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Latency management in scribble-based interactive
segmentation of medical images
Houssem-Eddine Gueziri, Michael J. McGuffin and Catherine Laporte

Abstract—Objective: During an interactive image segmentation
task, the outcome is strongly influenced by human factors. In
particular, a reduction in computation time does not guarantee
an improvement in the overall segmentation time. This paper
characterizes user efficiency during scribble-based interactive
segmentation as a function of computation time.

Methods: We report a controlled experiment with users who
experienced 8 different levels of simulated latency (ranging from
100 to 2000 milliseconds) with two techniques for refreshing
visual feedback (either automatic, where the segmentation was
recomputed and displayed continuously during label drawing,
or user-initiated, which was only computed and displayed each
time the user hits a defined button).

Results: For short latencies, the user’s attention is focused
on the automatic visual feedback, slowing down his/her labelling
performance. This effect is attenuated as the latency grows larger,
and the two refresh techniques yield similar user performance
at the largest latencies. Moreover, during the segmentation task,
participants spent in average 72.67% ± 2.42% for automatic
refresh and 96.23% ± 0.06% for user-initiated refresh of the
overall segmentation time interpreting the results.

Conclusion: The latency is perceived differently according to
the refresh method used during the segmentation task. Therefore,
it is possible to reduce its impact on the user performance.

Significance: This is the first time a study investigates the
effects of latency in an interactive segmentation task. The analysis
and recommendations provided in this paper help understanding
the cognitive mechanisms in interactive image segmentation.

I. INTRODUCTION

IMAGE segmentation consists in extracting one or several
objects of interest from a given image. The gold standard

for performing segmentation is to manually delineate the ob-
ject boundary. This is tedious, time consuming and subject to
large inter-operator variability [23]. On the other hand, fully-
automated methods provide fast and repeatable segmentation
results, but are prone to failures, limiting their application in
complex scenarios. A third approach is to interactively assist
the user during the segmentation to reduce the user’s workload
and reduce variability in the results, while allowing the user to
supervise the segmentation. The success of such approaches
relies on: (i) the robustness of the algorithm to estimate the
object boundary given the user inputs, and (ii) the ability of
the user interaction mechanism (UIM) to interpret the user’s
intention efficiently. While the first criterion represents the
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Fig. 1: Scribble-based segmentation example: (a) the original
image; (b-d) the user-drawn foreground (red) and background
(green) labels yielding the computed segmentation (yellow).

computational efficiency of the algorithm, limitations in the
second criterion are know as the gulf of execution [28] and
represents the gap between the user’s goal and what the system
allows him/her to do.

Previous evaluations of interactive segmentation have fo-
cused on algorithmic runtime, with few studies of human
factors. One preliminary study [10] found that improvements
in computational performance did not yield a commensurate
improvement in overall segmentation performance, i.e, the
total time including user actions. Although computation time
was improved by a factor ∼10 (from 1.23 s to 0.13 s), overall
segmentation time was only improved by a factor ∼ 2 (from
25.25 s to 17.08 s). Still, the approaches tested led to similar
accuracy. These results point to the importance of assessing
the user’s role in interactive segmentation processes [30, 20].
In turn, the impact of the user depends on his/her degree of
involvement required by the UIM during the segmentation
task. The goal of this paper is to provide insight into the
factors that affect the user’s performance during an interactive
segmentation task.

However, UIMs vary significantly from one method to the
next. For example, in contour-based segmentation [24, 5, 6],
the UIM focuses the user’s actions on tracing the boundary
of the object, while in region-based segmentation [1, 40, 27],
the user’s actions are mostly focused on identifying the inside
of the object. This difference in the UIM does not necessarily
induce a difference in the quality of the final segmentation
result. Depending on the application, a given UIM can be
more suitable than another. Moreover, different UIMs can be
combined into a single segmentation framework [11, 36, 40].
Nevertheless, we can expect that approaches sharing similar
UIMs lead to consistent and comparable reactions on part
of the user. In this paper, we study the user’s performance
in scribble-based segmentation (Fig. 1), a popular paradigm
for interactive image segmentation. This paradigm has been
successfully used within many segmentation algorithms and
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applications [1, 9, 32, 34, 12]. In scribble-based segmentation,
the user drags the mouse using one of two buttons to “paint”
either foreground or background labels on pixels. In response,
the system recomputes and displays the segmentation.

The motivation behind studying the scribble-based UIM is
two-fold. First, it has shown promising results for a large
number of interactive segmentation approaches, e.g., with
graph-cuts [1] and random walker [9] algorithms. Second,
the scribble-based paradigm allows a variety of valid seg-
mentation inputs, which may have significant impacts on the
user’s behaviour depending on the shape, the position and
the order in which the labels are drawn. In the context of
scribble-based segmentation failure caused by a noisy/missing
boundaries, e.g., often occurring in ultrasound images, the
user’s actions to correct the segmentation involve drawing
additional foreground, background or both labels, whereas
such difficulties would be addressed by manually tracing the
boundary in a contour-based paradigm. In contrast to contour-
based segmentation approaches that preserve the intuitive char-
acter of manual segmentation by focusing the user’s attention
on the object boundary, e.g., in live wire segmentation [24],
the scribble-based paradigm is more permissive, focusing the
user’s attention on the object foreground and background
regions. Therefore, when the user observes the updated results
during the segmentation task, he/she may adapt the drawings
differently, leading to very diverse scenarios. In other words,
the conditions under which the user receives visual feedback
strongly influence the scribble-based segmentation process.

