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Abstract

Subject-specific musculoskeletal models are increasingly used in biomedical applications to 

predict endpoint forces due to muscle activation, matching predicted forces to experimentally 

observed forces at a specific limb configuration. However, it is difficult to precisely measure the 

limb configuration at which these forces are observed. The consequent uncertainty in limb 

configuration might contribute to errors in model predictions. We therefore evaluated how 

uncertainties in limb configuration measurement contributed to errors in force prediction, using 

data from in vivo measurements in the rat hindlimb. We used a data driven approach to estimate 

the uncertainty in estimated limb configuration and then used this configuration uncertainty to 

evaluate the consequent uncertainty in force predictions, using Monte Carlo simulations. We used 

subject-specific models of joint structures (i.e. centers and axes of rotation) in order to estimate 

limb configurations for each animal. The standard deviation of the distribution of predicted force 

directions resulting from configuration uncertainty was small, ranging between 0.27 and 3.05 

degrees across muscles. For most muscles, this standard deviation was considerably smaller than 

the error between observed and predicted forces (between 0.57 and 70.96 degrees), suggesting that 

uncertainty in limb configuration could not explain inaccuracies in model predictions. Instead, our 

results suggest that inaccuracies in muscle model parameters, most likely in parameters specifying 

muscle moment arms, are the main source of prediction errors by musculoskeletal models in the 

rat hindlimb.
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I. INTRODUCTION

Musculoskeletal models have provided important insights into the mechanics and control of 

movement, and are important for biomedical interventions to restore limb function. A 

complete musculoskeletal model requires measuring both properties of muscles and of the 

skeletal system. Muscle models are often created by measuring a number of properties of 

muscle and tendon function, such as sarcomere length, physiological cross sectional area, 

tendon slack length, or muscle moment arms, then using those measurements to specify the 

parameters of a canonical model of muscle force production [1–6, 7 ]. These properties are 

often obtained from cadavers or fixed tissue. However, to predict and interpret the action of 

muscles it is necessary to estimate the configuration of the limb. The limb configuration 

determines the non-linear transformations between the measured muscle properties and the 

production of muscle forces, joint torques, and limb movement; any small errors in the 

estimated limb configuration might result in large errors in predicted motor output [8].

The configuration of a limb consists of joint angles, the position and orientation of a 

reference coordinate frame usually fixed to the pelvis, and bone lengths. Measuring limb 

configuration in three dimensions is challenging, since these values have to be measured in 
vivo. In most biomechanical applications limb configuration is estimated indirectly, by 

measuring positions of bony landmarks (either after exposing the bone by dissection or from 

medical images), or by tracking external markers placed on skin with a motion capture 

system. Such indirect measurements could introduce errors in estimating limb configuration 

[9]. Here we investigate the significance of such errors in determining the actions of the 

musculoskeletal system.

As a motivating example, consider our previous work in which we developed a novel in vivo 
approach to evaluate a musculoskeletal model of the rat hindlimb [10]. We stimulated 

individual muscles and measured the evoked forces across the skeleton. We compared the 

model predictions to the observed forces and then used optimization to update model 

parameters (muscle origins and insertions, optimal fiber length, maximum force) to produce 

accurate force predictions. The resulting musculoskeletal model was valid by design, 

capturing the actual in vivo action of muscles.

However, in those experiments we estimated limb configuration from rough measurements 

of hip position, force transducer attachment location on the tibia, and segment lengths. We 

also used a subject-independent template for joint axes and centers of rotation at the hip and 

knee. These rough measurements and subject-independent assumptions could lead to 

uncertainties in the estimate of limb configuration and therefore inaccuracies in the forces 

predicted by the model [11]. Previous studies modelling muscles in the human thumb have 

shown that such incorrect estimates in limb configuration could be a significant source of 

musculoskeletal model force prediction errors [12–14]. In general, such errors in limb 

configuration will affect any musculoskeletal model evaluation comparing predicted and 
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observed forces. These errors might be especially significant for human digits and rat limbs, 

given their small sizes. The consequence of these errors might also depend on the specific 

structure of the limb being studied, having a larger consequence in limbs with complex joint 

structures.

We examined these issues in the current study, evaluating whether uncertainty in estimating 

limb configuration could explain model prediction errors for the rat hindlimb. In contrast to 

the previous work in modelling of human thumb muscles, we find that uncertainty in 

predicted forces due to uncertainty in limb configuration estimates was small relative to the 

model prediction errors, suggesting that muscle model parameters, most likely muscle 

moment arms, were likely to be the main source of error.

