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Abstract

T1-weighted image (T1WI) and T2-weighted image (T2WI) are the two routinely acquired 

magnetic resonance (MR) modalities that can provide complementary information for clinical and 

research usages. However, the relatively long acquisition time makes the acquired image 

vulnerable to motion artifacts. To speed up the imaging process, various algorithms have been 

proposed to reconstruct high-quality images from under-sampled k-space data. However, most of 

the existing algorithms only rely on mono-modality acquisition for the image reconstruction. In 

this paper, we propose to combine complementary MR acquisitions (i.e., T1WI and under-sampled 

T2WI particularly) to reconstruct the high-quality image (i.e., corresponding to the fully-sampled 

T2WI). To the best of our knowledge, this is the first work to fuse multi-modal MR acquisitions 

through deep learning to speed up the reconstruction of a certain target image. Specifically, we 
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present a novel deep learning approach, namely Dense-Unet, to accomplish the reconstruction 

task. The proposed Dense-Unet requires fewer parameters and less computation, while achieving 

promising performance. Our results have shown that Dense-Unet can reconstruct a 3D T2WI 

volume in less than 10 seconds with an under-sampling rate of 8 for the k-space and negligible 

aliasing artifacts or signal-noise-ratio (SNR) loss. Experiments also demonstrate excellent 

transferring capability of Dense-Unet when applied to the datasets acquired by different MR 

scanners. The above results imply great potential of our method in many clinical scenarios.
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I. INTRODUCTION

Magnetic resonance (MR) imaging is widely applied for numerous clinical applications, as it 

can provide non-invasive, reproducible and high-quality measurements of both anatomical 

and functional information that are essentially important for disease diagnosis and treatment 

guidance. MR is better suited to reveal contrasts in different soft tissues than many other 

medical imaging modalities. It also avoids exposing patients to harmful ionizing radiation, 

thus bringing in great safety. However, MR acquisition usually requires sampling of the full 

k-space for encoding the spatial-frequency information. This leads to a relatively slow 

acquisition process if no acceleration is adopted. During the slow acquisition, patient 

movement or physiological motion, e.g., respiration, cardiac motion, and blood flow, can 

cause significant artifacts in the MR images [1]. Long scan time also increases the 

healthcare cost to the patient and limits the availability of MR scanners [2].

Attempts to accelerate MR acquisition could date back to the late 1970s, even before MR 

was widely applied for clinical purpose. The k-space data that encodes the spatial-frequency 

information are commonly acquired line-by-line. The acquisition time for a given sequence 

thus depends on the number of the sampled lines in the k-space. Many methods focus on the 

reduction of the k-space sampling rate, i.e., by under-sampling the k-space. These 

approaches rely on the intrinsic redundancy in the k-space, where individually sampled 

points do not arise from distinct spatial locations [3]. There are two major acceleration 

techniques, i.e., 1) parallel imaging (PI) [4], [5] and 2) compressed sensing (CS) [2], [3], [6], 

[7]. PI sequences under-sample the k-space and reconstruct the skipped data points using the 

coil sensitivity profiles across multiple-channels. However, an in-plane acceleration rate 

higher than 2 may cause artifacts and substantially reduce signal-to-noise ratio (SNR) in 

clinical practice [8]. On the other hand, CS aims at reconstructing an MR image from a 

small number of sparsely selected data points in the k-space. The success of CS in MR 

reconstruction originates from two facts: (a) the medical image is naturally compressible by 

sparse coding in an appropriately transformed domain [6]; (b) the sequence acquires data 

points in the transformed spatial-frequency domain, instead of the image domain.

Recent deep learning techniques can also be applied to accelerate MR acquisition. Deep 

convolutional neural networks (CNNs) have been widely applied in various intelligent tasks, 
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including image classification [9], [10], [11], object detection [12], [13], image segmentation 

[14], [15], [16] and image translation [17]. CNNs also have the capability of addressing 

inverse problems such as image super-resolution (SR) [17], denoising [18], depth map 

prediction [19], and medical image synthesis [20], [21], [22], [23]. Particularly in medical 

image reconstruction, CNNs have shown promising capability for handling incompletely 

sampled k-space data [24], [25], [26], [27]. Wang et al. [28] proposed to train a CNN to 

model the mapping between the MR images obtained from zero-filled under-sampled and 

fully-sampled k-space data, respectively. The deep learning based reconstruction result can 

be used either as an initialization or a regularization in the classical CS reconstruction 

process. Lee et al. [27] further introduced a deep multi-scale residual learning algorithm to 

reconstruct the under-sampled MR data by formulating CS as a residual regression problem. 

Sun et al. [24] proposed a deep architecture (ADMM-Net) which was defined over a 

dataflow graph. Its parameters, e.g., image transforms, shrinkage functions, etc., are trained 

in the end-to-end way. Schlemper et al. [26] developed a deep cascade of CNNs to 

reconstruct the aggressive Cartesian under-sampled MR image. When the frames of the 

sequences were reconstructed jointly, they demonstrated to learn the spatiotemporal 

correlation efficiently by leveraging the convolution and data sharing layers together. Quan 

et al. [29] proposed a novel fully-residual convolutional autoencoder and generative 

adversarial network (RefineGAN) with consistency loss for fast and accurate CS-MR 

reconstruction. In addition, they leveraged a chained network to further improve the quality 

of the reconstructed image.

More recently, several studies have been performed to integrate advanced deep neural 

network architectures, strategies, and loss designs to address the MRI reconstruction 

problems [30], [31], [32], [33], [34]. Schlemper et al. [30] proposed a novel cascaded CNN-

based CS technique and a stochastic variation for Diffusion Tensor Cardiac Magnetic 

Resonance (DT-CMR) reconstruction. Yang et al. [31] designed a novel conditional 

generative adversarial network based model (DAGAN) to reconstruct CS-MRI and proposed 

a refinement learning method to further improve the reconstruction performance. Seitzer et 

al. [32] combined adversarial loss, perceptual loss and mean squared error (MSE) loss 

together to promote the visual quality of CS-MRI reconstruction. Qin et al. [33] developed a 

novel convolutional recurrent neural network (CRNN) architecture to simultaneously exploit 

the dependency of the temporal sequences as well as the iterative nature of traditional 

optimization algorithms for high-quality cardiac MR image reconstruction.