There are multiple aspects that govern user behaviour during
an interactive task. Focusing on the usefulness of the system,
Nielsen [26, p. 26] proposed a model that identifies five
attributes of usability in a user-centered system design: 1) is
easy to learn, 2) is efficient to use, 3) is easy to remember, 4)
produces low error rate and 5) is subjectively pleasing. Each
attribute reflects a dimension of the user behaviour. However,
when designing such systems, it is common to determine
which attributes are key components to prioritize [15]. In
this study, we are interested in segmentation efficiency. In
particular, we report an experiment that manipulates the delay
induced by computation time, i.e., the time elapsed between
the drawings provided by the user and the response provided
by the segmentation algorithm. This delay, referred to as the
feedback latency, characterizes the computational efficiency
of a segmentation method. Feedback latency is unavoidable in
interactive applications and often has significant repercussions
on the user’s performance [22]. Previous work outside the
context of image segmentation has studied the effect of latency
in virtual reality [39], exploratory visual analysis [16] or touch-
based interactive systems [4]. However, in an interactive image
segmentation task, the effects of latency are unknown. For
example, to what extent does the feedback latency decrease
the user performance during a segmentation task? Is there a
UIM design that reduces the effect of this latency on the user
performance? What is the recommended latency, if it exists,
below which the user interaction is no longer affected?

To address these questions, we experimentally investigated
the effects of the visual feedback latency and timing on the
user’s performance by slightly modifying the condition under

which the user receives this feedback during a scribble-based
segmentation task. Specifically, two techniques for refreshing
visual feedback under different levels of latencies, from 100 ms
to 2 s are tested. The first technique is an automatic refresh
method in which the user is continuously shown segmentation
results as soon as they are made available, during label
drawing. In the second technique, the user manually initiates
the segmentation each time he/she wants to visualize the re-
sults. Segmentation time, accuracy and drawing measurements
are recorded during the segmentation. Our contributions are
summarized in the following findings:

• Most of the segmentation time is allocated to the user’s
cognitive activity, i.e., assessing the segmentation result,
thinking about where to draw next labels, etc.;

• The user-initiated refresh method reduces the effects of
the latency on the user’s performance;

• The user’s drawing activity is sensitive to latency when
the automatic refresh method is used. The effect decreases
non-linearly as latency increases;

• No effect of latency was observed on other user perfor-
mance measures such as the number of pixels labelled,
mouse clicks, undo actions, updates requested, or stroke
continuity;

• Around ∼2 s latency, user performance seems to converge
towards similar behaviours for both refresh methods.

II. BACKGROUND

A. Latency in interactive applications

The 2 s response time threshold suggested in the literature
for efficient user-computer communication [22] is subject to
change according to the nature of the task. The human visual
system is highly efficient for cognitive tasks. It has been
reported that the visual system can distinguish comprehensive
content in images displayed for 13 ms [31]. However, even if
the user is able to understand the visual content, the complexity
of the mechanism involved during human interaction delays
his/her reaction by 100 ms to 200 ms [18, p. 117–118]. More-
over, according to Miller [22], human activities are naturally
organized into groups of actions, named closures, that are
determined by the achievement of subjective purposes. The
user is more sensitive to a latency occurring within the same
group of actions, hereafter referred to as the within-activity
latency, than to a latency occurring between two groups of
actions, referred to as between-activity latency.

In the context of scribble-based segmentation, we typically
identify two groups of activities1 [30]: (1) The query actions,
in which the user provides the inputs. This is represented by
dragging the mouse to draw labels. (2) The feedback actions,
which consist in the cognitive activity, where the user receives
and interprets the results. Depending on when the latency
occurs in the segmentation process, it may affect the user
differently. In this paper, we designed two refresh methods
that represent the two types of latency. In the first scenario
(exemplified by the automatic refresh), the segmentation up-
dates are automatically displayed on the screen as soon as

1 Note that this applies to interactive segmentation in general. However,
for concreteness, we restrict our definition to scribble-based segmentation.
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they are available, i.e., while the user is still drawing. The
query and the feedback actions are confounded, leading to
the occurrence of within-activity latencies during the seg-
mentation task. This type of mechanism can be found in
medical platforms, such as 3D Slicer [7], in which during
the segmentation one can check an “Auto-Update” button to
activate the automatic refresh of the segmentation results while
drawing labels. In the second scenario (exemplified by the
user-initiated refresh), the segmentation updates are controlled
by the user, dissociating the query and the feedback into
two distinct groups corresponding to different actions. Hence,
the delay caused by the computations is considered to be a
between-activity latency.

The representation of the within- and between-activity la-
tencies is not limited to the proposed automatic and user-
initiated refresh methods. The aim of our study is to assess how
these types of latencies can influence the user performance
during a scribble-based segmentation task. Different UIMs
with different input/output devices can be designed to exper-
iment these types of latency. The proposed refresh methods
have the following advantages for our study: (i) they keep
the UIM minimal to reduce the influence of user interface
and input/output devices on the user performance (details in
Section III-D), and (ii) the UIM is based on intuitive mouse
drawing, similar to the one used by McGuinness and O’Connor
[20].