II. METHODS

A. Experimental Force and Kinematic Data Collection

The preparation and experimental procedures were similar to those described previously [10, 

15, 16]. Briefly, rats were anesthetized (ketamine/xylazine 80/20mg/kg) and hindlimb 

muscles were implanted with electrodes (stainless steel or silver wire) with an exposure size 

of 1-2mm. We generally implanted between 8 and 10 muscles, although we only report here 

those muscles that produced reliable forces. Muscles included vastus medialis (VM), vastus 

lateralis (VL), rectus femoris (RF), biceps femoris anterior (BFa), biceps femoris posterior 

(BFp), gracilis anterior (GA), gracilis posterior (GP), semimembranosus (SM), 

semitendinosus posterior (STp), adductor magnus (AM), and iliopsoas (IP). A common 

return electrode (~2 by 1cm brass plate) was placed under the skin on the back. Orthopedic 

pins were screwed and cemented into the pelvis both contralaterally and ipsilaterally to the 

implanted hindlimb. Bone screws were placed in the ipsilateral tibia at the ankle on the 

medial surface and a threaded attachment cemented to the screws. The animal was placed on 

a platform that supported its torso and forelimbs but that allowed its hindlimb to hang freely 

(Figure 1). The pins in the pelvis were attached to magnetic stands in order to mechanically 

secure the pelvis. The attachment on the medial surface of the ankle was secured to a 6 axis 

force transducer (ATI Mini-40). The force transducer was mounted on a series of 

translatable stages allowing the limb to be positioned throughout its workspace. We released 

the rotational degree of freedom around the mediolateral axis connecting the force 

transducer to the leg to avoid over-constraining force measurements [17]. We measured 

evoked forces at several configurations (6–10) for each muscle. Biphasic constant current 

stimulation trains (50–75Hz, 0.1ms pulses, 0.5-1s train duration) were applied through 

implanted electrodes using a programmable stimulator (FNS-16, CWE) controlled by 

custom software in Matlab. With the limb held fixed at each position, we collected 

recruitment curves for each muscle, varying the stimulation current magnitude and 

measuring the evoked force. Recruitment curves were inspected to identify stimulation 

levels at which the direction or magnitude of evoked force changed, indicating spread of 

current to adjacent muscles. Stimulation levels that produced the largest force but that were 

below this spillover level were included in subsequent analyses.

At the end of data collection, the animal was killed by pentobarbital overdose and the 

muscles overlying the implanted skeleton were dissected away. Bony landmarks on the 
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skeleton were identified and cleared of tissue (4 on the pelvis, 5 on the femur, 4 on the tibia, 

see Figure 3A). We used a pointer with several retroreflective markers attached to it to 

identify each landmark. The tip of the pointer was then placed on each bony landmark and 

the 3D positions of the attached retroreflective markers recorded using a motion tracking 

system (Vicon, T20 cameras). The location of the tip, and therefore of the bony landmark, 

was found based on the known relationship between the markers and the tip position. We 

also measured the attachment point of the force transducer on the tibia. This process was 

repeated for each limb configuration at which forces were measured. Retroreflective markers 

were also attached to the force transducer and tracked as the transducer was moved along 

each of its axes, in order to register the reference frame of the force transducer to that of the 

bony landmark measurements.

B. Rat Hindlimb Musculoskeletal Model Template

Musculoskeletal mechanics were modeled and simulated using the strand framework [18]. A 

strand is a modeling primitive that represents a thin 3D solid, with mass, elasticity, and other 

constitutive properties. Each muscle was modeled as a strand; the skeleton was modeled as 

rigid bodies connected by idealized joints. Although the strand framework can capture 

aspects of musculoskeletal function such as muscle interactions or contact stresses [18], in 

this paper we only consider aggregate actions of muscle actions across the skeleton and so 

our results are not specific to this strand formalism.

