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Multi-Snapshot Imaging for Chromatographic Peak
Analysis

James R. Hopgood, Member, IEEE, Matthew Connelly, Barry McHoull, and Darren Troy

Abstract—Objective: Snapshot imaging has several advantages
in automated gel electrophoresis compared with the finish-line
method in capillary electrophoresis; this comes at the expense
of resolution. A novel signal processing algorithm is proposed
enabling a multi-snapshot imaging (MSI) modality whose objec-
tive is to substantially improve resolution. MSI takes multiple-
captures in time as macromolecules are electrophoresed. Peaks
from latter snapshots have high resolution but low signal-to-
noise ratio (SNR), while earlier snapshots have low resolution but
high SNR. Methods: Signals at different capture-times are related
by a scale-in-separation, shift-in-separation, and amplitude gain.
The proposed method realigns the multiple captures using least-
squares and fuses them. The algorithm accounts for the partial
waveforms observed as the chromatic peaks exit the sensor’s field-
of-view. Results: MSI improves resolution by approximately 10%
on average per minute of additional electrophoresis. Conclusions:
Comprehensive analysis of the resolution are quantified on sev-
eral datasets demonstrate the effectiveness of MSI. Significance:
MSI can double the resolution compared with traditional snap-
shot imaging over a typical set of captures.

Index Terms—Signal processing & modelling, chromatography,
snapshot imaging, finish-line, parameter estimation, fusion.

I. INTRODUCTION

ELECTROPHORESIS is a fundamental and ubiquitous
technique in the separation sciences for analysing indi-

vidual macromolecules in biological samples, such as DNA,
RNA, and proteins [1], [2]. It has important uses in forensics,
molecular biology, biochemistry, and genetics. Specific appli-
cations include protein analysis [3] and genetic fingerprinting
[4]. While next generation sequencing facilitates the precise
order of nucleotides within a DNA sequence, gel electrophore-
sis provides an economically viable quality control stage, and
is generally flexible, quick, parallelisable, reliable, and cheap.
Fundamental to the performance of any separation technique

is the notion of resolution, which measures the ability of
the system to separate macromolecules. Considerable research
effort has been expended on improving resolution as detection
of a single additional band can have a substantial impact
on the evaluation of the assay results, for example in DNA
fingerprinting or purity analyses [1], [2], [5], [6].

There are two common detection methods for measuring
the separation of macromolecules in electrophoresis, namely
the finish-line method and snapshot optical imaging [1], [7].
In the finish-line method, molecules are detected after elec-
trophoresis for a constant distance using a single point detector
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(a) Image of typical electrophoresis trace.

(b) A 1D electrophoresis signal.

Fig. 1. Traditional snapshot of an electrophoresis trace of a standard DNA
ladder, as (a) an image and (b) an 1-D signal. The standard electrophoresis
process is run for sufficiently time that the signal fills the sensor’s entire FOV.
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Fig. 2. Proposed algorithm utilises multiple electrophoresis snapshots.
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Fig. 3. Using multiple electrophoresis snapshots, the proposed algorithm (see
Fig. 4) offers superior resolution of fragment components (see Section IV-B).
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Fig. 4. An overview of the complete algorithm, showing waveform realign-
ment, fusion, and deconvolution for resolution quantification.

at some fixed point in space. In optical snapshot imaging,
molecules are electrophoresed for a constant time, in which
the electrophoresis (EP) time is calibrated such that the sample
has expanded to fit the imaging sensor’s entire field of view
(FOV), thereby maximising the use of the sensor’s spatial
resolution (see example in Fig. 1). The entire EP trace is
therefore imaged after some fixed duration. In both cases, the
calibration is usually performed using a standard DNA ladder
for benchmarking [2], [5], [6]. Finish-line methods generally
have the best resolution as a result of molecules running to
a constant distance [8], but is generally more complicated
to implement. Finish-line methods using multi-pixel detectors
have also been developed to enhance signal-to-noise ratio
(SNR) [9], [10], thereby improving sensitivity.

Automated EP products are now ubiquitous in genomics
labs [11]. Most commercial devices use either capillary elec-
trophoresis (CEP) with finish-line measurement, or gel elec-
trophoresis (GEP) using snapshot imaging. While CEP has
excellent resolution, automated CEP technologies can be slow,
expensive, and have limitations compared to snapshot GEP.
For example: commercial CEP products usually run samples
sequentially rather than in parallel, thus taking more time to
analyse multiple samples; channels reused for several samples
are prone to carry-over or potential contamination between
samples [12]; and use of a single-detector means a molecule is
observed only once, so high dynamic range techniques used in
GEP cannot be utilised without a multi-pixel detector [9], [10].
Snapshot GEP does not suffer these restrictions. However,
to benefit from the advantages of automated snapshot GEP,
techniques must be developed that build on snapshot imaging
and provide the resolution of finish-line CEP.

In GEP, improvements in resolution have typically been
achieved by various approaches involving the alteration of
the physical conditions of the separation, for example using
doping and nanoparticles [5], [6], or by altering how the
analytes migrate through the gel (gradient gel electrophoresis).
This paper develops a signal processing framework (Fig. 4)
for multi-snapshot imaging (MSI), without introducing new
significant hardware expense. By introducing an approach for
improving resolution through detection alone, and signal pro-
cessing techniques for information fusion, this novel technique
is applicable to existing separation methods without altering
any of the physical conditions of the separation.