B. Interactive segmentation assessment

The user plays a significant role in the interactive seg-
mentation process. Yet, when it comes to the assessment
of interactive segmentation methods, it is common in the
literature to emphasize the computational aspects of the pro-
cess without regards to the user’s performance. However, to
design a segmentation assessment framework, it is important
to consider the context of the segmentation task [38]. In fact,
the nature of the task, the type of images and the application
domain influence the segmentation outcome and the user
behaviour. In most cases, the goal is to compare different
segmentation methods. Conducting a user study is the most
common way to account for the user’s performance in the
assessment of interactive applications [17]. User studies have
been used in interactive segmentation contexts to evaluate
the performance of different UIMs [37, 35]. McGuinness and
O’Connor [20] proposed a unified platform for interactive seg-
mentation assessment. However, heterogeneous mechanisms
often involve significant changes in user interface, requiring
a specific evaluation platform. Focusing on the UIMs in the
context of 3D image segmentation, Ramkumar et al. [33]
conducted a user study to compare contour-based and scribble-
based approaches. Objective and subjective metrics were
recorded, allowing the comparisons in terms of computational
performance and user appreciation, respectively.

Objective metrics, such as computation time and accuracy
of the segmentation results, are reliable tools to assess the
computational aspects of a segmentation method. In contrast,
subjective metrics, often obtained through forms filled by the
participants at the end of the experiment, are typically used

to assess the cognitive aspects. However, some dimensions of
the user’s cognitive and behavioural performances during the
segmentation can be measured objectively. Hebbalaguppe et al.
[14] attempted to measure the attention effort produced during
a segmentation task by analyzing the user’s electroencephalo-
gram signal, recorded during the task. In order to assess the
performance of a haptic interface in 3D segmentation, Harders
and Szekely [13] conducted experiments by adapting a model
based on Fitts’ law [8], which describes a formal relationship
between speed and accuracy in aimed movements.

While the aforementioned works focus on comparing the
performance of segmentation methods in terms of user inter-
action, this paper aims at investigating user behaviour under
controlled response times using a standard user interface.
Based on the suggestions documented by Udupa et al. [38]
and Olabarriaga and Smeulders [30], we designed a user study
to characterize user behaviour during the completion of a
scribble-based segmentation task.

III. EXPERIMENT

To evaluate the effect of latency on a scribble-based interac-
tive segmentation task, we carried out a controlled user study.
This section details the study design for the experiment.

A. Preparing the image dataset

A dataset of 80 images (250 × 250 pixels) was prepared.
The images were carefully selected from the cancer imaging
archive public database [3], to which we added samples
from our own collection. The database includes samples from
computed tomography (CT), magnetic resonance (MR), X-ray
and ultrasound (US) images. Because the segmentation task
is sensitive to the medical application, the samples covered a
broad range of anatomical structures: brain imaging (MR, CT),
carotid imaging (US), abdominal imaging, e.g., kidney, blad-
der, prostate (US, MR and CT) and chest and pelvic imaging
(X-ray). All the ground truth data were obtained by manually
segmenting the images. The dataset was then partitioned into 8
non-overlapping subsets Di=1...8 of 10 images each, to avoid
the carryover effect caused by segmenting the same image
multiple times. The order in which the images within a dataset
appear to the user is randomly shuffled. An additional dataset,
Dtraining, of 21 images was similarly prepared to serve as a
training dataset, such that Dtraining ∩ Di = ∅,∀i = 1 . . . 8.

B. Study design

Two factors were investigated. The Latency factor, which
is the time elapsed between the drawing query and the
segmentation response, i.e., the delay before displaying the
update on the screen. Eight Latency conditions were tested,
L = {100, 200, 350, 500, 750, 1000, 1500, 2000} (ms). The
second factor is the Refresh method and was designed to
capture between- and within-activity latency types. Two con-
ditions were tested R = {Automatic,User-initiated}. In the
automatic refresh condition, the updates were automatically
displayed on the screen after the latency time elapsed. Here,
the latency condition acted as within-activity latency. In the
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user-initiated refresh condition, the updates were displayed on
the participant’s demand by pressing a button on the keyboard.
Once initiated by the user, the results were displayed after
the latency time elapsed. Here, the latency condition acted as
between-activity latency.

A total of eight participants were recruited from engineering
undergraduate and graduate programs. Some of the partici-
pants had prior experience with scribble-based segmentation
approaches. Every participant tested all the latency conditions
and all the refresh conditions. The order in which the latency
conditions were tested was counterbalanced according to a
8 × 8 Latin square design [17, p. 177], i.e., one latency
condition, li ∈ L,∀i = 1 . . . 8, was tested on a single dataset
Dj=1...8, such that all combinations {li, Dj} were tested by
the eight participants. Therefore, each participant tested all
the latency conditions with the automatic refresh method in a
first experiment. Then, he/she tested all the latency conditions
once again with the user-initiated refresh method in a second
experiment. However, since the same image datasets were
used for both experiments, such an ordered design could
bias the participant’s performances. To reduce the risks that a
participant remembers the images and their associated labels,
the second experiment was conducted at least two weeks after
the user’s participation in the first experiment.

Each experiment of a given refresh condition involved eight
rounds of two successive steps: a training step followed by an
evaluation step. The participants performed the training and
the evaluation with the same latency condition on the first
dataset, then the training and the evaluation with the next
latency condition on the second dataset, and so on. In total,
there were 8 participants × 8 latencies × 2 refresh methods
× 10 images per dataset = 1280 segmentation trials.

C. Experiment progress

1) Training step: During the training step, no data were
recorded. The goal of the training was two-fold. First, it aimed
at preparing the participant to understand how the scribble-
based segmentation approach works. Second, it acted as a
buffer between two successive conditions to accustom the
participant for the next latency condition. During the training
step, 10 images were randomly selected from the training
dataset Dtraining. The participant had to segment all the 10
images under a given latency condition before proceeding to
the evaluation step under the same condition. For each seg-
mentation trial, the ground truth was provided and displayed
beside the original image. In order to instruct the participant
on the amount of accuracy required for the segmentation, the
accuracy score (see Section IV) of the current segmentation
result was displayed on the top right of the screen, during the
training step. An acceptable score was considered to be 0.90
or above, before ending the trial and moving on to the next
image.