We first created a musculoskeletal model template of the rat hindlimb (see Figure 2, 

adapting a previously published model [4], [20]). The hip was modeled as a three degree of 

freedom (dof) ball and socket joint and the knee was modeled as a universal joint with two 

dofs in flexion/extension and external/internal rotation (Figure 2A). Three dimensional 

models of the bones of the rat hindlimb were created from micro-CT scans of individual 

bones from an animal not included in this study. The bony landmarks measured 

experimentally, as described above, were identified on each bone model. All joint structure 

parameters (centers of rotation, axes of rotation) were expressed relative to these bony 

landmarks. Muscle origins and insertions as well as sliding constraint sites were also defined 

relative to the bone segments, using the data reported in [4] and reported in OpenSim [19]. 

Each musculotendon path was estimated as a B-spline curve that attached at the origin and 

insertion and passed through the constraint sites to define muscle wrapping and prevent 

penetration of muscle paths into bones (Figure 2B). For the quadriceps muscles we 

simulated a common patellar tendon constrained to slide on top of the knee surface in the 

patellar groove. Maximum muscle isometric forces were taken from the Johnson model [20].

C. Registering Model Template to Experimental Data

In order to predict muscle forces, we first performed a subject-specific registration between 

the model template and each experimental animal using a two-step iterative optimization 

[11, 21]. In the first step, joint structural parameters (centers and axes of rotation) describing 

hip and knee joint structures were held constant and the model limb configuration was 

matched to each experimental limb configuration, finding the joint coordinates (joint angles) 

that minimize the residual squared error between modelled and measured bony landmark 

locations:
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f 1(J, Pi, Xi) = min
Xi

(Pi − p′(J, Xi))
T(Pi − p′(J, Xi)),

where Xi are the generalized coordinates describing the limb configuration for posture i, 
including a scaling constant to capture differences in animal size; J is the set of current joint 

structural parameters, treated as constants in this step; Pi is the vector of measured bony 

landmark locations for posture i; p′ are the corresponding bony landmark positions 

predicted by the model. These predicted positions p′ are a function of both the joint 

structural parameters J and the generalized limb configuration coordinates Xi.

In the second step, the limb coordinates Xi found for each limb configuration in the first step 

are held constant and the joint structural parameters are updated to minimize the residual 

error summed across all configurations:

f 2(J) = min
J

∑
i = 1

n f
f 1(J, Pi, Xi),

where nf is the number of postures. We used Matlab (fmincon) to find parameters in each 

step, iterating between these steps until the optimization converged on a set of joint 

coordinates for each limb configuration and a set of joint structural parameters for that 

animal. To improve convergence and avoid local minima, initial joint coordinates in the first 

iteration of step 1 were estimated using an ad hoc hierarchical registration process, first 

registering the landmarks on each bone independently then estimating joint coordinates in a 

proximal-distal sequence. Initial joint structural parameters for the first iteration were taken 

from the model template.

We compared the registration accuracy when using the subject-specific joint models to the 

registration accuracy when using the joint structural parameters in the model template. 

Registration accuracy for the model template joint structure was calculated as the residual 

error obtained after step 1 on the first iteration of the optimization described above; i.e. 

finding the joint coordinates that best matched the model template to the measured 

landmarks. Registration accuracy for subject-specific joint models was calculated as the 

residual error upon convergence of the optimization. To control for overfitting of the model, 

we calculated the generalization error using a leave-one-out cross-validation, using N-1 limb 

configurations to identify the joint structure model then evaluating accuracy on the Nth 

configuration.

The registrations described above will be affected by the particular types of joint structures 

(ball joint for the hip, universal joint for the knee) used in the model, potentially limiting the 

range of limb configurations that can be matched. To evaluate how much these assumed joint 

structures affected registration accuracy, we also found the registration accuracy when no 

joints were used, simply translating, rotating, and scaling each bone segment in the model 

independently in order to best match measured landmark locations.

Wei et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D. Model Prediction of Endpoint Force

After performing the subject-specific registration described above, the muscle attachments, 

constraint points, and muscle paths were updated according to the registered bone locations 

for each limb configuration. We then predicted the forces that would be measured by the 

force transducer when each muscle was activated. The force transducer attachment was 

simulated as a 1dof joint allowing rotation around the mediolateral axis, as was used in the 

experiments. Although this rotation was permitted, no rotation was actually observed in the 

model since the limb degrees of freedom were matched to those of the force transducer [17]. 

Muscles were maximally activated one at a time and the predicted force at the transducer 

was recorded for each limb configuration.

