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Abstract—Analog-to-digital (quantization) and digital-to-
analog (de-quantization) conversion are fundamental operations
of many information processing systems. In practice, the precision
of these operations is always bounded, first by the random mis-
match error (ME) occurred during system implementation, and
subsequently by the intrinsic quantization error (QE) determined
by the system architecture itself. In this manuscript, we present
a new mathematical interpretation of the previously proposed
redundant sensing (RS) architecture that not only suppresses
ME but also allows achieving an effective resolution exceeding
the system’s intrinsic resolution, i.e. super-resolution (SR). SR
is enabled by an endogenous property of redundant structures
regarded as “code diffusion” where the references’ value spreads
into the neighbor sample space as a result of ME. The proposed
concept opens the possibility for a wide range of applications in
low-power fully-integrated sensors and devices where the cost-
accuracy trade-off is inevitable.

Index Terms—Super-resolution, redundant sensing, analog-to-
digital converter, quantization, mismatch error.

I. INTRODUCTION

THE process of quantization i.e. analog-to-digital conver-
sion (ADC) and the reverse operation de-quantization

i.e. digital-to-analog conversion (DAC) are the basis of all
modern sensory data acquisition systems. They allow “digital”
artificial systems to sense and interact with the “analog”
physical world. Quantization is essentially a lossy data com-
pression process where information from a higher-resolution
space is represented in lower-resolution counterpart. In practi-
cal implementations, the precision of this process is always
bounded by the system resource constraints such as size,
power, bandwidth, and memory, etc. For example, in many
integrated circuits ADC and DAC designs, an addition 1-bit
of resolution or 2x precision often require a 4x increase of
chip area and power consumption [10], [18], [20]. While ultra-
high resolution ADCs/DACs up to 32-bit is possible, the large
size and power consumption limit the use of these devices in
many practical applications. Similarly, higher resolution image
sensor requires more pixel count and buffer memory thus also
results in larger device and power consumption. While it is
possible to improve the pixel density, the smaller pixel size
is associated with increased noise which limits the sensor’s
dynamic range [9], [17].

Super-resolution (SR) are techniques that aim at achiev-
ing an effective resolution exceeding the precision that the
system’s resource constraints commonly permit. They have
wide applications various in fields of engineering and science
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concerning imaging and instrumentation where higher reso-
lution data acquisition is always desired [3], [15]. Previous
SR techniques focus on recovering fine details of the object
of interest by integrating the information obtained from coarse
observations. These techniques could be generally divided into
two primary classes: modeling-based and oversampling-based,
which are also known as single-frame and multi-frame in
image processing. Modeling-based (single-frame) techniques
such as [2], [4], [5], [11], [14] focus on modeling the input
sources from available data points and reconstructing the
missing information by means of approximation. On the other
hand, oversampling-based (multi-frame) techniques such as
[6], [12], [13], [19] acquire and combine multiple samples
of the input obtained at various spatial or temporal instants to
extract the sub- least-significant-change information.

In this manuscript, we present a new approach based on the
redundant sensing (RS) [21], [23], [24] that requires neither
modeling nor oversampling of the input signals. A RS structure
is essentially a redundant system of information representation
where each outcome in the sample space can be generated
by multiple distinct system configurations. In practice, these
configurations are always affected by random mismatch error
(ME), which conventionally, is considered as a ”problem“
causing conversion error and degrading the system’s overall
precision. Yet here we show that ME allows actual values
of the system’s redundant configurations to “diffuse” into the
neighbor sample space such that with a sufficient level, a RS
structure has the information capability to quantize the data
at an effective resolution beyond the conventional resource
constraints.

Our SR technique is fundamentally different from previous
approaches because it does not involve reconstructing the
missing information. Instead, the mechanism aims at direct
sampling of higher-precision data points provided the quan-
tizer’s endogenous structure is correctly optimized. Indeed, the
fine-detailed information content of the input signal is never
lost during quantization. This is achieved not only because of
the RS architecture itself but also by elegantly manipulating
ME - an undesirable precision-limiting factor in conventional
designs.