2) Evaluation step: During the evaluation step, the time,
the accuracy and efficiency of the segmentation were measured
according to the parameters described in Section IV. Similarly
to the training step, the ground truth was provided to the
participant, indicating the anatomical structure to segment.

Fig. 2: The user interface in our study.

This information compensates for the lack of medical image
interpretation skills of the participants. However, during the
evaluation step, the segmentation accuracy score was not
shown during the task. The participant was asked to perform
the most accurate segmentation according to his/her apprecia-
tion with respect to the ground truth in the minimum possible
time. The evaluation step ended when the 10 images of the
dataset Di were segmented.

D. Interaction mechanism

The user interface was designed based on a standard 2D
window-icon-menu-pointer (WIMP) paradigm for minimal
user-computer interaction (see Fig. 2). It involved two menu
buttons to switch between training and evaluation steps, and
two windows to display the image and its ground truth. The
user’s actions were restricted to: (i) clicking and dragging
the mouse to draw foreground and background labels; and
(ii) undoing the last drawings using a keyboard button. The
number of undo actions was unlimited. For the user-initiated
refresh condition, the user had to press a keyboard button, with
his/her non-dominant hand, for every desired segmentation
update. The automatic refresh condition did not require any ad-
ditional interaction. Once the results were satisfactory, the user
ended the segmentation using a dedicated keyboard button.
The next image and its ground truth were then automatically
loaded on the screen. Any additional user interaction, such as
zooming/panning, loading images and resizing the thickness
of the drawing brush, were prohibited, due to the unnecessary
cognitive load they impose on the user.

During the segmentation, the user drew foreground and
background labels and the result was updated on the screen.
The segmentation computations were indicated using the
mouse’s waiting cursor. However, the participants were al-
lowed to draw new labels while the computations were taking
place. Hence, for both automatic and user-initiated refresh
conditions, the drawing and the computations were separate
processes. For example, for a 2000 ms latency, participants
were able to anticipate the segmentation result by drawing
additional labels before the computations were completed.

E. Segmentation method and computations

We considered a binary segmentation task of a single object
per image, i.e., the user was allowed to draw only foreground
and/or background labels. The minimum latency tested in
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Fig. 3: Workflow of the interactive segmentation software used
for experiments. The drawing and segmentation computation
are processed in different threads, thereby allowing user in-
teraction during computations. The elapsed time t is used to
control the latency of the segmentation.

this study was 100 ms. Therefore, the segmentation method
must satisfy this speed threshold, i.e., provide updates under
100 ms. To achieve this, we developed the FastDRaW2 method
[10], a fast adaptation of the random walker segmentation
algorithm [9]. FastDRaW exploits a multi-scale framework
combined with a dynamic region of interest (ROI) search
to reduce the computation time. Prior to the segmentation,
the image is rescaled using a nearest-neighbourhood down-
sampling algorithm. The multi-scale framework consists in
performing the computations on the reduced size of the image,
then the results are refined on the original image. During
the segmentation, the ROI is dynamically extracted based
on the position of the drawn labels. Our assumption is that
the object boundary is more likely to be located somewhere
between the foreground and background labels. For each
label category class ∈ {Foreground,Background}, a Euclidean
distance map Distclass is computed and normalized such that
Distclass ∈ [0, 1]. Then, a relevance map E is computed for
every pixel p in the image

E(p) = 1− 1

2

(
DistForeground(p) + DistBackground(p)

)
∈ [0, 1],

(1)
The pixel p belongs to the ROI if

E(p) ≥ Ē − kσE , (2)

where Ē and σE are the mean and the standard deviation
of the values in E, respectively, and k ∈ R is a constant
parameter, such that increasing k reduces the number of pixels
to be selected in the ROI. We empirically set k = 1. The
segmentation then is performed only on pixels belonging to
the ROI, reducing the computation time.

In this study, all processing was done on an Intel c© Core
i7-2630QM 2GHz×4 machine with 4Gb of RAM. To avoid
holding the drawing resources during computations, all image
processing operations were run in a separate thread (see Fig.3).
For images of size 250×250, the FastDRaW method provides
segmentation results in ∼ 90 ms which is sufficiently fast
for the purpose of the study. Larger latencies were simulated

2Available at https://github.com/hgueziri/FastDRaW-Segmentation

by constraining the processing thread to wait the remaining
amount of time before displaying the result on the screen.

IV. MEASURES

This section describes the metrics used to capture the user’s
performance during the evaluation step of the experiment.

Overall time - tΩ: The overall time elapsed during the
segmentation of each image was measured. We use the average
time required to perform one image segmentation over a
dataset Di under a given latency condition.

Labelling time - tΛ: During the segmentation, the time
taken to draw the labels was recorded. This measure involves
the sum of elapsed times between the moment the user presses
then releases the mouse buttons to draw a foreground or
background label, for a single image. The labelling time is
the average time recorded per image over each dataset Di

under a given latency.
Drawing speed - υ: The user labels the image by drawing

scribbles using the mouse. A scribble is drawn by pressing and
holding the mouse’s button down while moving the mouse
through the image. The speed at which the user moves the
mouse between the moment the button is pressed and released
indicates how fast the scribbles are drawn. This drawing speed
was computed by dividing the distance travelled by the time
elapsed between these two moments, and is given in pixel/s.
The goal of this metric is to observe how the user draws the
scribbles. In fact, we hypothesize that a large cognitive load
slows down the user’s drawings. The drawing speed is given
by the average speed recorded while segmenting a dataset Di.

