data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Interpolation pipeline to transform original data to smoothed wavefront maps for subsequent 

animation. Maps represent slow wave ATs across the electrode array from earlier (light 

orange) to later (dark red) time points. A) Schematic of electrode grid placed on stomach to 

record slow waves. B) An example of experimental AT data containing missing values 

(white). C) Nine electrodes where the center value is the interpolation target, with 

illustrative ATs overlaid on the neighbors. The interpolation method detects the wavefront-

orientation by identifying the pair of linearly adjacent neighbors (i.e., horizontal, vertical, 

and diagonal pairs) with the minimum difference in ATs. In this example, the left-right 

diagonal pair identified with blue arrows is the linear pair with the closest ATs (4 s, 5 s) and 

determines that the wavefront is approximately left-right diagonally oriented, resulting in a 

mean interpolated value of 4.5 s. D) Fully interpolated AT map of the raw data. E) A single 

step of upsampling. F) 6 iterations of stairstep interpolation produces a comprehensive 

wavefront AT map ready to be converted to animation.
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Fig. 2. 
Validation pipeline of the interpolation using an inverted- interpolation of a slow wave AT 

map. This pipeline produces an accuracy value of the wavefront-orientation interpolation 

method. A) Original un-interpolated experimental data after a single upsampling. B) After 

interpolation, the original data (i.e., A) was removed to leave only the interpolated data 

points shown here. C) The original data sites were then re-interpolated. D) The interpolation 

error was calculated as the absolute value of the difference between the experimental data 

(A) and the re-interpolation of those data (C).
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Fig. 3. 
Normal slow wave propagation - comparison of new wavefront-orientation slow wave 

animation versus previous pixelated GEMS animation of normal slow wave propagation of 

the same slow wave recording. A) Electrode array position. B) Frames from a slow wave 

animation generated by the new wavefront-orientation method. Black dots represent 

electrodes with known, recorded ATs and illuminate yellow on activation according to the 

raw, un-interpolated data. Light gray dots represent electrodes where no ATs were recorded. 

The slow wave is colored blue to represent normal propagation. C) Frames from a previous 

GEMS pixelated animation method of the same slow wave recording as B, where each 

square represents an electrode. See also Supplementary Animation 1.
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Fig. 4. 
Dysrhythmic slow wave propagation - comparison of new wavefront-orientation slow 

wave animations versus previous pixelated GEMS animations of dysrhythmic slow wave 

propagation, including: A) stable ectopic pacemaker resulting in secondary circumferential 

and retrograde propagation, which collides with a dissociated antegrade propagating 

wavefront (see also Supplementary Animation 2); B) unstable ectopic pacemaker resulting 

in circumferential and retrograde propagation, with regions of abnormally high (upper 

portion of mapped area) and low velocity (lower-left portion of mapped area; see also 

Supplementary Animation 3); C) conduction block of normal antegrade wavefront induced 
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by surgical punch-biopsy in the middle of the array, resulting in a breakout ectopic 

pacemaker immediately distal to the block with rapid circumferential propagation (see also 

Supplementary Animation 4). Regions of dysrhythmic slow wave propagation are colored 

red, while regions of normal slow wave propagation are colored blue (color choice is a 

manually-selected parameter). Each example includes: i) Electrode position diagram. ii) 
Frames from a slow wave animation generated by the new wavefront-orientation method. 

Black dots represent electrodes with known, recorded ATs and illuminate yellow on 

activation according to the raw, un-interpolated data. Light gray dots represent electrodes 

where no ATs were recorded. iii) Frames from a previous GEMS pixelated animation 

method for comparison, where each square represents an electrode.
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Fig. 5. 
Re-interpolation error for each successive upsampling step from 2-fold interpolation to 7-

fold interpolation, demonstrating the successive decrease in re-interpolation error 

approaching a plateau at 6-fold interpolation.
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