Although deep learning methods have shown promising results for reducing reconstruction 

time while maintaining superior image quality, most methods reported in the literature focus 

on reconstructing high-quality MR image (i.e., corresponding to the full,y-sampled k-space 

data) by just using the under-sampled data of the same modality. Most of them have not 

explored the highly coupled relationship between different MR sequences to accelerate 

image reconstruction, i.e., through multi-modal fusion.

In clinical routines, T1WI and T2WI images are two basic MR sequences for assessing 

anatomical structures and pathologies, respectively. The two modalities are closely related 

with each other. T1WI is useful for identifying fatty tissue, characterizing focal liver lesions 

and in general for obtaining morphological information, as well as for post-contrast imaging. 
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T2WI is useful for detecting edema and inflammation, revealing brain white-matter lesions 

and assessing zonal anatomy in the prostate and uterus, etc. Examples of the co-registered 

T1WI and T2WI data from the same subject are shown in Fig. 1. Two white-matter lesions 

are highlighted by the red circle and the green box, respectively. The two sequences of T1WI 

and T2WI in general provide complementary information to reveal the anatomical details of 

the patient, although they have very different image appearance and contrast for 

corresponding anatomies. For example, the white matter in T1WI is of high intensity, while 

it appears dark in T2WI; whereas the gray matter in T1WI is of low intensity, while it 

appears bright in T2WI.

The acquisition of T2WI is usually slower than T1WI due to the relatively longer repetition 

time (TR) and echo time (TE) of T2WI. To this end, one may consider under-sampling the 

k-space for faster T2WI, which, however, may reduce the imaging quality at the same time. 

In Fig. 1, the example of the 1/8 under-sampled T2WI (i.e., by reducing the sampling rate to 

1/8 of the case of fully sampling the k-space) is provided. Although the lesions can still be 

roughly observed, the boundaries are not clear and many details are missing. In addition, the 

quality of the non-lesion areas, as indicated by the blue arrows, is also reduced in the 1/8 

under-sampled T2 image. Therefore, we argue that it is unpractical to speed up the 

acquisition of T2WI by simply under-sampling the k-space with such a high reduction 

factor.

In this paper, we propose a deep learning solution to fuse T1WI and a highly under-sampled 

T2WI to reconstruct a high-quality T2WI. Our method can (1) leverage the highly coupled 

relation between T1WI and T2WI and (2) utilize the unique cues in the under-sampled 

T2WI to reconstruct the high-quality image corresponding to the fully-sampled T2WI. 

Particularly, we argue that the appearance of different tissues is highly related, though 

diverse, in T1WI and T2WI especially in non-lesion areas. In this way, a nonlinear mapping 

modeled by deep learning can bridge the two different image modalities. Meanwhile, even 

though a lesion might not be easily observable in T1WI, the cues in under-sampled T2WI 

allow us to reconstruct it at high quality after integrating the information from the fully-

sampled T1WI.

To this end, we adapt the Unet architecture [14] to fuse the two modalities for the 

reconstruction of T2WI. First, we concatenate the corresponding T1WI and under-sampled 

T2WI as the input. Next, in the proposed Dense-Unet that consists of a contracting (or 

encoding) path and a symmetric expanding (decoding) path, we introduce the dense block to 

significantly boost the reconstruction quality of the target fully-sampled T2WI. The dense 

blocks result in fewer network parameters, making our computation much easier. Our 

experimental results suggest that we could accelerate the imaging process by under-

sampling the k-space at the rate of 8 for T2WI, with negligible aliasing artifacts and SNR 

loss in the reconstructed T2 images. Moreover, we find that the deep network trained from 

the data of a Siemens Verio 3T scanner can be well applied to the data acquired by a Philips 

Ingenia 3T scanner, implying a high transferring and generalization capability of our 

method.
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Although there are several studies attempting to estimate T2WI from T1WI in the literature, 

our work attains fast T2WI reconstruction by fusing multi-modal T1WI with under-sampled 

T2WI. A similar work can be found in [34], which also tries to improve the quality of down-

sampled images with the help of high resolution images of different contrast. For just using 

T1WI to predict T2WI, Alkan et al. [35] proposed a nine-layer 2D CNN using T1WI 

combined with tissue mask to generate T2WI. Vemulapalli et al. [36] generated T1WI from 

T2WI by unsupervised cross-modal synthesis. However, our work differs from these works 

in terms of the following contributions.

• We have demonstrated that our proposed method could achieve 8x acceleration 

rate while still preserves high reconstruction quality. It only takes 9.5s to finish 

the reconstruction of a 3D T2 image volume by fusing T1WI and under-sampled 

T2WI acquisitions.

• We propose a novel Dense-Unet architecture with the dense blocks in both 

encoding and decoding paths. The dense blocks dramatically reduce the number 

of the network parameters to 1/3, while still achieving superior reconstruction 

quality of T2WI.

• We demonstrate the possibility of transferring the networks trained with different 

datasets. In particular, we train with the data from a Siemens Verio 3T and test 

with data from a Philips Ingenia 3T scanner. The quality of the reconstruction is 

satisfactory, which demonstrates the good transferring and generalization 

capability of our proposed method.

A preliminary version of this work has been presented at a conference [37]. Herein, we (i) 

demonstrate transferability of proposed method across different scanners, (ii) evaluate and 

further analyze the reconstruction performance of using different under-sampling masks, (iii) 

provide more detailed comparison of our proposed method with base Unet both qualitatively 

and quantitatively, and (iv) include additional discussions that are not in the conference 

publication.

II. METHODS

We provide details of our proposed Dense-Unet in this section, which is capable of 

reconstructing high-quality T2WI by fusing T1WI and under-sampled T2WI acquisitions. 

The architecture of our proposed Dense-Unet is illustrated in Fig. 2.

A. Objective Function

We can denote the under-sampled T2 k-space data as

f T2 = MFyT2 (1)

where M is the mask to under-sample the k-space, F represents the full Fourier encoding 

matrix complying with FH F = I (H for the Hermitian transpose operation), and yT2 is the T2 

image corresponding to fully-sampled k-space data (fully-sampled T2 image). Therefore, 

Xiang et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FyT 2 denotes the fully sampled k-space data. With the under-sampled k-space data fT 2, we 

can apply zero-filling to the k-space and get the under-sampled T2 image by

xT2 = FH f T2 (2)

Our goal in this work is to reconstruct the fully-sampled T2 image ( fT 2) when only the 

under-sampled xT 2 or fT 2 is available. Specifically, we adopt a deep CNN architecture to 

accomplish this task. Given pair data of xT2 and yT2, we train the network to minimize the 

following loss function in a supervised way:

arg min
θ

1
2N ∑n = 1

N C xT2, n; θ − yT2, n 2
2

(3)

In the above, C(.;.) is the desired mapping function with the network parameters 

θ = W1, B1 , … , WL, BL . N is the total number of the paired images for training, and L is 

the maximal layer depth of the network.