Accuracy - A: The Dice index (DI) is commonly used to
assess the accuracy of a binary segmentation result. The DI
measures the agreement between two samples of binary data.
To measure segmentation accuracy, interactive segmentation
results were compared to their respective ground truth seg-
mentations, such that

DI =
2TP

2TP + FP + FN
∈ [0, 1], (3)

where TP, FP and FN are the true positive (object surface),
false positive and false negative scores, respectively. The DI
tends towards 1 as the segmentation result approaches the
ground truth.

Continuity of the strokes - C: The continuity is the number
of labelled pixels per mouse click in one segmentation trial.
Because the drawing is performed by maintaining the button of
the mouse pressed, this measure expresses the average number
of pixels labelled in one mouse stroke. Therefore, a large
value indicates that the labels were drawn continuously, i.e.,
in the form of long strokes. A discontinuous drawing can be
caused by two events. Either the user draws multiple strokes
of the same label category, or the user alternates between
drawing foreground and background labels. We hypothesize
that a continuous drawing is performed during the same action,
and may be associated to a single thinking process on the part
of the user. The continuity measure characterizes the way the
drawings were accomplished.

Number of labels - N : When a segmentation trial was
completed, the total number of labelled pixels was computed.

https://github.com/hgueziri/FastDRaW-Segmentation
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Fig. 4: Summary of the results obtained with the automatic (solid red line) and user-initiated (dashed black) refresh methods:
(a) average time to complete one image segmentation trial, (b) average time to label an image (c) average drawing speed
per image, (d) average Dice segmentation score per image (bigger is better), (e) average strokes continuity per image (bigger
means longer strokes), (f) average number of labelled pixels per image, (g) average number of segmentation update per image,
(h) average number of undo action performed per image and (i) average number of mouse click performed per image.

Complex segmentation tasks would require more labels than
simple ones. The number of pixels labelled is an indicator
of the amount of effort produced by the user during the
segmentation task.

Number of segmentation updates - R: The number of
times the user receives segmentation feedback is recorded.
Automatic refresh typically provides a larger number of up-
dates, which induces a bias when compared to user-initiated
refresh. This measure is used primarily with user-initiated
refresh and indicates the presence/absence of penalties caused
by the latency that can influence the user behaviour. In some
applications, e.g., puzzle solving [29], it has been reported that
additional latency can make the user change his/her strategy
to achieve the task. We wanted to see whether this was the
case for interactive image segmentation.

Number of undo actions - U : The number of undo actions
counts the average number of times the user performs an undo
action, i.e., he/she deletes the last label drawn. Similar to
the number of segmentation updates, U expresses the penalty
induced by the time recovering from errors described by
Mayhew [19]. In the case of large latencies, the user may
prefer saving time over accuracy.

Number of mouse click - clk: The average number of
mouse click performed by the user during the segmentation of

one image. This reflects one aspect of the user activity during
the segmentation task.

V. RESULTS

Fig.4 summarizes the results obtained by all the participants
for both the automatic and user-initiated refresh experiments.

A. Overall time

The overall segmentation time results are shown in Fig.
4a. A repeated-measure analysis of variance (ANOVA) [2]
reveals a statistically significant effect of the latency on the
overall segmentation time (F7,49 = 3.35, p < 0.01) for both
refresh methods. For the automatic refresh method, the overall
segmentation time increases non-linearly with the latency.
The impact of the latency on the segmentation time becomes
less significant as the latency increases. In fact, for latencies
between 100 ms and 500 ms, the segmentation performance
slows down quickly, from an overall segmentation time of
t100
Ω = 23.86 s ± 1.37 s to t500

Ω = 29.69 s ± 1.89 s per image,
respectively, which represents a slope of 12.46 ± 0.48. This
impact is attenuated for latencies between 750 ms and 2000 ms
to reach a slope of 2.79± 0.19.



GUEZIRI et al.: LATENCY MANAGEMENT IN SCRIBBLE-BASED INTERACTIVE SEGMENTATION OF MEDICAL IMAGES 7

Fig. 5: Labelling time (left) and computation time (right) as
fractions of the overall time, using the automatic refresh (red)
and user-initiated refresh (blue) methods. Note that these two
processes are performed in parallel as shown in Fig.3.

Compared to the automatic refresh method, the segmenta-
tion task using the user-initiated refresh method was completed
slightly faster, but no statistically significant difference was
found between both refresh methods (F1,7 = 0.91, p = 0.37).
We draw the reader’s attention to the shorter segmentation

time obtained using the user-initiated refresh method at 500 ms
latency. This score is similar to the one obtained with 100 ms
latency for the same refresh condition. However, the corre-
sponding accuracy score shows one of the worst performances
with an average Dice index of A = 0.916 ± 0.005 (see Fig.
4d). This value may represent an outlier.