In the following sections, the background and mechanisms
which facilitate SR in a RS architecture are explained. We
use Monte Carlo simulations to demonstrate an extra 8-9
bits resolution or 256-512x precision can be accomplished
on top of a 10-bit quantizer at 95% sample space. Lastly,
we discuss potential applications and practical considerations
of the proposed technique in fully-integrated miniaturized
biomedical devices where the structure’s complexity can be
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mitigated by approximation or conveniently circumvented.

II. SUPER-RESOLUTION

A. Quantization & Mismatch Error

Quantization1 is a process of mapping a continuous set
(analog) to a finite set of discrete values (digital). Without
loss of generality, we can assume a N0-bit quantizer divides
the continuous interval [0, 1) into 2N0 partitions defined by a
set of references θ0 ≤ θ1 ≤ ... ≤ θ2N0 where each partition is
mapped onto a digital code d ranging from 0 to 2N0 − 1:

xA ∈ [θd, θd+1)→ xD = d, ∀d = 0, 1, ..., 2N0 − 1 (1)

where xA is the analog input and xD is the digital output.
The quantizer’s effective resolution can be quantified by the
Shannon entropy HN0

as follows:

MN0
=

2N0−1∑
d=0

∫ θd+1

θd

(
xA −

d+ 0.5

2N0

)2

dxA

HN0
= − log2

√
12 ·MN0

(2)

where M is the normalized total mean-square-error integrated
over each digital code. It can be shown that HN0 ≤ N0 for
all values of reference θd. Equality occurs only when 2N0

references are equally spaced, i.e. ∀i, j : θi+1−θi = θj+1−θj .
This fundamental maximum value of entropy is referred as the
Shannon limit, where the device’s resolution is bounded only
by its intrinsic quantization error (QE).

In practice, the quantizer’s precision is also affected by the
randomly occurred ME resulting in the undesirable deviation
of the references and degradation of entropy. For example,
integrated circuits ADC or DAC chips such as [21] generate
their references by arrays of identical elementary components
regarded simply as unit cells. A N0-bit device generally has
2N0−1 unit cells which could be miniature capacitors, resistors
or transistors. The random mismatch of individual unit cells
due to variations of the fabrication process and other non-
ideal factors is one of the primary sources of ME that could
significantly deteriorate the device’s precision [1], [8], [16].

To effectively control the unit cells, they are always grouped
into bundles regarded simply as components. Grouping sig-
nificantly reduces the number of control signals required.
For example, with the conventional binary-weighted method,
2N0 − 1 unit cells are arranged into N0 components with
the nominal weight of {20, 21, ..., 2N0−1}. Such system is
orthogonal because with N0 binary control signals, i.e. 0/1
bits, 2N0 references corresponding to each digital code in
[0, 2N0 − 1] can be uniquely created by selecting and assem-
bling the components according to the binary numeral system.

B. Redundant Sensing

RS is a design framework that aims at engineering redun-
dancy for enhancing the system’s performance regarding ac-
curacy and precision, instead of reliability and fault-tolerance
like conventional designs [23]. A practical RS implementation

1De-quantization is defined similarly and share the same characteristics.

Fig. 1. Illustration of a simple 3-bit redundant sensing (RS) structure where
representational redundancy (RPR) and entangled redundancy (ETR) can be
achieved by utilizing a non-orthogonal grouping method without the need for
replication. While using the same amount of physical resource (i.e. 7 unit-
cells), in the RS structure, each digital code can be created by multiple distinct
assemblies of components, each expresses a different, partially correlated
distribution with respect to random ME.

must satisfy two criteria, namely representational redundancy
(RPR) and entangled redundancy (ETR) [24].

RPR refers to a non-orthogonal scheme of information
representation where every outcome in the sample space is
encoded by numerous distinct system configurations. Each
configuration responses differently to ME such that in any
given instance, there almost always exists one or more con-
figurations that have smaller errors than the conventional
representation.