E. Contribution of Kinematic Measurement Errors to Model Predictions

We evaluated the contribution of uncertainty in estimation of limb configuration to the 

muscle force predictions. We performed a data driven, Monte Carlo sensitivity analysis [12, 

22–28]. To estimate the uncertainty in the limb configuration, we first estimated the 

uncertainty in measuring bony landmarks. For each animal, we estimated the distribution in 

measured landmarks on the pelvis. Because the pelvis was fixed for each limb configuration, 

the distribution of these markers measured repeatedly reflects the variability in 

experimenters’ ability to identify and measure each landmark. We then used this distribution 

to perturb the measured bony landmark positions. Perturbations of the 3D location of each 

landmark were generated from an anisotropic multivariate normal distribution with standard 

deviations calculated from the distribution of repeated pelvis landmark measurements. These 

perturbed locations were then used to perform the subject-specific registration and 

prediction of muscle forces, as described above. This process was repeated 500 times for 

each model prediction, resulting in a distribution of predicted forces due to variability in 

measurement of bony landmarks.

III. RESULTS

A. Subject-specific Registration of Skeletal Landmarks

Figure 3A shows an example of the subject-specific registration found for one animal at a 

single limb configuration. Both joint structures (centers and axes of rotation) and limb 

coordinates (joint angles) for this animal were identified using the iterated two-step 

optimization described above. As seen in the figure, the registration was generally very 

good, with good correspondence between the model landmark locations (red) and measured 

landmark locations (green). The registration error for this configuration, averaged across all 

landmarks, was 0.76±0.42mm. Figure 3B shows the registration errors averaged across all 

configurations and all animals. The subject-specific registration error was 0.75±0.14mm, 

averaged across all markers. These are cross-validated errors, obtained from finding the joint 

structural parameters from N-1 configurations then evaluating the registration on the 

remaining configuration. The template constraint bar in the figure shows the registration 

error from aligning the bony landmarks while using the generic joint structural model 

parameters obtained from the model template, showing that there was a substantial 

improvement in registration accuracy using the subject-specific registration. The no 

constraint bar shows the registration error from registering the markers on each bone 
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independently, without restricting relative bone movement by joint constraints. The 

registration error in this case was only slightly lower than that observed with the subject-

specific registration. These results indicate that we were able to register bony landmarks 

with reasonably good accuracy, although there were residual errors that might limit the 

accuracy of estimated limb configurations.

B. Comparing Model Force Predictions to Experimental Forces

Figure 4A shows an example of the forces evoked from stimulation of iliopsoas (IP) at limb 

configurations throughout the hindlimb workspace. The black arrow at each configuration 

shows the forces observed experimentally, measured at the distal tibia. The shaded skeleton 

at each position shows the joint configuration estimated from subject-specific registration of 

bony landmarks, as described in the previous section. Stimulation of IP produced forces that 

drove the limb forward, consistent with the hip flexion action of IP. The green arrow at each 

position shows the force predicted from activating IP in the musculoskeletal model at the 

same limb configuration. We were primarily interested in the direction of muscle action in 

this study and so both experimental and predicted forces were normalized to be unit 

magnitude. Across the workspace, the predicted force for IP was very close to the 

experimentally observed force, suggesting that the musculoskeletal model was accurate for 

this muscle.

Figure 5 shows an example of the forces evoked from stimulation of semitendinosus (ST). 

ST produced a force directed dorsally and caudally, broadly consistent with the knee 

flexion/hip extension action of this muscle. Although the model predicted forces in a 

generally similar direction to those observed experimentally, there were substantial 

discrepancies between the forces observed experimentally and predicted.

We quantified the difference between predicted and experimental forces as the 3D angle 

between force vectors. For the example of IP illustrated in Figure 4, the 3D angle averaged 

across limb configurations was 4.91±2.32 degrees; for the example of ST in Figure 5, the 

difference was 24.17±6.86 degrees. Figure 6 summarizes the 3D angles observed across all 

configurations and across all animals. Muscles differed considerably in how well the model 

predicted the experimentally observed forces, with average 3D angles ranging from 4.94 

degrees for IP to 45.15 degrees for RF.

C. Contribution of Kinematic Measurement Uncertainty to Force Production Errors

Any errors in the measurement of bony landmarks will contribute to the errors in model 

force prediction seen in Figures 4–6. Although the registration errors found in Figure 3 were 

small, they might have a large effect on force prediction errors because of the nonlinear 

transformations involved in predicting model forces and the small size of the rat hindlimb. If 

this effect were large enough, the model prediction errors shown in Figures 6 might not 

imply that the underlying musculoskeletal model was inaccurate but might simply reflect 

uncertainties in measuring the limb configuration.