B. Labelling time and drawing speed

The average time required to label an image is shown
in Fig. 4b. The user’s drawing performances are clearly
affected by latency when the automatic refresh method is
used (F7,49 = 7.13, p < 0.01). For a latency of 100 ms,
t100
Λ = 3.74 s ± 0.41 s, representing 16.19% ± 1.22% of

the overall segmentation time. Then, a rapid decrease in the
labelling time occurs between 100 ms and 500 ms latency,
before reaching a stable value around tΛ = 1.16 s ± 0.11 s
in the 500 ms to 2000 ms latency interval. Here, the labelling
time represents 3.89% ± 0.25% of the overall segmentation
time (Fig.5 (left)). Using the user-initiated refresh method, the
latency condition seems to have little effect on the labelling
time (F7,49 = 2.02, p = 0.07). The average performance for
all the participants was 0.53 s ± 0.03 s, i.e., 2.18% ± 0.10%
of the overall segmentation time. In comparison, the fraction
of the computation time relative to the overall time is shown
in Fig.5 (right). While the fraction of the computation times
seems to be stable for all latency conditions using the user-
initiated refresh method, it is larger and varies significantly
with the latency when using the automatic refresh method.
This is expected, due to the large number of updates in-
duced by the automatic refresh. Because the segmentation
is performed in a separate thread (see Fig. 3), the overall
segmentation performance is not represented by the exact sum
of the labelling performance and computation performance.
However, in terms of user performance, the extreme scenario
would be to consider both the labelling and the computation
processes to be performed serially. In this case, they can be
summed up to represent an indicator for the user performance
during the segmentation task (as used in Section VI-B).

The average drawing speed is shown in Fig.4c. The results
are consistent with the labelling time. Using the automatic
refresh method, the latency has significant effect on the
drawing speed (F7,49 = 8.62, p < 0.001). The drawing
speed increases with latency to reach its highest value of
υ = 1261.15 pixel/s ± 137.73 pixel/s at 2 s latency. Using
the user-initiated refresh method, the drawing speed is not
significantly affected by latency (F7,49 = 1.14, p = 0.35),
with an average speed of υ = 1255.80 pixel/s±101.57 pixel/s.
This value is most likely the upper speed limit achievable
while maintaining reasonably careful drawings in the tested
scribble-based segmentation approach.

C. Segmentation accuracy

The average accuracy obtained per image is plotted in Fig.
4d. In this study, the participants were allowed to adjust the
drawings until a satisfactory segmentation result was obtained,
without a time limit. Having been shown the Dice score during
the training step, the participants were visually habituated
to match the segmentation result and the ground truth with
a sufficient similarity (DI ≥ 0.90). Therefore, it is not
surprising to observe high Dice indices (0.927 ± 0.036 for
automatic refresh and 0.926 ± 0.037 for the user-initiated
refresh methods) with small variations between participants.
The ANOVA test revealed no statistically significant difference
between the accuracy obtained using both refresh methods
(F1,7 = 0.65, p = 0.44). To gain more insight into the accu-
racy performance, we recorded the evolution of the Dice index
during the segmentation task for all latency conditions. Fig.
6a shows the cumulative fraction of all the trials that reached
a Dice index of 0.90 or above over time. Using the user-
initiated refresh method, users rapidly achieved satisfactory
segmentation results. In contrast, using the automatic refresh
method, satisfactory results depend on the latency, as they
take longer to be achieved under long latencies. Fig.6b shows
similar cumulative fraction of Dice index according to the
number of segmentation updates provided to the user. Under
short latencies, the automatic refresh provides more updates
to the user. Therefore, the evolution of the cumulative fraction
is slower. However, for user-initiated refresh, the effect of the
latency is not observable.

D. Continuity of the strokes

The stroke continuity results are shown in Fig. 4e. Recall
that the continuity measure indicates the average length of
strokes per click and gives insight into how the labels were
drawn. Using the user-initiated refresh method, the strokes
produced by the participants appear to be longer, i.e., with
larger values of C. However, the ANOVA test reveals no
statistically significant difference between the refresh methods
(F1,7 = 1.48, p = 0.26). Moreover, no statistically significant
effect of the latency was found in the stroke continuity
(F7,49 = 0.62, p = 0.73).

E. Number of labels

The average number of labelled pixels required to seg-
ment all the images for each latency condition is shown in
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(a) (b)

Fig. 6: The cumulative fraction of trials having a Dice score of 0.9 or above as a function of time (a) and number of updates
(b), using the automatic refresh (red) and user-initiated refresh (black) methods.

Fig. 4f. The latency has no statistically significant effect on
the number of pixels labelled during the segmentation task
(F7,49 < 0.001, p ' 1). However, the automatic refresh
method required significantly fewer labels than the user-
initiated method (F1,7 = 7.17, p = 0.03).

F. Number of segmentation updates

The average number of segmentation updates R for each
image is shown in Fig. 4g. It is expected that R is large
for short latencies when using the automatic refresh, with
a maximum value of R100 = 42.37 ± 4.02 updates and a
minimum value of R2000 = 10.86 ± 0.51 updates. Therefore,
the ANOVA test is performed for the user-initiated refresh
method analysis only, revealing no significant effect of the
latency on the number of updates performed by the participants
during the segmentation task (F7,49 = 1.90, p = 0.089). In
other words, slow computation time did not yield statistically
significant changes in user behaviour regarding the number of
times he/she requested a segmentation update.

G. Number of undo actions

Fig.4h shows the average number of undo actions per image.
Few undo actions were performed during the segmentation
task, regardless of the refresh method used and the latency.
The ANOVA test reveals no statistically significant effect
of the latency condition on either of the refresh methods
(F7,49 = 1.18, p = 0.33). Moreover, no statistically significant
difference in the number of undo actions was found between
the refresh methods (F1,7 = 1.96, p = 0.20).

H. Number of mouse clicks

Fig. 4i shows the average number of clicks performed by
the user per image. No statistically significant difference was
found between the automatic and the user-initiated refresh
methods (F1,7 = 0.16, p = 0.69), nor between the latency
conditions (F7,49 = 0.68, p = 0.68) regarding the number of
clicks performed during the segmentation task.