T1WI provides critical guidance to the reconstruction of T2WI in this work, which has been 

motivated early and will be verified in subsequent experiments. To this end, we need to fuse 

the T1WI information to better reconstruct T2WI. The corresponding T1WI is thus 

concatenated with the under-sampled T2WI, and then input to the network. Accordingly, the 

mapping function of the network needs to accommodate the multi-modal input by following

argmin
θ

1
2N ∑n = 1

N C xT2, n, yT1, n ; θ − yT2, n 2
2

(4)

where yT1,n is the fully-sampled T1 image

B. The Dense-Unet Architecture

Our proposed deep neural network can handle multi-modal input, which is concatenated 

from fully-sampled T1WI and under-sampled T2WI. Specifically, we concatenate m 
consecutive under-sampled T2 slices and m consecutive T1 slices in the same positions. The 

concatenated 2m slices are input to the network, which outputs corresponding T2 slices. In 

our implementation, we set m = 3 for synthesizing every 3 axial slices in each training and 

testing task. The performance is mostly stable by increasing m according to our experiments.

The Dense-Unet, whose detailed architecture is shown in Fig. 2(a), contains a contracting 

path and an expanding path. The feature map sizes decrease along the contracting path by 

pooling, and then increase in the expanding path by deconvolution. There are four basic 

components in the Dense-Unet architecture, i.e., pre-feature extraction layer, dense block, 

transition layer and reconstruction layer. The four components are marked with different 

indices in the figure. An example of the dense block is shown in Fig. 2(b).
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Pre-feature extraction layer: Dense-Unet first extracts feature maps from the 

concatenated under-sampled T2WI and T1WI using a convolutional layer. These feature 

maps are forwarded to the latter dense blocks for further mapping. Denoting the 

concatenated input as (xT2, yT1), we can compute the output of the first layer as

F1 = σ W1 ∗ xT2, yT1 + B1 (5)

where W1 and B1 represent the kernels associated with the first convolutional layer, and ∗ 
denotes the convolution operator.

Dense block: Dense connectivity has been proposed in [10] to improve the feature flow 

across layers. We adopt the strategy in our model so that we can effectively increase the 

depth of the whole network without being trapped in optimization. Moreover, the dense 

block requires substantially fewer parameters and less computation, which makes the model 

efficient to train. Fig. 2(b) illustrates the layout of the dense block. Consequently, the l-th 

layer receives the feature maps of all preceding layers, [z0,…,zl−1], as the input

z1 = Hl z0, …, zl − 1 (6)

where z0, …, zl − 1  refers to the concatenation of the feature maps coming from layers 0,…,l 

− 1. Hl (∗) is defined as a composite function of three consecutive operations: batch 

normalization (BN) [38], followed by a rectified linear unit (ReLU) [39], and a 3 × 3 

convolution (Conv). The hyper-parameters for the dense block are the growth rate (GR) and 

the number of the convolutional layers (NC). Fig. 2(b) gives an example of the dense block 

with GR=16 and NC=5.

Transition layer: We refer to the layer behind the dense block as the transition layer. In the 

contracting path, it consists of BN, 1 × 1 Conv, and 2 × 2 average pooling. On the expanding 

path, it consists of BN and deconvolution (filter number: 64, size: 4 × 4, stride: 2). The 

transition layer is introduced to fix the number of the feature maps to 64. The hyper-

parameters in the preceding dense block may alter the number of the feature maps. With the 

transition layer, we can flexibly adopt the dense blocks in both the contracting and the 

expanding paths.

Reconstruction layer: The proposed Dense-Unet ends with the reconstruction layer that 

yields the fully-sampled T2WI from the feature maps generated by the last dense block. The 

reconstruction can be attained by a single convolutional layer by following

yT2 = WR ∗ FD + BR (7)

Here, FD is the feature maps outputted by the last dense block, and yT2 is the T2WI 

estimation by the reconstruction layer. Note that there is no activation function employed in 
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the reconstruction layer. We use the mean squared error (MSE) between the estimation of 

fully-sampled T2 image and the ground-truth fully-sampled T2 image as the loss function, 

which supervises the training of the whole network.

III. EXPERIMENTAL RESULTS

First, we introduce the datasets used in the experiments and present the experimental settings 

(Sections 3.1). After that, we investigate the necessity of fusing the multi-modal T1 

information for the reconstruction of T2WI (Section 3.2). Next, we explore the influence of 

different hyper-parameter settings of Dense-Unet upon the reconstruction performance 

(Section 3.3). Then, we compare Dense-Unet with the existing Unet and other state-of-the-

art methods to demonstrate the effectiveness of our proposed method (Section 3.4). After 

that, we explore the effect of using different under-sampling masks on the performance of 

reconstruction (Section 3.5). Finally, we demonstrate that the Dense-Unet trained with a 

certain dataset can be transferred and applied to reconstruct another dataset acquired from a 

different MR scanner (Section 3.6).

A. Data and Experimental Setting

We utilize the imaging data from MICCAI Multiple Sclerosis (MS) Segmentation Challenge 

2016 [40] for the demonstration of our proposed Dense-Unet. There are two datasets, each 

containing 5 subjects of paired T1WI and T2WI. Dataset 1 comes from a Philips Ingenia 3T 

scanner. The voxel size is 0.7 × 0.74 × 0.74mm3. Dataset 2 comes from a Siemens Verio 3T 

scanner. The voxel size is 1.1 × 0.5 × 0.5mm3. Multiple pre-processing steps are applied on 

all subjects in both datasets, including: 1) denoising with the non-local means algorithm 

[41]; 2) rigid registration [42]; 3) brain extraction using the volBrain platform [43] from 

T1WI and then applied to T2WI with sinc interpolation; 4) bias correction using the N4 

algorithm [44]; 5) intensity normalization to the range [0,1] by dividing the maximal 

intensity value. Note that Steps 1–4 above are processed by the challenge organizers. The 

final size of each image is cropped to 336 × 336 × 261mm3 in our experiments.