ETR refers to the implementation of the RS structure such
that the statistical distribution of different system configura-
tions is partially correlated (i.e. entangled) allowing a large
degree of redundancy without incurring excessive resource
overhead. ETR should be differentiated from conventional
replication-based method to realize redundancy where the
degree of redundancy is linearly proportional to the resource
utilization.

Fig. 1 illustrates a simple example where a 3-bit RS struc-
ture with both RPR and ETR properties can be accomplished
by utilizing a non-orthogonal grouping method without the
need for replication. While using the same amount of physical
resource (i.e. 7 unit cells), in the RS structure, each digital code
can be created by multiple distinct assemblies of components,
each expresses a different, partially correlated distribution with
respect to random ME. This redundant system of information
representation has been shown to suppress ME by allowing
searching for the optimal component assembly with the least
error with respect to each and every digital code [23]. In this
work, we will show that such redundant mechanism can be
elegantly exploited to realize an effective resolution beyond
the conventional limit of N0 bounded by QE.

C. Code Diffusion

Fig. 2 shows the estimated probability density function
(PDF) of all the references {θ0, θ1, ...} that can be generated
by an example RS structure at various mismatch ratio. The
mismatch ratio σm is defined as the standard deviation of each
unit cell which is assumed to have a Gaussian distribution
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Fig. 2. (a-c) Estimated probability density function (PDF) of all the references {θ0, θ1, ...} that can be generated by an example RS structure at various
mismatch ratio σm (0-10%) and (d-f) their respective zoom-in views which show the PDF’s segments centered at each element of ΘN0

. With sufficient level
of mismatch ratio, the references “diffuse” evenly across the sample space which allows approximating elements of a higher-resolution set ΘN1

,ΘN2
, ... and

facilitating SR.

with unity mean. Monte Carlo simulations (n = 1000) are
performed on a redundant structure similar to one implemented
in [21] with N0 = 10.

Clearly, in the absence of ME or σm = 0 (Fig. 2a, d),
regardless how the unit cells are grouped and assembled, an
array of 2N0 − 1 identical units can only generate a finite
number of references belonging to the following discrete set
of values:

ΘN0
= { 0

2N0
,

1

2N0
, ...,

2N0 − 1

2N0
,

2N0

2N0
} (3)

ΘN0
is regarded as the intrinsic reference set (IRS) corre-

sponding to an effective resolution N0. The elements of ΘN0

are marked by Dirac delta functions in Fig. 2a, d.
As σm assumes non-zero values (Fig. 2b, e), the PDF’s

segment centered at each element of ΘN0
is widen as the actual

values generated by different component assemblies begin
“diffusing” into the neighbor sample space. This property is
unique to a RS structure because (i) there are numerous dif-
ferent component assemblies that can generate references with
the same nominal values, i.e. RPR, and (ii) the distribution
of these assemblies are partially independent with respect to
random ME, i.e. ETR. Subsequently, the spreading of the PDF
occurs at every trial of ME, not merely the result of the Monte
Carlo sampling.

In an ordinary quantizer, code diffusion is undesirable
because it makes the references deviates from ΘN0

, thus
results in the degradation of the Shannon entropy as shown in
equation 2. In fact, our previous system in [23] was designed
to reverse the diffusing process by searching for the assemblies
that are closest to each element of ΘN0

.
However, from another perspective, code diffusion implies

that the same system could generate references within the
sample space’ regions that are belonged to the IRS of a higher
resolution Nk = N0 + k:

ΘNk = { 0

2Nk
,

1

2Nk
, ...,

2Nk − 1

2Nk
,

2Nk

2Nk
} (4)

where ΘN0
⊂ ΘN1

⊂ ... ⊂ ΘNk (k = 1, 2, ...) as marked in
the x-axis of Fig. 2d, e, f. With sufficient level of mismatch
ratio (Fig. 2c, f), the reference’s PDF covers almost all
the sample space with relatively even chances. Subsequently,
there is an adequate possibility a set of assemblies closely
approximating ΘNk can be found that would allow sampling
at an effective resolution Nk beyond the system intrinsic
resolution N0. It is also interesting to point out that ME, which
is conventionally regarded as an undesirable non-ideal factor,
is the crucial element that enable SR. Maximal effectiveness
of SR is obtained only when the mismatch ratio reaches a
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certain level ∼10% which is considered excessive large in
many ordinary applications.