In the proposed approach, information from multiple images
(Fig. 2) are realigned and fused together to provide a single
high-resolution image superior to that obtained at a standard

EP time (Fig. 3). This technique is timely due to advances in
imaging technology, hardware processing capability, and au-
tomation on commercial products. The proposed MSI method
provides several benefits for the analysis of macromolecules
compared with single-snapshot imaging (SSI) and the finish-
line method. These include improved resolution, improved
estimation of fragment concentration and size, and reduction of
static background noise or observation noise. While algorithms
have looked at different aspects for improving the analysis
of GEP [13]–[15], MSI has only recently been introduced in
concept [16], [17], and has not previously been implemented in
a commercial product. This paper presents a detailed analysis
of the method.

A. Contributions

The work in this paper builds on the concept first presented
in [16], [17], by adding the following substantial contributions:
• a comprehensive analysis of MSI resolution as a function

of time, demonstrating the strength of the MSI approach;
• novel fusion techniques for combining the realigned

traces to produce a high resolution equivalent GEP trace;
• a comprehensive evaluation of the algorithm over several

datasets, comparing with a standard industrial benchmark.

B. Paper Organisation

The remainder of this paper is organised as follows: Sec-
tion II motivates the use of MSI, provides a detailed descrip-
tion of resolution as a quantitative measure for performance,
and provides an overview of the proposed approach. Section III
provides details of two realignment algorithms; Section IV
presents two methods for fusing the realigned waveforms.
Section V presents a comprehensive set of results showing
the realignment process, waveform fusion, and quantification
of resolution. Finally, conclusions are presented in Section VI.

II. MOTIVATION FOR MULTI-CAPTURE IMAGING

To understand MSI, this section reviews SSI and investigates
its resolution properties. An example of SSI in GEP is shown
in Fig. 1(a). The central image rows (typically around ten rows
are used) are extracted and averaged to create an 1-D signal,
as shown in Fig. 1(b). In cases where surface tension leads to a
significant meniscus, it is straightforward to realign the image
rows using cross-correlation prior to the averaging process,
although this is not generally needed in this work. In Fig. 1(b),
the x-axis denotes either uncalibrated molecular weight, base-
pair fragment length, or more generally separation, with
smaller particles on the left, and larger ones on the right.

In the standard approach to snapshot detection for GEP,
an electrophoresis measurement trace (EPMT) is made of
the concentration field in space at some fixed point in time.
This EP time is set to ensure that the field envelops the
imaging sensor’s FOV, thereby maximising use of the sensor’s
spatial resolution. However, an improvement in resolution with
snapshot imaging can be obtained by running the EP for longer
and taking multiple snapshots. The resulting EPMTs are shown
in Fig. 2, where the peaks continue to separate more quickly
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than they broaden. The frame number indicates sampling time,
and here the sampling period is 60 seconds. Note that in Fig. 2
and the remaining figures in this paper, the peaks with highest
molecular weight are allocated the smallest separation values.

A. Separation Resolution and Measurement

To quantify the improvement in resolution obtained from
MSI, define at time t the separation resolution between any
two peaks, i ∈ {p, q}, with means µt,i and full-width at half
maximums (FWHMs) of Wt,i as [1], [18]:

Rt,p,q ,
2|µt,p − µt,q|
(Wt,p +Wt,q)

(1)

Suppose that the resolution of an EPMT is to be compared
with the resolution at the standard EP time, defined at t =
t0. A robust metric is to measure the resolution between all
combinations of pairs of peaks, rather than just adjacent ones,
in order to maximise the amount of information used from
the signals. However, non-adjacent peaks will have a larger
separation compared with adjacent peaks, and consequently
appear to have a higher resolution. Therefore, to compare the
overall change in resolution of the EPMT as a function of
time, it is better to define the average normalised resolution:

∆R̂t =
1

|Pt|
∑

{p,q}∈Pt

Rt,p,q
Rt0,p,q

(2)

where Pt is the set of all peaks in the sensor’s FOV at time
t, and |Pt| is the cardinality of Pt (number of peak pair
combinations). As t increases, some peaks leave the FOV or
reach the end of the EP channel, and are not included in (2).

To calculate the peak centers, µt,i, and FWHMs, Wt,i, non-
linear regression is used to decompose the EPMTs into a linear
combination of known peak shapes. This peak-deconvolution
is standard in this field [18]. To demonstrate how the estimated
average normalised resolution, ∆R̂t, changes as a function of
time, t, only three candidate peak shapes are considered for
simplicity, as shown in TABLE I. These peak shapes are the
Gaussian, Lorentzian, and Voigt profiles. As noted in [15],
there are numerous chromatic peak models that could be used,
including asymetric peak shapes. However, the peaks shapes
considered here are sufficient for our purposes. The model for
the EPMT at time t as a function of separation x is thus:

ĉt[x|θt] = bt[x|θt,b] +

Pt∑
p=1

αt,p Fp[x|θt,p] (3)

where: ĉt[x|θt] is the spatially quantised model for the
underlying continuous concentration field, c(x, t); bt[x|θt,b]
denotes a parametric model for the baseline, given here
by a second-order polynomial: bt[x|θt,b] =

∑2
k=0 akx

k,
θt,b = {ak}20. Using model-order selection techniques, higher-
order polynomials are seen to not contribute significantly to
the underlying baseline. Moreover, Fp[x|θt,p] denotes the
functional form of the peak-shapes given in TABLE I; Pt is
the number of peaks; and θt,w = {αt,p}Ptp=1 are the linear
weighting coefficients. The peak-model parameters θt,p are
also defined in TABLE I, where a given model is used for all
peaks in a given EPMT. The complete set of model parameters

Peak Params Notation Functional FWHM
Shape θ F(x|θ) Form W

Gaussian θG =
{µ, σ} G(x|θG) e

− (x−µ)2

2σ2
WG =√
8 ln 2σ

Lorentz θL =
{µ, γ} L(x|θL) γ2

γ2+(x−µ)2 WL = 2γ

Voigt θV =
{µ, σ, γ} V(x|θV )

G (x|θG) ?
L (x| {0, γ})

WV ≈ αV WL+√
βV W

2
L +W 2

G

TABLE I
PARAMETRIC PEAK-SHAPES (NOTE αV = 0.5346 AND βV = 0.2166.
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Fig. 5. Deconvolved waveforms showing: the original waveform (thick light
curve); baseline and constituent components (dotted curves); reconstructed
waveform (thick dark curve); and residual waveform (bottom dark thin curve).

θt = {θt,b,θt,w,θt,1, . . . ,θt,Pt} are found by nonlinear
least-squares minimisation of the squared error between the
concentration field c(x, t) and the EPMT model ĉt[x|θt]:

θ̂t = arg min
θt

∑
x∈R0

(c(x, t)− ĉt[x|θt])2 (4)

where each model defined in TABLE I is considered, R0

indicate the set of separation values in the sensor’s FOV, and
the model with least total residual error is the selected model.

The optimisation is performed using the trust-region-
reflective nonlinear mininisation algorithm subject to bounds
[19]. The initial conditions for this optimisation need to take
on sensible values. In particular, the initial peak locations are
obtained using the peak feature-extraction method from [20],
the parameters controlling the FWHM and peak-heights are
constrained to be positive with maximum values determined by
separation length and the maximum EPMT value, respectively.

A typical deconvolution of an EPMT is shown in Fig. 5,
where the dotted curved lines indicate the individual com-
ponents or fractional chromatic peaks, the horizontal lines
indicates the FWHM, the thick dotted line indicates the
baseline model, and the residual is shown at the bottom of
the graph. The fitted waveform is, due to the low-dimensional
parametric shape, smoother than the original waveform.

The sequence of EPMTs shown in Fig. 2 are analysed at
each time-step, t, by finding the best-fit peak-deconvolution
given by solving (4). Using the estimated parameters, θ̂t, the
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function of time for the second peak in the EPMT.

expressions in TABLE I are used to find the peak centers,
µt,p, and FWHMs, Wt,p. An example of these parameters for
the second-peak in the exemplar waveform is shown in Fig. 6
where, in this instance, it can be seen the Lorentzian usually
fits the data best. However, the Voigt profile is often a better
fit in earlier snapshots where the peaks can be asymmetric due
to the residual effect of the initial sample loading.

The change in average-normalised resolution, ∆R̂t, is cal-
culated using (2). This resolution improvement as a function
of time is shown in Fig. 7, where the resolution effectively
doubles by continuing the EP process. The errorbars indicate
variability in the resolution improvement for individual peak-
pair combinations. As an exemplar, the resolution improve-
ment is considered for the two so-called upper-peaks. These
peaks are at the left of Fig. 5 at lowest separation values;
since EP moves the peaks to the right, the upper-peaks stay
in the FOV for all frames. The resolution improvement for
these peaks is shown in the starred line in Fig. 7. It is crucial
to realise that for the resolution to improve, the rate at which
the peaks separate must be greater than the rate-of-change of
the FWHM (see Section II-B). As EP continues, peaks leave
the sensor’s FOV, requiring a method to fuse information from
different snap-shots. Such a method is proposed in Section IV.

B. Theoretical Resolution as a Function of Time

Section II-A demonstrated through an experimental example
that a resolution improvement can be obtained with snapshot
imaging by running the electrophoresis for longer. This sec-
tion provides a theoretical justification. Consider the simplest
model for describing the evolution of the concentration field,
c(x, t). This model, used in both the analysis of finish-line
and snapshot detection methods, considers the evolution of
a unit mass injected as a delta function at the origin of an
EP system [1]. The concentration field, c(x, t), resulting from
this injection is, at time t and separation x, the solution to the
averaged convection-diffusion equation for large-times,

∂c

∂t
+ Ū

∂c

∂x
= D̄

∂2c

∂x2
(5)
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Fig. 7. Resolution improvement vs time. The average resolution improvement,
∆R̂t, is shown with 90% confidence intervals and a regression analysis (8).
The normalised resolution between the upper peaks is shown as an example.