To evaluate this issue, we performed a Monte Carlo analysis, evaluating how errors in the 

measurement of bony landmarks affected predicted forces. We first estimated the accuracy in 

measuring bony landmarks. Because the pelvis was always in the same position across limb 
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configurations, we used the distribution of measured pelvis landmarks as an estimate of our 

ability to measure landmarks consistently. The standard deviations of this distribution was 

0.62±0.74mm (along x-axis), 0.83±0.79mm (along y-axis), and 0.63±0.76mm (along z-

axis), averaged across animals. For each animal, we used its estimated distribution to add 

noise to the measured bony landmarks and repeated the subject-specific registration to the 

model landmarks, as described above. This process was repeated 500 times for each 

configuration. Figure 7A shows an example of the distribution of joint angles for each 

degree of freedom, taken from a single limb configuration in one animal. Figure 7B shows 

the standard deviations for each degree of freedom averaged across configurations and 

animals. Uncertainty in bony landmark measurements resulted in surprisingly narrow 

distributions of joint angles, with standard deviations ranging between approximately 1 

degrees and 3 degrees (0.96, 2.04, 1.94, 0.98, 2.07 for each degree of freedom).

We then examined how this uncertainty in limb configuration affected predicted forces. 

Figure 8 shows the distribution of predicted forces given the range of estimated joint 

configurations shown in Figure 7B, showing that uncertainty in limb configuration caused a 

modest spread in the predicted forces.

Figure 9 summarizes these results across configurations and animals, showing the average 

standard deviation of the distribution of 3D angles for each muscle. Uncertainty in limb 

configuration produced an uncertainty in predicted force direction between 0.5 and 3 

degrees. For most muscles, this range of predicted forces was not large enough to explain the 

discrepancy between predicted and experimentally observed forces shown in Figure 6. Of 

the muscles examined here, only IP had constant prediction errors that were smaller than 

could be explained by uncertainty in limb configuration.

In one animal, we evaluated what magnitude of configuration uncertainty would have been 

necessary to produce the observed force prediction errors shown in Figure 6. We found that 

a configuration uncertainty of 10mm standard deviation produced force prediction errors 

similar to those observed experimentally, ranging between 19 and 32 degrees. This level of 

configuration uncertainty was more than 10 times as large as the configuration uncertainty 

measured in these experiments, further suggesting that uncertainty in configuration estimates 

was unlikely to explain the force prediction errors observed here.

IV. DISCUSSION

The main result of the present study is that uncertainty in estimation of limb configuration 

explains only a small portion of the errors in model force prediction. This result suggests 

that errors in model force prediction likely reflect inaccurate musculoskeletal model 

parameters. We also showed that subject-specific registration of limb configuration and joint 

structural models substantially improved registration accuracy as compared to using generic, 

subject-independent joint structures.

The minimal effect of uncertainty in estimation of limb configuration was unexpected. We 

had expected that, given the small size of the rat hindlimb and difficulties in identifying 

often imprecise bony landmarks on the skeleton, this uncertainty would be able to explain a 
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significant portion of the force prediction error. This expectation was also supported by 

previous research in modelling of human digit muscles, which suggested that errors in 

estimating thumb configuration were a major source of modelling inaccuracies [12, 13, 29]. 

That work showed that the force direction produced by a muscle in cadavers could be 

matched to the force predicted by a model if the thumb configuration differed from the 

configuration measured during the experiment [10]. The kinematics of the thumb are quite 

complex and so might be especially sensitive to configuration uncertainty as compared to 

other systems with simpler kinematics [30]. While the rat knee joint might be considered 

simpler that the human thumb, the limb properties that make a limb more or less sensitive to 

configuration errors are not obvious a priori and so the type of analyses performed in this 

study are necessary. In those experiments, however, only the position of the tip of the thumb 

was restrained and so joint angles could change substantially when a muscle was pulled; i.e. 

there was motion of unconstrained internal degrees of freedom. In the present study, the rat 

hindlimb was secured such that all degrees of freedom were fixed, and so changes in joint 

angles were limited to the compliance of the joints and force transducer. The current study 

therefore considered the uncertainty in limb configuration due to inaccurate bony landmark 

measurements rather than uncertainty due to internal motion of the limb. The present study 

shows that such errors in bony landmark measurements are insufficient to explain errors in 

model predictions for most muscles.