Such mechanism is only possible because the number of
distinct references that can be generated by a RS structure
is significantly larger than the cardinality of both ΘN0 and
ΘNk due to redundancy. In an orthogonal structure such as
the binary system, the number of distinct references is strictly
2N0 = |ΘN0

|, which is smaller than |ΘNk | for all k. Further-
more, not only the number of different component assemblies
but also the mutual correlation between them play an important
role. Ideally, we want the assemblies to spread evenly across
all the sample space to have the maximum chance of approxi-
mating ΘNk . This characteristic is determined by the device’s
internal architecture, i.e. how the components are designed.

D. Grouping Method

The grouping method (GM) is the way unit cells are
arranged into components. Almost all conventional designs
can be categorized as binary-weighted (BW) structures where
the quantization partitions are uniquely encoded according
to the binary numeral system. In contrast, the proposed RS
architecture employs a different strategy to realize redundancy
with both RPR and ETR properties. There is no limitation
to how the unit cells are grouped. While GM does not alter
the number of unit cells, thus has little effect on the resource
constraints, it determines the system’s endogenous architecture
and greatly affects the references’ number and distribution.
The design of GM differentiates one redundant structure from
another.

Let assume a given GM assembles 2N0 − 1 unit cells into
n components with the nominal weight C̄ = {c̄1, c̄2, ..., c̄n}
and the actual weight C = {c1, c2, ..., cn} with respect to
random ME. Each subset of C, encoded by the binary string
d = d1d2...dn (di ∈ {0, 1}), generates a normalized reference
θd as follows:

θd = Σni=1dici/(1 + Σni=1ci) (5)

Let Φ is the set of all references that can be generated by
system. To achieve an effective resolution Nk is essentially to
search for a subset Θ̂Nk ⊂ Φ that closely approximates ΘNk .
Clearly, SR can only be accomplished in a redundant structure
as |Φ| > |ΘNk | or n > Nk.

The previously proposed RS architecture employed a class
of GM that was inspired by the binocular structure of the
human visual system. They yield the nominal weight C̄RS =
C̄RS,0∪ C̄RS,1 according to the following formula with param-
eters (s,N ′0) satisfied 1 ≤ N ′0 < N0, 1 ≤ s ≤ N0 − N ′0:

C̄RS,1 = {c̄1,i|c̄1,i = 2N0−N1+i−s}

C̄RS,0 = {c̄0,j |c̄0,j =

{
2j , if j < N0 −N ′0
2j − c̄1,j−N0+N ′0

, otherwise
}

(6)

where i ∈ [0, N1 − 1], j ∈ [0, N0 − 1]. The special case
of C̄RS where N ′0 = N0 − 1 and s = 1 called the “half-split”

Fig. 3. A comparison of the reference distribution between the HS and UN
grouping method. The UN method yields more uniform distribution across
different regions of the sample space, especially the two ends, which would
translate to better SR potential.

(HS) array has been demonstrated in [21]. It has the following
nominal weight C̄HS = C̄HS,0 ∪ C̄HS,1 where:

C̄HS,0 = {20, 21, ..., 2N0−2} ∪ {20}
C̄HS,1 = {20, 21, ..., 2N0−2}

(7)

Among the RS structures, the HS design has the largest
number of components thus the greatest degree of redundancy
while contains a reasonable number of components of 2N0−1.
Also, the simplicity of the design allows it to be implemented
in hardware with minimal complexity as presented in [21].
The distribution of ΦHS is shown in Fig. 3. While the HS
method has a high level of redundancy, their distributions
are not necessarily optimal for achieving SR. The references
mostly concentrate into the middle region of the sample space
leaving the two ends inadequately covered and vulnerable to
errors.