where Ū is the mean velocity vector of the injected molecules,
and D̄ the dispersion coefficient. Using linear superposition,
the solution in this idealised case is a Gaussian pulse [1]:

ci(x, t) =
1√

2πσt,i
exp

[
− (x− µt,i)2

2σ2
t,i

]
(6)

where ci(x, t) represents the i-th peak with mean position
µt,i = Ūi t, and peak variance σ2

t,i = 2D̄i t. It is crucial
to note that, in this idealised EPMT model, the position
of the i-th peak increases linearly with time, while the
peak’s FWHM increases sub-linearly with time, namely that
Wt,i = 2

√
2 ln 2σt,i = 4

√
(ln 2) D̄it varies with the square

root of time. This means the peaks separate more quickly
than they broaden, and explains the resolution improvement
as a function of time seen in Fig. 7. Therefore, the resolution
between two peaks i ∈ {1, 2} varies, using (1), as:

Rt,1,2 =
|µt,1 − µt,2|√

2 ln 2 (σt,1 + σt,2)

=
Ut,1 − Ut,2

2
√

ln 2
(√
D1 +

√
D2

)√t ∝ √t (7)

These results can easily be extended to the case where an
impulse is injected at time t = t0 at separation x = x0, with
the times t being replaced by t− t0. Inspired by these results,
and allowing for practical effects in the EP process, the theo-
retical fit shown in Fig. 7 to model the overall improvement
in average normalised resolution is of the functional form:

∆R̂t =
√

1 + α tβ (8)

where α and β are found by a nonlinear least squares fit [19].
In Fig. 7, α ≈ 0.133 and β ≈ 0.77, for this particular dataset.

C. Resolution Enhancement through Realignment

To benefit from the improvement in resolution in time, the
captures must be realigned in order to fuse the information. To
show that realignment maintains the resolution improvement,
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Fig. 8. Illustration of resolution change as electrophoresis continues. In this
figure, the electrophoresis process moves to the right, in contrast to Fig. 1.

consider again the concentration field, c(x, t), at times t =
t0 and t = t1 > t0, as shown in the upper two plots of
Fig. 8. At t = tk, k = {0, 1}, the two peaks, i ∈ {1, 2}, have
mean positions µtk,i = Ūi tk and deviations of σtk,i = 2D̄i tk.
Suppose the waveform at t = t1 is rescaled in the separation
axis, x, by a factor of ∆01 = t0

t1
, yielding the bottom plot in

Fig. 8. The mean positions of the rescaled waveform are now:

µ̂t1,i = ∆01 µt1,i =
t0
t1
Ūit1 = Ūit0 = µt0,i (9)

meaning the rescaled peak positions match the original peak
positions. Moreover, the rescaled peak-widths are:

σ̂t1,i = ∆01 σt1,i =
t0
t1

√
2D̄it1 =

√
t0
t1
σt0,i (10)

Therefore, the resolution between the two peaks, i ∈ {1, 2},
of the rescaled waveform is given by equations (1) and (9) as:

R̂t1,1,2 ,
|µ̂t1,1 − µ̂t1,2|√

2 ln 2 (σ̂t1,1 + σ̂t1,2)
=

√
t1
t0
Rt0,1,2 (11)

As t1 > t0, the resolution R̂t1,1,2 > Rt0,1,2 has improved, as
shown by the narrower peaks in the lower plot of Fig. 8. These
results are readily extended if an impulse injected at (x0, t0).
In practice, due to several physical effects, the peak shapes are
not Gaussian as given by (6), although other shapes such as
Voigt, pseudo-Voigt, and asymmetric variants are frequently
used [15]. Nevertheless, the resolution improvement from this
realignment process applies irrespective of peak shape.

D. Proposed Multi-Capture Imaging Algorithm

The complete algorithm is shown in Fig. 4; an outline of
this was first presented in [16]. Multiple snapshots are aligned
and fused to produce a single waveform. Single-frame peak
deconvolution is applied to the fused waveform and, using the
properties of the resulting fractional peaks, the resolution in
(2) evaluated. The following sections outline each step.

t
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Fig. 9. Linear GEP expansion model. This is a rotated schematic of Fig. 2.

III. PROPOSED REALIGNMENT ALGORITHM

The realignment mechanism in MSI can be posed as an esti-
mation problem. Carlson [21] produced a maximum-likelihood
cross-correlation algorithm for problems involving Doppler
shifts, although it assumed the full waveform is present in
both measurements. In MSI, the scenario is complicated by
the fact the signal leaves the sensor’s FOV and thus matching
is required over partial signals: direct application of corre-
lation gives inaccurate realignment. This section derives the
algorithm using an expansion model to design a signal model.