Instead, this study suggests that force prediction errors most likely reflect errors in the 

parameters of the musculoskeletal model. The most likely source of errors in force 

predictions observed in these experiments is inaccuracies in moment arms specified by 

muscle geometry (muscle origins, insertions and path). These errors might be especially 

important for muscles with complex curved paths or broad skeletal attachments. This is 

consistent with observation from previous studies which have showed that simplifying 

muscle geometries could significantly affect accuracy of the model prediction [8, 10]. Note 

that we focused on evaluating the prediction of force direction by the model, ignoring any 

differences in the magnitude of the forces between the observed and predicted forces. This 

focus was primarily due to the difficulty of evoking complete activation of muscles with the 

intramuscular electrodes used here; as a consequence it is difficult to make meaningful 

comparison between observed and predicted magnitudes. Internal muscle parameters 

affecting force magnitude, such as maximal force, tendon force length, or optimal muscle 

length would therefore not contribute to the errors evaluated here, although they might 

contribute more generally to muscle model prediction errors.

We have previously shown that optimizing model insertions and origins improved muscle 

force predictions so that they matched observed forces very accurately [10]. Those 

optimizations identified muscle anatomical parameters that were robust to local minima, 

consistent across animals, and physiologically realistic, suggesting that the isometric force 

measurements used in these experiments strongly constrain muscle model parameters. This 

approach has also been used to improve muscle moment arms for the thumb [14, 29]. 

Although we did not perform the same optimizations here, for many muscles the difference 

between measured and predicted forces appeared to be explicable by small alterations in 

muscle origins or insertions. For example, inspection of Figure 5 suggests that shifting the 

insertion of ST to lie closer to the knee would improve the accuracy of the model prediction. 
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Similar observations could be made for several other muscles examined in this study. For 

other muscles it might be necessary to introduce additional complexity in the model 

structures in order to match observed muscle actions, such as adding muscle via points or 

multiple compartments. Taken together, these observations suggest that the optimization 

approach we have used previously might be able to substantially increase the accuracy of 

muscle model predictions. Alternatively, more accurate measurement or modelling of 

muscle paths and skeletal attachments might improve model predictions [31].

Another aspect of musculoskeletal models that could affect the accuracy of force predictions 

is the description of joint structures, such as joint axes and joint centers. In this study, we 

used the method described by Reinbolt et al. to identify joint axes and centers for each 

animal. We found that this subject-specific identification substantially improved cross-

validated registration accuracy as compared to using a generic, subject-independent model 

of joint structures. We also found that the registration accuracy using subject-specific joint 

structures was only minimally worse than the accuracy from registering each bone 

independently with no joint constraints at all. This observation suggests that the joint 

structures used here (ball joint at the hip, orthogonal axes at the knee) capture the kinematics 

of the rat hindlimb very well. The good registration accuracy with orthogonal knee axes is in 

contrast to other work at the human thumb, which suggested that assuming orthogonal axes 

at the thumb resulted in substantial prediction errors [12].

The validity of orthogonal axes at the rat knee is consistent with our previous work showing 

accurate force predictions using orthogonal axes [10]. Further, in this study we observed 

errors for muscles acting only at the hip (e.g. BFa and AM); in those cases, it is clear that 

prediction errors are not due to the assumption of orthogonal knee axes. Nonetheless, it is 

possible that more detailed knee joint modelling consisting of different ‘topologies’ (e.g. 

capturing non-orthogonal and non-intersecting axes or moving centers of rotation) would 

reduce prediction errors further.

V. CONCLUSION

In this study, we evaluated how uncertainties in limb configuration measurement contributed 

to errors in force prediction, using data from in vivo measurements in the rat hindlimb. The 

results shown here illustrate the utility of in vivo measurements to evaluate the validity of 

musculoskeletal models. By directly measuring the action of muscles and of the uncertainty 

in limb configuration estimates, our results show that inaccuracies in estimating limb 

configuration make only small contributions to the inaccuracy of force predictions in the rat 

hindlimb. Future work will focus on refining model parameters specifying muscle moment 

arms in order to improve model predictions.