In this manuscript, we propose an enhanced GM that is
specifically designed to support SR. It has a more uniform
distribution of references to maximize the coverage of the sam-
ple space. The “UNiform” (UN) method yields the following
nominal weight C̄UN = C̄UN,0 ∪ C̄UN,1 ∪ ... ∪ C̄UN,blog2N0c
where:

C̄UN,i = {c̄i,j |c̄i,j = 2j}

C̄UN,0 = {c̄0,l|c̄0,l =


2l, if l < N0 −N1

2l −
blog2N0c∑
m=1

2l−N0+Nm , otherwise
}

(8)

where Ni = dNi−1/2e ∀i ∈ [1, blog2N0c], j ∈ [0, Ni − 1],
l ∈ [0, N0−1]. The intuition behind the UN design is to divide
the components of a binary-weighted array into numerous
sub-arrays with different resolutions N1, N2, ... that reduce in
log scale. This maximizes the distribution of small and large
components over the digital codes while retaining the total
number of components at a reasonable value of 2N0 similar
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Fig. 4. Achievable SR in HS and UN redundant structures: (a, b) mean (µ[HNk ]) and (c, d) standard deviation (σ[HNk ]) of the entropy of a N0 = 10 bits
device at various targeted resolution Nk = N0 + k and mismatch ratio σm. With sufficient mismatch ratio, 3-4 bits increase of effective resolution or 8x-16x
enhancement of precision.

to the HS structure. All the remaining components form the
base array C̄UN,0.

As a comparison, with N0 = 10, the BW, HS and UN
methods yield the following nominal component set:

C̄BW = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512} (10 elements)
C̄HS = {1, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32,

64, 64, 128, 128, 256, 256} (19 elements)
C̄UN = {1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 8, 8, 16,

16, 31, 62, 123, 245, 490} (20 elements)
(9)

As shown in Fig. 3, the UN method gives significantly “flatter”
distribution of references which would translate to more even
code diffusion over different regions of the sample space.
In the following sections, we will show this property helps
suppress errors near the two ends of the sample space and
results in more SR potential in general.

E. Beyond The Shannon Limit
SR in the context of this work should be understood as a

resource-constraint problem. The precision of a sensor consists

of 2N0 − 1 unit cells was previously thought to be bound by
the Shannon limit of N0 determined by QE. By arranging the
unit cells in a specific manner to realize a redundant structure
and exploiting the statistical property of random ME, we aim
to achieve an effective resolution beyond this conventional
“limit”.

The Shannon limit exists because the ordinary expression
of entropy as shown in Equation 2 is computed against a
reference set of only 2N0 +1 values {θ0, ..., θN0

} which is the
maximum number of distinct references a conventional binary-
weighted array can generate. This limitation does not apply to
a redundant architecture. A HS or UN structure has a reference
set ΦHS/ΦUN with as much as ∼ 22N0 distinct elements. The
key to achieve SR is to find a subset Θ̂Nk from ΦHS/ΦUN such
that Θ̂Nk closely approximates the IRS ΘNk at the resolution
Nk. This can only be accomplished when there is random ME
that allows the elements of ΦHS/ΦUN to diffuse across the
sample space. Hence, the concept of SR does not contradict
with the conventional Shannon limit, but a new interpretation
of the Shannon theory beyond its ordinary understanding that
only applies in a practical redundant architecture.

The Shannon entropy in Equation 2 can be conveniently
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Fig. 5. Root mean square error (RMSE) computed over the sample space (N0 = 10, σm = 10%). Note that the x-axis only shows the first and last 5% of
the sample space. At a high-resolution, errors mostly occur at the two ends where the level of redundancy is lower. This can result in significant degradation
of the overall entropy. The UN method is designed to have flatter code distribution which helps shape the error to the extreme end.

modified to represent the effective resolution at a targeted
resolution Nk by replacing N0 ← Nk and extend the scope
to θd to include all the values in Θ̂Nk . Fig. 4 show the mean
and standard deviation (STD) of the estimated entropy of a
N0 = 10 bit device using Monte Carlo simulations (n = 1000)
at various targeted resolution and mismatch ratio. The optimal
set Θ̂Nk is found using exhaustive search.