A. Linear Chromatography Expansion Model

If the EP process is continued past the standard EP time, the
macromolecules continue to separate, as shown in the example
in Fig. 2. If the electric field is constant, and the behaviour of
the gel remains invariant, the convection-diffusion equation (5)
indicates a linear expansion model, since the mean-position of
the injected molecules increases linearly with time, as shown
in (6). This expansion is shown diagrammatically in Fig. 9.
Suppose a sample is injected such that the origin of the
GEP expansion begins at (x0, t0). A macromolecule at any
point (xk, tk) with concentration c(xk, tk) will later appear
at position (xk+1, tk+1) with concentration c(xk+1, tk+1)
through a simple geometric mapping. In the linear expansion
case, from similar triangles (see Fig. 9), the EPMT at these
two positions are related by c(xk+1, tk+1) ∝ c(xk, tk), and
the position of a molecule at tk+1 and tk are related through:

xk+1 − x0

tk+1 − t0
=
xk − x0

tk − t0
(12)

or, equivalently, writing ∆k = tk+1−t0
tk−t0 and Σk = tk+1−tk

tk−t0 ,

xk+1 = ∆k xk + Σk (13)

The concentration field at the two positions are proportionally
related since the total concentration is conserved, even though
the field has spread out. This implies values from the EPMTs
at a given position x at times tk and tk+1 are related:

c(x, tk+1) = αk c

(
x− Σk

∆k
, tk

)
(14)

where αk is a gain coefficient. Note that Σk = (1−∆k)x0.
Therefore, if x0 ≥ 0, and the scaling factor ∆ ≥ 1, then the
shift-in-separation Σk ≤ 0, while if x0 < 0⇒ Σk > x0.
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Given the initial injection point, I0 = (x0, t0), the scale-
in-separation can be evaluated from one frame to the next,
∆k = ∆k(t0, tk, tk+1), as can the amplitude gain αk, and
the shift Σk = Σk(x0, t0, tk, tk+1). However, it is not
always possible to accurately determine I0, and therefore the
position of the injection point should be assumed unknown.
Moreover, while I0 can be estimated from a number of
multiple-snapshots assuming linear expansion (for example,
the equiphase vertexing map in [9], [10]), in practice, in
GEP there is deceleration in the expansion model due to
Joule heating, gel ionization, deterioration or loss of the
fluorescent dyes, and other effects. Therefore, the scale-in-
separation, amplitude-gain, and shift should be estimated on
a per-snapshot (frame by frame) basis. These parameters
can estimated efficiently using a least-squares estimate (LSE)
approach, as shown in Section III-B.

B. LSE Parameter Estimation

Consider realigning snapshots (frames) at times t = tP
and t = tR, which here are called the projected (fP [n]) and
reference (fR[n]) frames to distinguish them; the projected
frame will be realigned to the reference frame. First assume
tR > tP , which means that the projected frame needs to be
stretched to match the reference frame. This ensures the length
of the stretched projected frame is longer than the reference
frame, and simplifies the limits in the summations in the cost
functions used below. If tP > tR, the rôles of the projected and
reference frames are reversed, as described in Section III-B3.

Let fk[n] = c(nδx, tk) indicate a spatially quantised ver-
sion of c(x, t) at separations x = nδx for n ∈ {0, . . . , N−1},
with δx = 1

N xmax, where xmax is the maximum separation.
1) Linear Model: In this model, the reference signal, fR[n],

is modelled as a linear multiple of a scaled-and shifted
projected frame, fP [n], with a modelling error e[n]:

fR[n] = α fP [n; ∆, Σ] + e[n] (15)

where fP [n; ∆, Σ] = fP
[
nδx−Σ

∆

]
, as given by (14). In order

to estimate the unknown set of parameters θ = {∆, Σ, α}, it
makes intuitive sense to optimise their values to minimise the
average square modelling error. Define the average error as:

ET (θ) =
1

N

N−1∑
n=0

e2[n] =
1

N

N−1∑
n=0

(fR[n]− αfP [n; ∆,Σ])
2

(16)
Since tR > tP , then ∆ ≥ 1 and the domain of fR[n] covers
the domain of fP [n], and hence the summation over the N
discrete-separation values. The objective is to find the set of
parameters θ that minimises ET (θ); in other-words:

θopt = arg max
θ

ET (θ) (17)

The gain, α, can be found analytically given ∆ and Σ:

α =

N−1∑
n=0

fR[n] fP [n; ∆, Σ]

N−1∑
n=0

f2
P [n; ∆, Σ]

(18)

In (18) the numerator corresponds to a cross-correlation term
between fR[n] and fP [n], while the denominator represents
the total energy in fP [n]. The total error in (16) is thus:

εT (θ) =

N−1∑
n=0

f2
R[n]−

{
N−1∑
n=0

fP [n; ∆, Σ] fR[n]

}2

N−1∑
n=0

f2
P [n; ∆, Σ]

(19)

where εT (θ) = NET (θ). The total error in (19) can be
minimised with respect to {∆, Σ}: a nonlinear LSE problem.

In practice, since gel electrophoresis is actually imaging the
fluorescent dyes, which can detach themselves from the macro-
molecules, there is often a change in an underlying baseline
over large differences in sampling time. This can effect the
performance of realignment using the linear model, since the
model does not explicitly include this baseline. The affine
model in Section III-B2 explicitly handles the baseline, but
is computationally more intensive. Therefore, to take advan-
tage of the computationally efficient linear model, a constant
baseline removal process is introduced prior to realignment. In
this work, since many of the EPMTs are relatively sparse, the
baseline is estimated using the most common value occurring
in the histogram of concentration values. In the histogram, 400
bins are used for 1000 concentration values. This relatively
simple method seens to perform adequately in most cases. For
many EPMTs the baseline is relatively small. Depending on
the implementation, other baseline removal techniques in the
literature can be used, such as rolling ball [22] and baseline
estimation and denoising using sparsity (BEADS) [23].