To prepare the data of under-sampled T2WI, we adopt a center mask (c.f. Fig. 7) to under-

sample the k-space. Note that the center part of the k-space (and also covered by the center 

mask) accounts for a major contrast source of the anatomical structures in the reconstructed 

T2 image. The outer area of the k-space, on the other hand, provides high-frequency spatial 

information. In our proposed method, we fuse T1WI and under-sampled T2WI as the input 

to the network. We expect that all spatial information in the fully-sampled T1 image can 

help estimate anatomical structures in T2WI, where central k-space in T2WI will provide 

essential information for image contrast. Particularly, we follow Eq. (1) to simulate the 

under-sampled T2 image given each fully-sampled T2WI acquisition. Note that there are 

alternative ways to design the mask, which will be discussed later.

We then use PyTorch [45] to implement the proposed Dense-Unet. In the training phase, we 

use consecutive 2D slices (m = 3) to train the deep network. We extract 2D slices from the 

3D volumes of fully-sampled T1WI and under-sampled T2WI as the input, while the 

corresponding slices from the fully-sampled T2WI are used as ground truth. In this way, 

each training subject can contribute 200 training samples in axial slices, while the slices 
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containing background only are excluded from training. Data augmentation of horizontal 

flipping is also applied. We adopt Adam optimization [46] with a momentum of 0.9 and 

perform 100 epochs in the training stage. The batch size is set to 4 and the initial learning 

rate is set to 0.0001, which is divided by 10 after 50 epochs. We use zero-padding during 

every convolutional layer to ensure that the size of the output is the same as the size of the 

input. All the experiments are conducted in a desktop with an Intel Core i7 4.00GHz CPU, 

32 GB RAM, and an NVIDIA GeForce GTX Titan X GPU.

The leave-one-out cross-validation strategy is employed in the experiment. To quantitatively 

evaluate the reconstruction performance, we use the standard metrics of mean absolute error 

(MAE) and peak signal-noise ratio (PSNR)

MAE =
yT2 − yT2

V (8)

PNSR = 10ln VD2

yT2 − yT2 2
2 (9)

Here, V is the number of voxels in the image, yT2 is the ground-truth T2 image, yT2 is the 

reconstructed T2WI, and D is the intensity range of image yT2. The PSNR and MAE 

measures encode the difference between the reconstructed T2WI and the ground truth. In 

general, the higher PSNR and lower MAE indicate better perceptive quality of the 

reconstructed T2WI.

B. Necessity of Fusing T1WI

To demonstrate the effectiveness of integrating T1WI data for the reconstruction of T2WI, 

we compare the performances of several different cases performed on Dataset 1 and report 

the average PSNRs/MAEs in Table I. The under-sampling rate of the k-space is set to 8 here. 

The cases under comparisons include (1) using under-sampled T2WI to reconstruct fully-

sampled T2WI (Reconstructed T2 with 1/8 T2) and (2) using the combination of T1WI and 

under-sampled T2WI to reconstruct fully-sampled T2WI (Reconstructed T2 with T1 and 1/8 

T2). For better comparison, in Table I we provide the PSNR/MAE scores between the fully-

sampled T2WI and under-sampled T2WI (1/8 T2) before deep learning based 

reconstruction. Meanwhile, one may also consider synthesizing T2WI by using T2WI input 

only (Reconstructed T2 with T1). Note that the same network as in Fig. 2 was used when 

dealing with a single image input for fairness (i.e., Reconstructed T2 with 1/8 T2 and 

Reconstructed T2 with T1).

As shown in Table I, better performance is observed with Reconstructed T2 with T1 and 1/8 

T2 as compared to Reconstructed T2 with T1 and Reconstructed T2 with 1/8 T2. In 

particular, the average PSNR score for Reconstructed T2 with T1 and 1/8 T2 is 36.9dB, 
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comparing to 30.6dB for Reconstructed T2 with T1 and 33.9dB for Reconstructed T2 with 

1/8 T2. On the other hand, minimum improvement in image quality is observed with 

Reconstructed T2 with 1/8 T2 (PSNR: 33.9dB) as compared to 1/8 T2 (PSNR: 32.5dB), 

suggesting difficulty in enhancing the quality of T2WI with deep learning under such a high 

reduction factor. However, with additional information from T1WI, the image quality 

(Reconstructed T2 with T1 and 1/8 T2, PSNR: 36.9dB) is largely improved, which 

demonstrates the importance to fuse multi-modal inputs for the reconstruction of highly 

undersampled T2WI. The MAE scores are mostly consistent with the results measured by 

PSNR.

Representative images for all four reconstruction cases are shown in Fig. 3 for visual 

inspection. Compared to other methods, our proposed approach with Reconstructed T2 with 

T1 and 1/8 T2 provides the best image quality and preserves both image contrast and 

detailed tissue boundaries with respect to the ground-truth T2WI. Although the performance 

of Reconstructed T2 with T1 in PSNR/MAE is poor (c.f. Table I), major tissue and 

anatomies are correctly synthesized, e.g., white matter and gray matter in the red circle. 

However, the lesion in the green box is largely missing if using only T1 input for cross-

modal synthesis, as reflected by the large differences in the error map with respect to the 

ground truth. This indicates the difficulty of reconstructing T2WI based on T1WI alone by 

image synthesis, as the unique information in the k-space center of T2WI (though under-

sampled and low-quality) is essential for preserving image contrast.

On the contrary, referring to Reconstructed T2 with 1/8 T2, we find that the white-matter 

lesion (green box) is clearly observable, while its interface with the surrounding tissues 

becomes blurry. Moreover, in the red circle, the contrast appears worse compared to the 

ground truth. Even though deep learning is adopted here to enhance image quality, we argue 

that the missing data points in the masked-out k-space make it difficult to fully reconstruct 

T2WI from under-sampled k-space data. To this end, we need to take advantages from 

complementary T1WI and under-sampled T2WI. While T1WI provides detailed anatomical 

information that both modalities share, the unique cues in under-sampled T2WI are essential 

for the proposed Dense-Unet. In general, Reconstructed T2 with T1 and 1/8 T2 yields the 

most satisfactory reconstruction result with high perceptive quality.

C. Parameter Setting in Dense-Unet

There are two hyper-parameters in the dense block, i.e., the growth rate (GR) and the 

number of convolutional layers (NC). In this experiment, we explore the effect of different 

hyper-parameter settings on the reconstruction quality of T2WI by using Dataset 1. 

Concerning the physical limit of the GPU memory, we have tested five pairs of parameters. 