VI. DISCUSSION

A qualitative summary of the results is shown in Table I

TABLE I: Qualitative summary of the experimental results.

Observations

R
ef

re
sh

m
et

ho
d A

ut
om

at
ic

tΩ: non-linear increase with latency (rapidly then slowly)
tΛ: non-linear decrease with latency (rapidly then slowly)
υ: linear increase with latency
A: slow convergence to satisfactory results
C: no observed effect
N : fewer labels using automatic refresh
R: –
U : no observed effect
clk: no observed effect

U
se

r-
in

iti
at

ed

tΩ: increase with latency (no observed pattern)
tΛ: no observed effect
υ: no observed effect
A: fast convergence to satisfactory results
C: no observed effect
N : more labels using user-initiated refresh
R: no observed effect
U : no observed effect
clk: no observed effect

A. Automatic vs. user-initiated refresh method

Under the automatic refresh condition, the user is made
subject to a within-activity latency. Any delay occurring
during computations would be associated with the drawing
actions, confounding between the cognitive task of drawing
and interpreting results. On the other hand, a user-initiated
refresh of the results allows the user to explicitly separate
the drawing task from the interpretation of the results. The
user is then subject to a between-activity latency. In our
experimental results, the user’s performance under the user-
initiated refresh condition was less sensitive to latency than
under the automatic refresh condition. In fact, using the user-
initiated method, no significant effect was observed regarding
the way the user draws labels (i.e., labelling time, drawing
speed, strokes continuity and number of labels) or the way
he/she interacts with the algorithm (i.e., number of updates,
number of undo actions and number of clicks). Moreover,
using the automatic refresh method, users seemed to tend
towards similar behaviour when the latency was large (∼ 2 s).

B. Cognition and drawing efficiency

Providing labels during the segmentation task involves an
underlying effort of understanding the image content and
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the current results, i.e., in our case, evaluating the current
segmentation contour and deciding where to draw the next
labels. This effort is referred to as the thinking task and reflects
user scan/read time, user think time and user response time as
described by Mayhew [19, p. 508]. This task is different from
drawing the actual labels, which involves locating and tracking
the position of the cursor and manipulating the mouse. In fact,
our experiment revealed that most of the segmentation time
is allocated to the thinking task (see Fig. 5). In the extreme
case where the drawing task and the computation task are
taken to be performed serially, the average thinking time for
automatic refresh was 72.67 %± 2.42 % and for user-initiated
96.23 %± 0.06 % of the overall segmentation time. Note that
these results include idle time.

In what follows, we refer to the cognitive process as
mental preparation of the user to perform a labelling task, i.e.,
involving the combination of both the drawing and the thinking
tasks. Using the definition given by Newell [25, p. 261-268]
in the context of immediate response tasks, the cognitive
process requires longer processing time as the task increases
in complexity. In our experiment, this can be observed when
using the automatic refresh method, where the thinking task
is confounded with the drawing task. In this scenario, the
effect is particularly noticeable with short latencies. In fact,
the participants required more cognitive processing time to
label the image, slowing down their labelling performance.
The effect is attenuated as the latency increases, making the
refresh less frequent. Here, the gap between the drawing task
(achieved in constant real-time during the experiment) and
the thinking task (occurring less frequently as the latency
increases) is larger when the latency is large (∼ 2000 ms).

This gap reaches its upper limit when the drawing and
the thinking tasks are considered as totally separate tasks, as
illustrated in the user-initiated refresh method. The cognitive
process is exclusively restricted to the drawing task or thinking
task, therefore reducing complexity to performing a single
task at a time. While the experimental results do not allow
a direct observation of the time allocated to the thinking
task, participants provided a much more efficient labelling
performance in this scenario.

C. The “no effect” results

Because the latency condition was the only variable pa-
rameter experimented with respect to the refresh method, it
is important to report the observations where the latency had
little or no effect on the user performance. To this end, in
our study, we use the number of segmentation updates, the
number of undo actions and the number of clicks performed
during the segmentation task as surrogates to measure the user
activity. Interestingly, the latency seems to have little effect on
the user activity in terms of these three metrics when using the
user-initiated refresh. In particular, the number of segmentation
updates did not yield a significant change in user behaviour
despite the additional cost of computation time induced by the
latency (dashed line in Fig.4.g). This may be due to the fact
that the maximum latency experimented is still an acceptable
response time for interactive communication [22]. For the

automatic refresh method, the number of segmentation updates
is not an appropriate measure to observe the user behaviour.
However, the number of undos and clicks revealed similar user
behaviours, regardless of the latency.

Moreover, the study revealed that given sufficient time,
latency does not affect segmentation accuracy, regardless of
the refresh method. All participants were able to achieve sat-
isfactory segmentation results. However, results were achieved
faster with user-initiated refresh.

D. To what extent does the study apply to different UIMs?

It is most likely that important changes in the UIM of the
segmentation approach would induce substantial changes in
the user’s behaviour. In this section we discuss the following
questions: (i) what is the validity of our analysis for interactive
segmentation approaches with different UIMs, e.g., in the case
of a live-wire [24, 5] or a hybrid [36, 40, 11] UIM? and
(ii) will the user’s performance be similar given the same
scribble-based UIM combined with a different segmentation
algorithms, e.g. graph-cut [1] or random walker [9]?