2) Affine Model: The affine model attempts to address the
issue raised above by explicitly incorporating a baseline model
into equation (15) in addition to linear amplitude scaling:

fR[n] = α0fP [n; ∆, Σ] +

Q∑
q=1

αq gq[n] + e[n] (20)

where {αq}Q1 are unknown baseline coefficients, and gq[n] are
Q known basis functions. Modelling the baseline as a linear
combination of basis functions is still somewhat constraining,
but it is shown to work well here in the realignment of EPMTs.
As in Section II-A, low-order polynomials are found to be
sufficient. To exploit this model, define the gain vector by α =[
α0, α1, · · · , αQ

]T
, and the augmented projected signal:

fS [n; ∆, Σ] =
[
fP [n; ∆, Σ] g1[n] · · · gQ[n]

]T
(21)

such that fR[n] = αT fS [n; ∆, Σ] + e[n]. Defining:

ET (θ) =
1

N

N−1∑
n=0

(
fR[n]−αT fS [n; ∆, Σ]

)2
(22)

the objective is, as in (17), to find θ = {α,∆,Σ} that
minimises ET (θ). The optimal gain α satisfies:[
N−1∑
n=0

fS [n; ∆, Σ] fTS [n; ∆, Σ]

]
︸ ︷︷ ︸

R[∆,Σ]

α =

N−1∑
n=0

fS [n; ∆, Σ] fR[n]︸ ︷︷ ︸
r[∆,Σ]

(23)
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Algorithm 1 Realignment of electrophoresis traces.
1: procedure EP REALIGNMENT(fP [n], fR[n], Q)
2: if tR > tP then . fP [n] stretched longer than fR[n]
3: θopt = ESTIMATEPARAMETERS(fP [n], fR[n], Q)
4: else . fR[n] stretched longer than fP [n]
5: θ̂opt = ESTIMATEPARAMETERS(fR[n], fP [n], Q)
6: Σopt = −Σ̂opt. . Reciprocate parameters
7: ∆opt = −1/∆̂opt.
8: αopt = 1/α̂opt . Linear case
9: α1,opt = 1

α̂1,opt
, α2,opt = − α̂2,opt

α̂1,opt
. Affine case

10: end if
11: end procedure
12: function ESTIMATE PARAMETERS(fP [n], fR[n], Q)
13: for all grid points over {∆, Σ} do
14: Resample fP [n] by closest rational fraction to ∆.
15: Calculate gain αopt: (18) (linear) or (23) (affine).
16: Evaluate ET (θ): (19) (linear) or (24) (affine).
17: end for
18: {∆opt,Σopt} = arg min{∆,Σ}ET ({αopt,∆,Σ})
19: return θopt = {αopt, ∆opt, Σopt}
20: end function

and the total error in equation (22) is:

εT (θ) =

N−1∑
n=0

f2
R[n]− rT [∆, Σ]R−1 [∆, Σ] r [∆, Σ] (24)

where εT (θ) = NET (θ). As in (19), the total error in
(24) can be minimised with respect to {∆, Σ} using gradient
descent, a grid search, or other minimisation algorithms [19].
In this paper, an exhaustive grid search is used, to investigate
the structural form of the cost functions (Fig. 12). The entire
algorithm is summarised in pseudo-code in Algorithm 1. Note
that if, in fact, there is no baseline present in the signal, the
affine model will not perform any better than the linear model.

3) Case if tP > tR: The rôles of the projected and
reference frames are reversed, as in lines 6–9 of Algorithm 1:
the shift is reversed, the scale-in-separation inverted, and the
gains modified. As such, the results above apply directly.

IV. FUSING REALIGNED TRACES

In the illustration in Fig. 8, the center graph shows the
concentration field when EP is continued after the standard EP
time. It is seen that the right-most peak is leaving the FOV and,
therefore, when realigned, only partially overlaps the standard
EP trace as shown in the bottom plot of Fig. 8. While the
realigned waveform has improved resolution, there is missing
information for separations 1.1 < x ≤ 2.1. Therefore, to
benefit from the improvement in resolution by running EP for
longer, fusion of the realigned pulses obtained in Section III-B
is required. A simple fusion approach is to take, at a given x,
the realigned signal corresponding to the most-recent capture
(MRC), as described in Section IV-A. However, as the EP
time increases, the SNR decreases due to the reduction in peak
amplitude. It is therefore preferable to use all the information
from all captures. Moreover, such brute-force stitching can
lead to discontinuities in the fused waveform, which may be
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Fig. 10. Illustration of fusing traces in Fig. 8 using MRC (Section IV-A). The
upper plot shows the individual realigned traces from two captures. The lower
plot shows the fused trace formed of: the late realigned EPMT for separations
0 ≤ x < 1.1; the early unaligned EPMT for 1.1 ≤ x < 2.2.

unacceptable to an end user. Approaches such as waveform
averaging leads to band broadening and loss of resolution. A
more principled approach to the required fusion is to fit a
functional shape through time (Section IV-B).