As our analysis of code diffusion suggested, the best per-
formance of SR is obtained with the mismatch ratio above
∼ 10%. Both HS and UN grouping method offers 3-4 bits
increase of effective resolution or 8x-16x enhancement of
precision. The entropy’s STD is less than 0.2-bit within 10-
50% mismatch ratio where the UN method has a marginally
better outcome. These results suggest that the solution for SR
is consistent which in practical applications, will translate to
the good yield of the device under random error.

Furthermore, the consistency of the mechanism implies that
ME may not need to be truly “random”. In certain application,
10% random deviation may seem unrealistic. Instead, the
deviation can be intentionally added to the structure during
the design process. Even if these artificial pseudo-random
deviations could carry a certain level of error, the consistency
of SR mechanism guarantees that a solution can always be
found.

F. Reduced-Range Sampling

Fig. 5 shows the distribution of the root mean square error
(RMSE) over the sample space or the value of

√
MNk(d) at

each digital code d in Equation 2 before the summation. At
a high-resolution, errors mostly occur at the two ends of the
sample space. These are regions that have a lower level of
redundancy as implied by the code distribution presented in
Fig. 3. The UN technique is designed to have better spreading
of the codes compared to the HS design, thus help mitigate
parts of the error by shaping it to the extreme ends. However,

because of the nature of the grouping, it is mathematically not
possible to cover all the sample space equally.

Nevertheless, we argue that many applications actually do
not utilize the entire sample space equally due to numerous
practical reasons. The majority of sensors are calibrated such
that the signals that need to be captured fall within the
middle of the sample space. This is because most signals do
not distribute uniformly across the sample, “centering” the
data minimize the chance of the signal going beyond the
sampling range causing distortion and loss of information.
Suppose we can simply ignore the two extreme ends, the
proposed technique allows realizing a continuous sampling
range centered at the middle of the sample space where the
overall effective resolution can be significantly enhanced.

Let δ ∈ [0, 1] is the length of a continuous region centered
at the middle of the sample space where data are captured.
This effectively reduces the full-range and dynamic range of
the device which results in a lower Shannon limit:

max(HNk,δ) = log2(δ2Nk) = Nk + log2 δ (10)

The normalized total mean square error and entropy are now
only integrated over a smaller range of digital codes:

MNk,δ =

b(1− 1−δ
2 )·2Nkc∑

d=b 1−δ2 ·2
Nkc

∫ θd+1

θd

(
xA −

d+ 0.5

2Nk

)2

dxA

HNk,δ = − log2

√
12 ·MNk,δ

(11)

Fig. 6 shows the estimated entropy of the same system in Fig. 4
but at δ = 95% sample space. The UN method excels over the
HS structure because it is specifically designed to minimize
errors at two ends. By sacrificing 5% of the sample space
- a reasonable engineering trade-off, an increase of 8-9 bits
effective resolution or 256x-512x enhancement of precision is
feasible with the UN structure.



7

Fig. 6. Achievable SR of the same HS and UN redundant structures in Fig. 4 (N0 = 10, Nk = N0 + k) but at δ = 95% sample space. By sacrificing 5%
of the sample space - a reasonable engineering trade-off, an increase of 8-9 bits effective resolution or 256x-512x enhancement of precision is feasible with
the UN structure.

III. PRACTICAL CONSIDERATIONS & APPLICATIONS

In practice, the greatest challenge for utilizing the proposed
SR as well as any RS architecture is to determine the cor-
rect configuration of the system among numerous redundant
possibilities. In the context of this work, achieving SR at Nk
requires solving the following optimization problem:

Problem: ∀θi ∈ ΘNk , find a subset of C = {c1, c2, ...cn}
such that it generates a reference θ̂i which minimize the error
|θi − θ̂i|

This is essentially a version of the 0-1 knapsack problem,
which has been shown to NP-hard [7]. Because of ΘN0 ⊂
ΘN1

⊂ ... ⊂ ΘNk , achieving SR at any targeted resolution Nk
is as hard as the non-SR case of N0 given the actual weights
all of the components are known. However, this does not
necessarily negate the practicality of the proposed technique.
The practical solution to this seemingly unsolvable problem
may be specific to each application.