The results as reported in Table II are also associated with three different rates to under-

sample the k-space. In this way, we can evaluate the influence of the parameters regarding 

the acceleration factor in the reconstruction of fully-sampled T2WI.

As shown in Table II, Dense-Unet with GR = 16 and NC = 5 yields the best reconstruction 

performance, regardless of the under-sampling rates (i.e., 1/4, 1/8, and 1/16). Reduced image 

quality (decreased PSNR and increased MAE) is observed with higher under-sampling rates, 

which is expected. Fig.4 presents examples for visual inspection, which are derived from the 
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optimal hyper-parameters and corresponding to different under-sampling rates. Similar 

image quality and error maps are noticed for Reconstructed T2 with T1 and 1/8 T2 and 

Reconstructed T2 with T1 and 1/4 T2. However, substantial errors are observed with the 

under-sampling rate of 1/16, especially as indicated in the green box of white-matter lesion. 

To this end, we adopt the recommended under-sampling rate as 1/8 in this work, and argue 

that our method can reach 8x acceleration factor for T2WI.

D. Comparison with Unet

In this section, we conduct comprehensive comparisons between our proposed Dense-Unet 

and the standard Unet, in order to demonstrate the advantage of the dense block. For Unet, it 

also has two down-sampling layers and two up-sampling layers. Similar to the original Unet, 

the numbers of convolution feature map in each stage are 64, 128 and 256, respectively. And 

it has 2 convolution layers in each stage. First, we compare the training/testing loss 

convergence of Unet and Dense-Unet, respectively (Fig. 5). In the training stage, the blue 

curve for Dense-Unet converges faster than the green curve for Unet, and arrives at lower 

loss in the final iteration. In the testing stage, Dense-Unet also produces better performance 

than Unet, which is reflected by the lower loss calculated from test samples. Note that there 

are ~2.2 million parameters in U-Net, but only ~0.4 million in Dense-Unet.

Quantitative evaluation in PSNR and MAE for both Unet and Dense-Unet is summarized in 

Table III. For three different under-sampling rates, Dense-Unet consistently outperforms 

Unet, suggesting the contribution of the proposed dense block in the multi-modal 

reconstruction task. Fig.6 gives a visual comparison of the reconstruction results by Unet 

and Dense-Unet, respectively. The under-sample ratio studied in Fig.6 is 1/8 and all three 

views are presented. We can see that with T1WI and under-sampled T2WI as input, both 

Unet and Dense-Unet can reconstruct the details of T2WI, including the lesion. However, 

the Dense-Unet is superior in that it provides a clearer boundary and less error especially in 

the ventricular area.

E. Effect of under-sampling masks for T2WI

A center mask is used to under-sample the k-space of T2WI. In this section, we evaluate the 

choices of different under-sampling masks and compare the reconstructed T2 images. With a 

constant under-sample ratio of 1/8, we particularly test three different masks, including 

Center Mask, Equidistance Mask and Gaussian Mask. Center Mask only extracts 

information from the center k-space. Equidistance Mask extracts half of the k-space lines 

(1/16 of the whole k-space) from the center, and the rest half lines are uniformly sampled at 

both sides. For Gaussian Mask, 3/32 of k-space lines are included in the center and the rest 

are sampled based on the Gaussian distribution. All three masks are shown in Fig.7. Note 

that more information is always extracted from the center of k-space for all three masks, as 

the data in the center is critical to determine the image contrast in T2WI. Results of using 

different masks are then summarized in Table IV. We observe that Center Mask provides the 

best performance out of the three cases. This further suggests that, when the same amount of 

k-space data is utilized, sampling at the k-space center of T2WI will provide the best results 

with our proposed method.
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F. Transferring across Scanners

In this section, we explore the robustness of our proposed method on different datasets that 

were acquired from different scanner makers. We investigate the way to transfer the network 

across the datasets of different scanners. Specifically, as we have two datasets in this work, 

we use Dataset 2 (from a Siemens Verio 3T scanner) to train the network and then apply it to 

Dataset 1 for testing (from a Philips Ingenia 3T scanner). The average PNSRs and MAEs 

with respect to different under-sampling rates are reported in Table V. For comparison, the 

average PSNRs and MAEs that are tested on Dataset 1 using the leave-one-out strategy are 

also listed in Table V. We refer Dense-Unet (D1-D1) to the case when our proposed method 

is trained on Dataset 1 and tested on Dataset 1 too. Dense-Unet (D2-D1) then indicates the 

case that the network trained from Dataset 2 is transferred to Dataset 1.

From the table, we observe that the reconstruction performances are mostly comparable 

between Dense-Unet (D1-D1) and Dense-Unet (D2-D1). For example, with T1 and 1/8 

under-sampled T2, the transferred network reaches a PSNR of 36.7dB, which is just slightly 

lower than the case trained and tested with the same dataset (36.9dB). Similar observations 

can be found for different under-sampling rates, indicating high robustness of our method 

when it is transferred across different datasets.

IV. DISCUSSION

In this study, we have demonstrated that, with the complementary information from T1WI, 

the under-sampled T2WI can be reconstructed with superior image quality compared to the 

images reconstructed using only under-sampled T2WI or only fully-sampled T1WI. Note 

that the techniques of image enhancement (i.e., corresponding to Reconstructed T2 with 1/8 

T2) and cross-modal synthesis (Reconstructed T2 with T1) have drawn a lot of attention in 

medical image analysis recently. However, it is still necessary to fuse multi-modal input for 

a better reconstruction as reflected by our experimental results (Reconstructed T2 with T1 

and 1/8 T2). As in Fig.3, we have demonstrated that under-sampled T2 is critical to provide 

cues of white-matter lesion, which is barely observable in T1WI.

While the importance of T2WI for diagnosis (e.g., toward the lesion as in Fig.3) is evident, 

one may argue that for healthy subjects, the reconstructed T2WI from T1WI alone is enough 

without the need of under-sampled T2WI [35]. To this end, we present an example slice 

without any lesion in Fig.8. The first row is the reconstruction results using our proposed 

Dense-Unet methods, and the second row contains error maps generated by comparison with 

the ground-truth T2. For visual inspection, one may notice that Reconstructed T2 with T1 

has a higher systematic error compared to Reconstructed T2 with T1 and 1/8 T2, especially 

in the ventricles highlighted by the green box. Meanwhile, Reconstructed T2 with 1/8 T2 

has no such bias, though it suffers from blurry boundary in the image. Therefore, we argue 

that the cross-modal synthesis task (from T1 to T2) is challenging. Whereas, it becomes 

much easier to reconstruct high-quality T2WI with multi-modal input.