This work also emphasizes the need for similar Monte Carlo analyses when evaluating 

musculoskeletal models in other systems. There are many aspects of model development and 

specification that might contribute to model prediction errors. Evaluating their relative 

contributions, however, is difficult because of the specific structure of each limb and the 

complex nonlinear transformations between experimental measurements of model 

parameters and model predictions. By determining the major contributors to prediction error, 

Wei et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analyses such as those used in this study help guide experiments to more efficiently improve 

the accuracy of musculoskeletal models, whether considering limbs in rats or humans.
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Figure 1. 
Schematic illustrating the experimental setup for measurement of forces evoked from 

stimulation of individual muscles in the rat hindlimb. Orthopedic pins were placed in the 

pelvis and clamped to immobilize the pelvis. A force transducer was attached to the distal 

tibia and could be positioned across the hindlimb workspace. Individual muscles were 

stimulated through intramuscular electrodes with the limb held at a single limb configuration 

and the evoked isometric force at the tibia was measured by the force transducer.
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Figure 2. 
The musculoskeletal model of the rat hindlimb evaluated in this study. (A) shows the surface 

meshes of the pelvis, femur, and tibia along with the joint axes and centers of rotation for the 

generic, subject-independent model. The hip was modelled as a 3dof ball and socket joint. 

The knee was modelled as 2dof universal joint with orthogonal axes. (B) shows the muscle 

(red) and tendon (yellow) strands included in the model.
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Figure 3. 
Subject-specific registration of bony landmarks in the rat hindlimb. (A) shows an example 

for one animal at one configuration, showing the registration between measured landmarks 

(red) and landmarks on the model’s skeletal surface (green). (B) summarizes the registration 

accuracy across animals. The bars show the registration error with no joint constraints, the 

error using the subject-independent joint centers and axes from the model template, and the 

error using the subject-specific joint centers and axes. The subject-specific error was 

obtained through cross-validation, fitting the joint model parameters at N-1 configurations 

and evaluating the error for the remaining configuration, then repeating for all N 

configurations.
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Figure 4. 
An example of measured and predicted muscle forces across different limb configurations. 

Each plot shows the measured force (black) and predicted force (green) at one limb 

configuration after stimulating IP. The red line indicates the muscle path for this muscle 

from the musculoskeletal model. The configuration of the skeleton illustrated in the figure 

was obtained from subject-specific registration of landmarks, such as illustrated in Figure 

3A.
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Figure 5. 
Another example of measured and predicted muscle forces. In this case, ST was stimulated. 

Conventions are the same as in Figure 4. The model for ST had larger prediction errors as 

compared to IP shown in Figure 4.
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Figure 6. 
Summary of prediction errors across all muscles. Each bar shows the 3D angle between 

predicted and observed forces, averaged across all configurations and animals. Prediction 

errors varied considerably across muscles, with some muscles with very low prediction 

errors (IP), other muscles with moderate errors (VL, BFp, STp, GP, GA, VM) and others 

with more substantial errors (SM, BFa, RF, AM).

Wei et al. Page 18

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Uncertainty in joint configuration as a result of uncertainty in bony landmark measurement. 

The plots show the result of 500 Monte Carlo simulations obtained from registration of 

model bony landmarks and measured landmarks with variability added as expected by 

measurement error. (A) shows the results for one limb configuration in one animal. The 

insets in each figure illustrate the degree of freedom corresponding to each joint angle 

distribution. (B) shows the standard deviation of the joint angles for each degree of freedom, 

averaged across animals. In general, the uncertainty in joint configuration was low for all 

degrees of freedom.
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Figure 8. 
An example of the consequences of the limb configuration uncertainty illustrated in Figure 

7A on the uncertainty in force predictions for IP (A) and ST (B). Black arrows show the 

measured force vectors; green arrows show the forces predicted for the set of limb 

configurations obtained from landmark uncertainty, as illustrated in Figure 7A. This 

simulation was repeated for each position of the hindlimb in the workspace. The inset shows 

the set of predicted forces for one hindlimb position at a higher magnification, in order to 

illustrate the range of predicted forces. The left plot shows the forces in the sagittal plane, 

viewing the hindlimb from the side; the right plot shows the forces in the horizontal plane, 

viewing the hindlimb from above.
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Figure 9. 
The standard deviation of the distribution of predicted forces due to uncertainty in estimating 

limb configuration. Each bar shows the standard deviation of the distribution of predicted 

force vectors, as illustrated in Figure 8, averaged across limb positions and animals.
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