In [21], we have shown an implementation of a high-
precision ADC in integrated circuits where a RS structure
was utilized. The optimization problem was successfully over-
come by employing a heuristic-based approximation algorithm
which was derived to compute the near-optimal system con-

figuration on-the-fly given the input signal and the estimated
weights of all components. The proposed algorithm was suf-
ficiently simple such that it can be implemented on-chip with
an adequate accuracy and a time complexity of merely O(1).
This example suggests that approximation would be a viable
approach for implementing SR in practice. Realizing SR for
ADC would enable enormous boost of performance in various
high-precision imaging and instrumentation systems as ADC
is one of the core components of many sensors and devices.

SR would also find many uses in DAC devices. For example,
an implantable neurostimulator such as [22] requires a DAC
to generate its internal reference current. Higher resolution
DAC is always desirable as it gives more precise control of
the stimulation current which could imply better modulation
of neural circuits.

Fig. 7a shows the functional blocks of the neurostimulator
and the schematic of its current DAC where each unit cell is
a MOS transistor. Although mostly time-invariant, transistor
mismatch is particularly complex because it not only depends
on the device’s physical size (W/L) but also the operating
conditions such as biasing voltage, loading current, parasitics,
etc. As a proof-of-concept demonstration, we design and
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Fig. 7. (a) A neurostimulator such as [22] requires a high-resolution DAC to generate its internal reference current. (b) Monte Carlo simulations at the
schematic-level using the transistor’s statistical model (both process and variation) show an average of 12-bit effective resolution or a gain of 4-bit extra
precision (N0 = 8 bits, δ = 95%) can be achieved by solely exploiting the natural mismatch of the transistors

simulate a SR DAC in the GlobalFoundries BCDLite 0.18µm
process using 30V transistors with minimum feature size
(W/L = 4.0/0.5µm). The DAC architecture employs the
UN grouping and has an intrinsic resolution of N0 = 8 bits.
Monte Carlo simulations (n = 16) at the schematic-level are
performed using the transistor’s statistical model (both process
and variation) provided by the foundry without any added
pseudo-random mismatch. The model should account for the
majority of the mismatch except for the parasitic resistance of
metal connections in the layout. Fig. 7b shows the simulation
results where an average of 12-bit effective resolution or a
gain of 4-bit extra precision at δ = 95% can be achieved
by solely exploiting the natural mismatch of the transistors.
The results show a concrete example where the proposed SR
mechanism can be utilized to greatly enhance the performance
of a high-precision device.

Moreover, unlike the ADC example, the neurostimulator’s
operations are always governed by an external controller
during normal operation. The controller regularly communi-
cates with the neurostimulator to update its parameters and
trigger its function when needed. Subsequently, the optimal
system setting at every DAC output can be simply determined
upfront via foreground calibration and saved on an external
memory which is accessed by the controller at any instant.
This effectively circumvents the computational-hard problem
by diverting it into a memory-hard problem which could be
more easily handled in certain circumstances. For instance,
assuming a targeted SR of 16-bit is to be achieved with
20 components, storing all the optimal configurations would
require 216 × 20 = 1.3 · 106 bits or 163KB of memory per
DAC - a trivial amount for an external flash memory.

IV. CONCLUSION

This work presents a new interpretation of the RS archi-
tecture that allows quantization or de-quantization processes
to achieve an effective resolution many folds beyond the
limitation that their resource constraints commonly permit.
Using Monte Carlo simulations, we show that SR is feasible
by elegantly exploiting the statistical property called “code

diffusion” that is unique to a redundant structure in the
presence of random ME. By applying the proposed technique
on a 10-bit device, a profound theoretical increase of 8-9 bits
effective resolution or 256-512x enhancement of precision at
95% sample space is demonstrated. We also point out the
challenges of utilizing the proposed mechanism in practice but
argue that they can be overcome by means of approximation
or avoided in certain conditions. We envision the proposed
technique would give rise to wide applications in various fields
of imaging and data acquisition instrumentation, especially
fully-integrated sensors and devices where higher resolution
is always desired.
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