MR images reconstructed from k-space contain complex-value data. The phase of MR 

images often provides valuable information as the magnitude image, particularly when 

performing image reconstruction from under-sampled dataset. In this study, all our 
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experiments were performed using data from the 2016 MICCAI Multiple Sclerosis (MS) 

Segmentation Challenge. The data provided by the challenge only contains magnitude 

information. Therefore, we are unable to evaluate the reconstruction results with the phase 

information. In the future, we will collect real data containing both the magnitude and phase 

to further evaluate the proposed reconstruction method. It is straightforward to extend the 

current Dense-Unet architecture to handle complex-value data by including the phase data as 

a separate channel for the input network. In our case, we will have 12 channels in total for 

the input, i.e., 6 for magnitude channels (3 consecutive slices for T1WI and 3 for under-

sampled T2WI) and 6 for phase channels (also 3 for T1WI and 3 for under-sampled T2WI). 

Similarly, the network can output the 6 channels corresponding to the magnitude and phase 

parts. This setting could combine the information from magnitude and phase parts 

simultaneously for the reconstruction, and further improvement in the reconstruction 

performance is expected.

The proposed framework that uses T1WI to help the reconstruction of T2WI can be easily 

applied to other MRI sequence reconstruction, such as Fluid Attenuated Inversion Recovery 

(Flair) image and Diffusion Weighted Imaging (DWI). In the future, we will explore the 

potential of using more modalities to reconstruct the target modality. Moreover, currently we 

use one fully sampled modality and an under-sampled modality to implement the 

reconstruction; we could extend the work by using two under-sampled modalities (i.e., one 

slightly under-sampled and one highly sampled) to complete the reconstruction of highly 

sampled image. Following this extension, we could improve our framework by outputting 

two reconstruction results corresponding to the two under-sampled inputs, resulting in a 

faster scanning process for multi-sequence acquisitions in practical clinical applications. 

These are all based on the observation that multi-modalities have high inherent 

corresponding relationship with each other, but they also have their own unique information.

V. CONCLUSION

In this paper, we propose a novel Dense-Unet model to reconstruct the T2WI from the T1WI 

and under-sampled T2WI. Our approach of using T1WI makes the reconstruction of T2WI 

from 1/8 under-sample ratio in k-space possible and leads to the process being sped up by a 

factor of 8. The dense block, which requires substantially fewer parameters and less 

computation, is integrated within the Unet architecture in our work. This proposed Dense-

Unet could converge faster than that of the baseline model Unet and attain a lower loss point. 

This enables our model to further improve the quality of the reconstructed T2WI. 

Comprehensive experiments showed the superior performance of our method, including the 

greater perceptive quality and the faster running speed. Moreover, the transferability across 

different datasets from different scanners further shows the superiority of our proposed 

method. The trained model can be directly applied to different scanners without any pre-

training or refinement process. This work can greatly improve the acquisition efficiency and 

image quality in clinical settings. While all the experiments in this work are performed on 

simulated MR images, we will investigate the performance of our framework on real data in 

the future, with both magnitude and phase values to improve the reconstruction results 

gained from under-sampled images.

Xiang et al. Page 13

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgment

This paper was supported in part by the National Natural Science Foundation of China under Grants 81471733 and 
61471390, the program of China Scholarship Council, the National Key R&D Program of China under Grant 
2017YFC0107602, the Science and Technology Commission of Shanghai Municipality under Grant 16410722400, 
16511101103, and 17411953300.

REFERENCES

[1]. Krupa K and Bekiesin´ska-Figatowska M, “Artifacts in magnetic resonance imaging,” Polish 
journal of radiology, vol. 80, p. 93, 2015. [PubMed: 25745524] 

[2]. Jaspan ON, Fleysher R, and Lipton ML, “Compressed sensing mri: a review of the clinical 
literature,” The British journal of radiology, vol. 88, no. 1056, p. 20150487, 2015. [PubMed: 
26402216] 

[3]. Lustig M, Santos JM, Lee J-H, Donoho DL, and Pauly JM, “Application of compressed sensing 
for rapid mr imaging,” SPARS,(Rennes, France), 2005.

[4]. Pruessmann KP, Weiger M, Scheidegger MB, and Boesiger P, “Sense: sensitivity encoding for fast 
mri,” Magnetic resonance in medicine, vol. 42, no. 5, pp. 952–962, 1999. [PubMed: 10542355] 

[5]. Sodickson DK and Manning WJ, “Simultaneous acquisition of spatial harmonics (smash): fast 
imaging with radiofrequency coil arrays,” Magnetic resonance in medicine, vol. 38, no. 4, pp. 
591–603, 1997. [PubMed: 9324327] 

[6]. Lustig M, Donoho DL, Santos JM, and Pauly JM, “Compressed sensing mri,” IEEE signal 
processing magazine, vol. 25, no. 2, pp. 72–82, 2008.

[7]. Gamper U, Boesiger P, and Kozerke S, “Compressed sensing in dynamic mri,” Magnetic 
Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance 
in Medicine, vol. 59, no. 2, pp. 365–373, 2008.

[8]. Hutchinson M and Raff U, “Fast mri data acquisition using multiple detectors,” Magnetic 
resonance in Medicine, vol. 6, no. 1, pp. 87–91, 1988. [PubMed: 3352509] 

[9]. Krizhevsky A, Sutskever I, and Hinton GE, “Imagenet classification with deep convolutional 
neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[10]. Huang G, Liu Z, Van Der Maaten L, and Weinberger KQ, “Densely connected convolutional 
networks.” in CVPR, vol. 1, no. 2, 2017, p. 3.

[11]. He K, Zhang X, Ren S, and Sun J, “Deep residual learning for image recognition,” in 
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–
778.

[12]. Girshick R, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer 
vision, 2015, pp. 1440–1448.

[13]. Ren S, He K, Girshick R, and Sun J, “Faster r-cnn: Towards real-time object detection with 
region proposal networks,” in Advances in neural information processing systems, 2015, pp. 91–
99.

[14]. Ronneberger O, Fischer P, and Brox T, “U-net: Convolutional networks for biomedical image 
segmentation,” in International Conference on Medical image computing and computer-assisted 
intervention. Springer, 2015, pp. 234–241.

[15]. Badrinarayanan V, Kendall A, and Cipolla R, “Segnet: A deep convolutional encoder-decoder 
architecture for image segmentation,” arXiv preprint arXiv:1511.00561, 2015.