A. Fusing Traces using MRC

The algorithm for using the MRC essentially just takes the
latest measurement for any given separation. This is illustrated
in Fig. 10, in which the upper plot shows the early unaligned
EPMT and a realigned EPMT resulting from an extended run.
The MRC fused EP trace is formed by taking the late trace
for separations 0 ≤ x < 1.1, and taking the early trace for
1.1 ≤ x < 2.2. The resulting EPMT shows the resulting
discontinuity at x = 1.1. However, the combined trace is
sufficient for demonstrating improvement in resolution. This
fusion approach can be formally defined as follows. Denote the
realigned trace at time t by c[x, t], and define the region over
which the trace exists by Rt; i.e. Rt is the set of realigned
separation values in the FOV in frame t. In general, Rτ ⊂ Rt
if τ > t, and define R0 = R where R is the full separation
axis. Therefore, the MRC can be defined as:

cMRC[x] = c[x, τ ] where τ = max t such that x ∈ Rt. (25)

A key advantage of MRC is that it doesn’t need a signal
model, for example utilising peak position estimates. This
fusion is thus very simple to implement, while being robust
since it directly uses the EPMTs rather than an estimate. The
disadvantage of MRC is the discontinuous resulting signal.

B. Fusing Traces Through Time (GTT)

A principled approach for fusion is to consider how the
EPMT is predicted to change over time using the averaged
convection-diffusion equation (5). After realignment in separa-
tion and amplitude, the concentration field is given by (6) with
a suitable gain normalisation, and µt and σ2

t replaced by (9)
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and (10), respectively, modified with a time-offset. Therefore,
a realigned isolated pulse would be described through time by:

Cp(x, t) = Ap exp

[
− (x− µr,p)2

(t− t0)

2σ2
r,p (tr − t0)

]
where µr,p and σ2

r,p are the mean and variance for the pth
peak at reference time t = tr, t0 is the injection time, and
Ap the peak concentration. The model for the EPMT through
time can thus be expressed by the 2-D function (cf. (3)):

ĉ[x, t|θ] = B[x, t|θb]+
P∑
p=1

Ap exp

[
− (x− µp)2

(1− αp t)
2σ̂2

p

]
where B[x, t|θb] is a frame-by-frame baseline model as de-
scribed in Section IV, the set of peak-parameters θc =
{Ap, µp, σ̂p, αp}Pp=1, and the full set of parameters are θ =
{θb, θc}. Thus, θ are estimated by minimising

θGTT = arg min
θ

∑
t∈T

∑
x∈Rt

(c[x, t]− ĉ[x, t])2 (26)

where t ∈ T = {t0, t1, . . . , tF−1} indicate the frame index,
F is the number of frames or traces, and Rt is defined in
Section IV-A. This is a 2-D regression, and is analogous to
the 1-D regression problem described in Section II-A. The
baseline model for the resolution analysis is a plane:

B[x, t|θb] = (γ0 + γ1 x) (1 + β0 + β1 t) (27)

where θb = {γ0, γ1, β0, β1}. If the baseline for a particular
trace is linear as a function of separation, x, then as the EP
process continues as a function of time, this gradient increases
with time. The simple model in (27) accounts for this change
in baseline adequately, although higher order models could be
considered. The Gaussian through-time (GTT) fused capture
is then found by evaluating ĉ[x, t] at the final time-frame:

cGTT[x] = ĉ[x, tF−1|θGTT] (28)

This can be interpreted as fitting a linear combination of
Gaussian peaks with temporally varying FWHM across time,
and evaluating the resulting projection at the final capture time,
tF−1: the frame at which the best resolution for each peak is
expected. This is demonstrated diagrammatically in Fig. 11,
where the estimated peak shapes have smoothly varying and
decreasing FWHM across frames. The nonlinear optimisation
in (26) requires, as in Section II-A, sensible initial conditions.
The initial peak locations {µp}Pp=1 are determined from the
reference frame using the same peak detection algorithm as
Section II-A. Moreover, the peak variances σ̂p2, heights Ap,
and locations µp, are constrained to be positive. This model
doesn’t account for loss of fluorescent dye, nor the asymmetric
peaks found in practice. However, since fusion is across time
including later EPMTs, this model proves sufficient for fusion
presently. Further models will be considered in future work.

V. RESULTS

To demonstrate the improvement in resolution obtained by
MSI through realignment and fusion, several typical DNA
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Fig. 11. Estimated fused EPMT from realigned EPMTs using a GTT model.

fragments, ladders and sparse examples are analysed.1 DNA
ladders are chosen as they have a good distribution of peak
positions with respect to separation, and therefore allow a
thorough assessment of the change in resolution [2], [5], [6].
Moreover, the resolution improvement for a ladder can be used
to deduce the resolution improvement for an arbitrary trace.
The fragments chosen are ones in which peaks have separated
by the standard EP time, and therefore have no births of peaks.
This aids the resolution analysis, since if peaks appear as EP
continues, which is common in practice, it is necessary to track
and identify individual peaks prior to deconvolution. Tracking
the birth, evolution, and death of peaks is an important signal
processing problem, but is beyond the scope of this paper.
The results presented the realignment fusion methods which
are compared with the benchmark standard EP.