Regarding question (i), our analysis is based on the query-
feedback loop model [30]. For real-time segmentation ap-
proaches, the speed at which the loop cycles is very high,
giving the impression of processing a single task. For example,
this is the case for the live-wire segmentation approach [5],
where the contour updates need to be provided in real-
time, while the user is hovering the mouse. In this case, the
latency range [100 ms, 2 s] tested in our experiment would
be inappropriate, necessitating tighter response times, e.g.,
[10 ms, 200 ms], to evaluate a specific user behaviour for
this approach. Nevertheless, because of the query-feedback
loop, the between- and within-activity latency categorization
is still valid, i.e., different UIMs can be designed for live-wire
segmentation based on these types of latency. The choice of
the UIM depends on the properties and the user performance
that one needs to leverage during the segmentation task. More-
over, a interesting property of live-wire-based UIMs is that
segmentation is performed locally, i.e., the approach provides
a series of final segmentation results on small sections of the
object boundary. In contrast, scribble-based UIMs provide a
series of intermediate segmentation result for the whole object
boundary. This conceptual difference may be worth studying
to explore how the user performs under local/global interactive
segmentation mechanisms. Specifically, it would be interesting
to understand the organization of the cognitive task in this
context, e.g., is the user’s idle time uniformly distributed along
his/her performance on each contour section? does it require
less time to interpret the segmentation result on a smaller
section of the object boundary or is it easier if he/she observes
the whole object shape at each interaction?

Regarding question (ii), given the exact same inputs and
UIMs for image segmentation, different computation algo-
rithms may produce significantly different results. In this
case, the user would react differently according to the re-
ceived feedback, yielding variable segmentation performances.
However, McGuinness and O’Connor [21] showed that it is
possible to simulate the user behaviour, in terms of fore-
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ground/background labelling, as demonstrated in their exper-
iment comparing four scribble-based segmentation methods.
The authors proposed four strategies to automatically produce
user scribbles, in a realistic way, in which the scribbles were
generated by comparing the segmentation update obtained
in each iteration to the ground truth segmentation result.
Interestingly, although the segmentation algorithms tested pro-
duced different results, the strategies were able to simulate
a coherent user drawing by following constant rules. This
was possible because the strategies assumed: (i) a cooperative
user behaviour, (ii) knowing what is the goal to achieve, i.e.,
being able to add meaningful labels at each iteration, and
(iii) the consistency of the segmentation response regarding
the input data, i.e., the algorithm produces the same results
given the same inputs. In our study and in practice, the first
assumption is met based on the user’s willingness to achieve
a satisfactory segmentation. The second assumption is met
by showing the ground truth to the participants during the
segmentation task, and is met in practice by the user’s expertise
(e.g. anatomy) related to the task. The third assumption is met
through the probabilistic consistency of the random walker
segmentation approach [9, 10]. Therefore, we expect the
overall user behaviour to be comparable regardless of the
intermediate results.

VII. CONCLUSIONS

Interactive scribble-based image segmentation is highly
permissive in terms of user performance. Similar segmentation
results can be achieved with different label drawings and
efforts produced by the user during the segmentation task.
Therefore, the condition under which the user receives the seg-
mentation feedback affects his/her performance. In this study,
we investigated the user’s performance under two conditions of
latency variation: (i) the latency level: ranging from 100 ms to
2 s, and (ii) the type of latency: within-activity and between-
activity latencies represented by an automatic refresh and a
user-initiated refresh of the segmentation updates.

Increasing the latency has negative impacts on the over-
all performance. However, this affects the user performance
differently depending on the latency and the refresh method.
For the automatic refresh method, we observed a non-linear
variation of the user’s behaviour, with a slower drawing
performance for short latencies. The user is paying attention
to the segmentation updates as they are refreshed frequently.
For longer latencies, the overall segmentation time seems to
increase slowly with the latency. The user is less attentive to
the updates, resulting in faster drawing performance.

For the user-initiated refresh method, increased latency has
less significant impacts on the user’s behaviour. In this case,
the drawing and the interpretation of the result updates are
dissociated into two separate processes. The attention of the
user is focused on a single task at a time, which improves
his/her performance. In terms of the labelling time, the user-
initiated refresh method showed better performances. The
automatic and user-initiated refresh methods tested in our
study exemplify the within- and between-activity types of
latency, respectively. The results obtained are consistent with

the theoretical characterization of latency discussed by Miller
[22]. We observe a convergence of the user behaviour as the
latency approaches 2 s, which is the suggested threshold for
an effective response time in interactive applications.

Future work will include investigating the effects of the
latency on UIMs based on the object contouring paradigm,
e.g., live-wire [5], as they are substantially different from the
scribbling paradigm. We believe these approaches require a
shorter response time than scribble-based approaches to be
effective. Therefore, more attention has to be allocated to
the range of the feedback latency for these UIMs. Another
interesting study would also involve investigating a different
dimension of usability, e.g., how easy it is to learn the UIM
and how an experienced user would interact with the UIM?
This can be achieved by comparing ways to make interactive
segmentation techniques self-revealing, e.g., by comparing the
effectiveness of written instructions, tooltips that pop-up in
context, step-by-step interactive help, or automatic detection
of times when the user may need help.
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bieri, L. Tautz, H. K. Hahn, and H. O. Peitgen, “Analysis
of variability in manual liver tumor delineation in ct
scans,” in IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, 2011, pp. 1974–77.

[24] E. N. Mortensen and W. A. Barrett, “Interactive segmen-
tation with intelligent scissors,” Graphical Models and
Image Processing, vol. 60, no. 5, pp. 349–84, 1998.

[25] A. Newell, Unified theories of cognition. Harvard

University Press, 1994.
[26] J. Nielsen, Usability engineering. Elsevier, 1994.
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