[16]. Zhou S, Nie D, Adeli E, Gao Y, Wang L, Yin J, and Shen D, “Fine-grained segmentation using 
hierarchical dilated neural networks,” in International Conference on Medical Image Computing 
and Computer-Assisted Intervention. Springer, 2018, pp. 488–496.

[17]. Dong C, Loy CC, He K, and Tang X, “Image super-resolution using deep convolutional 
networks,” IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 2, pp. 
295–307, 2016. [PubMed: 26761735] 

[18]. Zhang K, Zuo W, Chen Y, Meng D, and Zhang L, “Beyond a gaussian denoiser: Residual 
learning of deep cnn for image denoising,” IEEE Transactions on Image Processing, vol. 26, no. 
7, pp. 3142–3155, 2017. [PubMed: 28166495] 

Xiang et al. Page 14

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[19]. Eigen D, Puhrsch C, and Fergus R, “Depth map prediction from a single image using a multi-
scale deep network,” in Advances in neural information processing systems, 2014, pp. 2366–
2374.

[20]. Xiang L, Qiao Y, Nie D, An L, Lin W, Wang Q, and Shen D, “Deep auto-context convolutional 
neural networks for standard-dose pet image estimation from low-dose pet/mri,” 
Neurocomputing, vol. 267, pp. 406–416, 2017. [PubMed: 29217875] 

[21]. Nie D, Trullo R, Lian J, Petitjean C, Ruan S, Wang Q, and Shen D, “Medical image synthesis 
with context-aware generative adversarial networks,” in International Conference on Medical 
Image Computing and Computer-Assisted Intervention. Springer, 2017, pp. 417–425.

[22]. Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, and Shen D, “Medical image 
synthesis with deep convolutional adversarial networks,” IEEE Transactions on Biomedical 
Engineering, 2018.

[23]. Xiang L, Wang Q, Nie D, Zhang L, Jin X, Qiao Y, and Shen D, “Deep embedding convolutional 
neural network for synthesizing ct image from t1-weighted mr image,” Medical image analysis, 
vol. 47, pp. 31–44, 2018. [PubMed: 29674235] 

[24]. Sun J, Li H, Xu Z et al., “Deep admm-net for compressive sensing mri,” in Advances in Neural 
Information Processing Systems, 2016, pp. 10–18.

[25]. Yu S, Dong H, Yang G, Slabaugh G, Dragotti PL, Ye X, Liu F, Arridge S, Keegan J, Firmin D et 
al., “Deep de-aliasing for fast compressive sensing mri,” arXiv preprint arXiv:1705.07137, 2017.

[26]. Schlemper J, Caballero J, Hajnal JV, Price AN, and Rueckert D, “A deep cascade of 
convolutional neural networks for dynamic mr image reconstruction,” IEEE transactions on 
Medical Imaging, vol. 37, no. 2, pp. 491–503, 2018. [PubMed: 29035212] 

[27]. Lee D, Yoo J, and Ye JC, “Deep residual learning for compressed sensing mri,” in Biomedical 
Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on IEEE, 2017, pp. 15–18.

[28]. Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, Feng D, and Liang D, “Accelerating magnetic 
resonance imaging via deep learning,” in Biomedical Imaging (ISBI), 2016 IEEE 13th 
International Symposium on IEEE, 2016, pp. 514–517.

[29]. Quan TM, Nguyen-Duc T, and Jeong W-K, “Compressed sensing mri reconstruction using a 
generative adversarial network with a cyclic loss,” IEEE transactions on medical imaging, vol. 
37, no. 6, pp. 1488–1497, 2018. [PubMed: 29870376] 

[30]. Schlemper J, Yang G, Ferreira P, Scott A, McGill L-A, Khalique Z, Gorodezky M, Roehl M, 
Keegan J, Pennell D et al., “Stochastic deep compressive sensing for the reconstruction of 
diffusion tensor cardiac mri,” arXiv preprint arXiv:1805.12064, 2018.

[31]. Yang G, Yu S, Dong H, Slabaugh G, Dragotti PL, Ye X, Liu F, Arridge J Keegan Y. Guo et al., 
“Dagan: Deep de-aliasing generative adversarial networks for fast compressed sensing mri 
reconstruction,” IEEE transactions on medical imaging, vol. 37, no. 6, pp. 1310–1321, 2018. 
[PubMed: 29870361] 

[32]. Seitzer M, Yang G, Schlemper J, Oktay O, Würfl T,, Christlein V, Wong T, Mohiaddin R, Firmin 
D, Keegan J et al., “Adversarial and perceptual refinement for compressed sensing mri 
reconstruction,” in International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2018, pp. 232–240.

[33]. Qin C, Hajnal JV, Rueckert D, Schlemper J, Caballero J, and Price AN, “Convolutional recurrent 
neural networks for dynamic mr image reconstruction,” IEEE transactions on medical imaging, 
2018.

[34]. Kim KH, Do W-J, and Park S-H, “Improving resolution of mr images with an adversarial 
network incorporating images with different contrast,” Medical physics, 2018.

[35]. Alkan C, Cocjin J, and Weitz A, “Magnetic resonance contrast prediction using deep learning”

[36]. Vemulapalli R, Van Nguyen H, and Kevin Zhou S, “Unsupervised cross-modal synthesis of 
subject-specific scans,” in Proceedings of the IEEE International Conference on Computer 
Vision, 2015, pp. 630–638.

[37]. Xiang L, Chen Y, Chang W, Zhan Y, Lin W, Wang Q, and Shen D, “Ultra-fast t2-weighted mr 
reconstruction using complementary t1-weighted information,” in International Conference on 
Medical Image Computing and Computer-Assisted Intervention. Springer, 2018, pp. 215–223.

Xiang et al. Page 15

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[38]. Ioffe S and Szegedy C, “Batch normalization: Accelerating deep network training by reducing 
internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[39]. Glorot X, Bordes A, and Bengio Y, “Deep sparse rectifier neural networks,” in Proceedings of the 
fourteenth international conference on artificial intelligence and statistics, 2011, pp. 315–323.

[40]. Commowick O, Cervenansky F, and Ameli R, “Msseg challenge proceedings: Multiple sclerosis 
lesions segmentation challenge using a data management and processing infrastructure,” in 
MICCAI, 2016.