A. Realignment Results

In the linear realignment method, a constant baseline is
removed prior to realignment, as discussed in Section III-B1,
while for the affine realignment, a quadratic polynomial mod-
els the baseline as in Section II-A. As an example of the
realignment method in Section III-B, Fig. 12 shows the re-
alignment of dataset F (see TABLE II), which is a DNA ladder
labelled “Gel 206”. In this experimental setup, snapshots are
taken at multiples of 30 seconds for 1860 seconds. The stan-
dard EP time for this example is 420 seconds, corresponding
to the 13th frame. The scaling ∆, shift Σ, gain α0, and baseline
coefficients {αq}Q1 are estimated by minimising (24) with
respect to the 13th frame, as described in Section III-B.

Anti-clockwise from the top-right, Fig. 12 shows: the refer-
ence frame (frame 13) in dotted line, and the EPMT for frame
29 in solid; the realigned trace in the top-left; a contour and
surface plot of the negative cost-function as a function of shift
and scale which is maximised at the best alignment. Fig. 12
shows good alignment of the signals, although some individual
peaks are misaligned, likely due to non-ideal effects in the EP
process. The realignment of all the frames for this dataset (F )
is shown in Fig. 13, where it is clear that many peaks are
aligned perfectly, while others have statistical variation. Some
small peaks to the right of Fig. 13 are due to cassette noise.

1These data sequences will be available at http://datashare.is.ed.ac.uk/.

http://datashare.is.ed.ac.uk/
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Fig. 12. The top-left figure shows the alignment of two frames, with the original EPMTs for the reference and projected frames shown in the top-right figure.
The lower-left figure shows the negative error surface of equation (24) as a function of shift-in-separation and scale-in-separation, also called the scalogram,.
A peak in the scalogram indicates the best fit realignment parameters, and in this case there is a distinct peak at zero shift and a scale-in-separation of 0.47.
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Fig. 13. Realigned electrophoresis traces using LSE and the affine model.

B. Fusion Results

Continuing with dataset F , Fig. 14 shows the fused traces,
as compared with the reference EPMT, using the MRC and
GTT methods in Section IV. Note that in GTT, the baseline
is removed from the plot, and thus the lower plot of Fig. 14
shows fractional peaks only. Qualitatively, the realigned-and-
fused trace shows improved SNR and improved resolution, as
indicated by the sharper peaks. The MRC signal (top graph)
shows a less smooth signal than the GTT method, as expected
when comparing a non-parameteric and parametric method.
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Fig. 14. Comparison of standard and fused EPMTs (Sections IV-A and IV-B).

C. Resolution Improvement

To quantify resolution improvement from MSI, results from
7 datasets are presented in TABLE II. The table shows the
number of frames, sampling time, number of peaks, and
overall improvement given by (2) across all frames, expressed
as a ratio, for the two alignment and two fusion methods.
The percentage improvement per additional EP minute is also
indicated, giving a fair quantitative assessment as the total EP
time is different for each dataset. The resolution is estimated as
per Section II-A, although for robustness, if the least-squares
curve fitting fits a particular peak poorly, this peak is excluded
from the calculation to prevent outliers biasing the results. This
typically occurs for a single peak for the datasets with a large
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Fig. 15. Resolution improvement vs time of MRC traces (Section IV-A).
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Fig. 16. Resolution improvement vs time of GTT traces (Section IV-B).

number of peaks (datasets F and G). Fig.s 16 and 15 indicate
the spread of resolution estimates across all peaks as a function
of time. GTT has a substantially larger increase in resolution,
although the spread of intra-peak resolution is larger than for
MRC. Nevertheless, both techniques give a clear resolution
improvement across all peaks, with 35% for MRC and 100%
for GTT. TABLE II indicates that GTT usually outperforms
MRC, except for datasets B and D, where MRC still has
a resolution improvement of over 8% per minute. Moreover,
the linear realignment model typically outperforms the affine
model, indicating that the simple histogram baseline removal
is effective compared with the polynomial baseline model.
In MRC, peaks which leave the FOV earlier in the EP
process (the “lower peaks”) won’t see an improvement in
resolution compared with the “upper peaks” as there is no new
information as the EP process continues. However, in GTT
the FWHM of each peak is regressed and projected forward,
which explains the improvement in resolution for all peaks.

VI. CONCLUSIONS

This paper presents a novel multi-capture snapshot imaging
technique for GEP using estimation theory to realign and

fuse multiple waveforms. The proposed signal processing
algorithms facilitate an improvement of the snapshot imaging
approach which is typically simpler to implement in automated
electrophoresis systems than the finish-line method. A further
advantage of MSI is that static noise will be diminished, since
static noise becomes non-coherent after realignment. Several
realignment and fusion algorithms are proposed and compared.
Improvement in resolution is quantified by deconvolving the
EPMTs; the proposed technique improves resolution by ap-
proximately 10% per minute of additional electrophoresis,
equivalent to doubling resolution over a typical run.
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