[41]. Coupe P´, Yger P, Prima S, Hellier P, Kervrann C, and Barillot C, “An optimized blockwise 
nonlocal means denoising filter for 3-d magnetic resonance images,” IEEE transactions on 
medical imaging, vol. 27, no. 4, pp. 425–441, 2008. [PubMed: 18390341] 

[42]. Commowick O, Wiest-Daessle N´, and Prima S, “Block-matching strategies for rigid registration 
of multimodal medical images,” in Biomedical Imaging (ISBI), 2012 9th IEEE International 
Symposium on IEEE, 2012, pp. 700–703.

[43]. Manjón JV and Coupé P “volbrain: An online mri brain volumetry system,” Frontiers in 
neuroinformatics, vol. 10, p. 30, 2016. [PubMed: 27512372] 

[44]. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, and Gee JC, “N4itk: 
improved n3 bias correction,” IEEE transactions on medical imaging, vol. 29, no. 6, pp. 1310–
1320, 2010. [PubMed: 20378467] 

[45]. Klein G, Kim Y, Deng Y, Senellart J, and Rush AM, “Opennmt: Open-source toolkit for neural 
machine translation,” arXiv preprint arXiv:1701.02810, 2017.

[46]. Kingma DP and Ba J, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:
1412.6980, 2014.

Xiang et al. Page 16

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Examples of T1WI, T2WI and 1/8 under-sampled T2WI data from the same subject. 

Multiple sclerosis lesions are marked by circles and boxes, respectively
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Fig. 2. 
(a) Illustration of the proposed Dense-Unet for T2WI reconstruction with T1WI and under-

sampled T2WI as concatenated input; (b) illustration of the detailed configuration of the 

dense block. Note that we implement the input in (a) as six consecutive axial slices (with 

three from fully-sampled T1WI and three from under-sampled T2WI). In (b), each dense 

block consists of five convolutional layers. The growth rate is set to 16, and the output of 

each block has 80 feature maps.
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Fig. 3. 
Visual inspection of using multi-modal input for T2WI reconstruction. There are three views 

in the figure. The first row of each view shows the input images, as well as the 

reconstruction results by different input settings. The second row provides the error map 

(encoded by the color bar) between the reconstructed T2 image and the ground truth. Red 

circles and green boxes are placed on the corresponding locations of individual images for 

better comparison of specific structures.
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Fig. 4. 
Visualization of reconstructed T2WI with different under-sampling rates, including 1/4, 1/8 

and 1/16. The reconstruction is obtained with Dense-Unet. For fair comparison, we also 

reconstruct the T2 images using fully sampled T1WI only as shown in the first row.
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Fig. 5. 
Comparison of training and testing loss convergence between Unet and Dense-Unet.

Xiang et al. Page 21

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Comparisons between Unet and the proposed Dense-Unet using input data from T1WI and 

1/8 under-sampled T2WI. Reconstructed images from all three views (axial, coronal and 

sagittal) are plotted. The first row for each view presents the reconstructed images and the 

second row shows the corresponding error map as compared to the ground truth.
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Fig. 7. 
Examples of different mask: (a) Center Mask, (b) Equidistance Mask, and (c) Gaussian 

Mask. The under-sample rate is 1/8 in k-space for all masks.
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Fig. 8. 
Visual comparison of various T2WI reconstruction results (no lesion). The first row 

represents reconstruction results by different inputs. The second row presents the 

corresponding error map as compared to the ground-truth T2WI.
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TABLE I

EVALUATION OF THE RECONSTRUCTED T2WI USING DIFFERENT INPUT SETTINGS ON DATASET 1

1/8 T2 Reconstructed T2 with T1 Reconstructed T2 with 1/8 T2 Reconstructed T2 with T1 and 1/8 T2

PSNR MAE PSNR MAE PSNR MAE PSNR MAE

Subject 1 33.1 0.022. 30.9 0.028 34.5 0.019 37.6 0.013

Subject 2 33.2 0.022 30.4 0.030 33.7 0.021 37.0 0.014

Subject 3 31.5 0.027 30.3 0.030 32.4 0.024 36.5 0.015

Subject 4 32.1 0.025 30.1 0.031 33.4 0.021 36.4 0.015

Subject 5 32.6 0.023 31.2 0.028 33.5 0.017 37.0 0.014

Average 32.5 0.024 30.6 0.030 33.9 0.020 36.9 0.014
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TABLE II

RECONSTRUCTION PERFORMANCES BY USING DIFFERENT HYPER-PARAMETER SETTINGS AND UNDER-SAMPLING RATES IN DENSE-

UNET.

Reconstructed T2 with different parameters
T1+1/4 T2 T1+1/8 T2 T1+1/16 T2

PSNR MAE PSNR MAE PSNR MAE

GR=16, NC=4 37.7 0.013 34.1 0.020 33.5 0.021

GR=16, NC=5 39.1 0.011 36.9 0.014 34.3 0.019

GR=16, NC=6 38.9 0.012 34.7 0.019 32.4 0.024

GR=24, NC=4 38.5 0.012 36.5 0.015 34.1 0.020

GR=24, NC=5 38.8 0.012 36.3 0.016 34.0 0.020
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TABLE III

COMPARISON OF PSNR AND MAE VALUES BETWEEN UNET AND DENSE-UNET AT DIFFERENT UNDER-SAMPLING RATIOS.

Reconstructed T2 with different models
T1+1/4 T2 T1+1/8 T2 T1+1/16 T2

PSNR MAE PSNR MAE PSNR MAE

Unet 37.6 0.013 36.6 0.015 33.8 0.020

Dense-Unet 39.1 0.011 36.9 0.014 34.3 0.019
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TABLE IV

COMPARISON OF PSNR AND MAE VALUES BETWEEN UNET AND DENSE-UNET AT DIFFERENT UNDER-SAMPLING RATIOS.

Center Mask Equidistance Mask Gaussian Mask

PSNR MAE PSNR MAE PSNR MAE

36.9 0.014 36.2 0.013 33.3 0.021
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TABLE V

COMPARISON OF THE RECONSTRUCTION PERFORMANCE WHEN THE NETWORK TRAINED WITH DATASET 2 IS TRANSFERRED AND 

TESTED UPON DATASET 1.

Reconstructed T2 with different parametrs
T1+1/4 T2 T1+1/8 T2 T1+1/16 T2

PSNR MAE PSNR MAE PSNR MAE

Dense-Unet (D1-D1) 39.1 0.011 36.9 0.014 34.3 0.019

Dense-Unet (D2-D1) 38.5 0.012 36.7 0.014 34.0 0.020
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