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Abstract

Objective: The network architecture connecting neural regions is defined by the organization and 

anatomical properties of the projecting axons, but its contributions to neural encoding and system 

function are difficult to study experimentally.

Methods: Using a large-scale, spiking neuronal network model of rat dentate gyrus, the role of 

the anatomy of the entorhinal-dentate axonal projection was evaluated in the context of spatial 

encoding by incorporating grid cell activity to provide physiological, spatially-correlated input. 

The dorso-ventral extents of the entorhinal axon terminal fields were varied to generate different 

feedforward architectures, and the resulting spatial representations and spatial information scores 

of the network were evaluated. Position was decoded from the population activity using a point 

process filter to investigate the contributions of network architecture on spatial encoding.

Results: The model predicted the emergence of anatomical gradients within the dentate gyrus for 

place field size and spatial information along its dorso-ventral axis which were dependent on the 

extents of the entorhinal axon terminal fields. The decoding results revealed an optimal 

performance at an axon terminal field extent of 2 mm which lies within the biological range.

Conclusion: The axonal anatomy mediates a trade-off between encoding multiple place field 

sizes or achieving a high spatial information score, and the combination of both properties is 

necessary to maximize spatial encoding by a network.

Significance: In total, this work establishes a mechanistic neuronal network model that, in 

concert with information-theoretic and statistical methods, can be used to investigate how lower-

level properties contribute to higher-level function.
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I. Introduction

The function of the hippocampus is strongly implicated in the formation of episodic memory 

[1]–[3]. The basis of such a function must arise from the collective properties of the neural 

components within the hippocampal system and their interactions. Such properties include 

the network/circuit architecture, the neuron morphology, their biophysical properties, 

synaptic dynamics, and synaptic plasticity. Therefore, by using the vast amounts of 

quantitative data available on the hippocampus to constrain and represent these properties in 

a computational model, a computational approximation of the hippocampus and its functions 

can be simulated. We are developing a platform from which a full-scale, biologically 

realistic, spiking neuronal network model of the entorhinal-dentate system of the rat 

hippocampus was constructed. The model represents one complete dentate gyrus including 

one million compartmental models of granule cells with realistic dendritic morphologies and 

over 3 billion perforant path synapses [4].

Our previous work with this model used random synaptic inputs to characterize its baseline 

activity. We found a strong role for topography in determining hippocampal system 

dynamics, as has been observed in theoretical models of other brain regions [5]-[8]. 

Topography refers to the ordered anatomical arrangement of axonal projections, originating 

from a presynaptic population and synapsing onto a postsynaptic population, that results in a 

system-level connectivity which may impose an organization to the information being 

transmitted. Such an organization has been characterized for the entorhinal-dentate 

projection by Dolorfo and Amaral [9], and this data was quantified for use in the network 

connectivity for our model [4]. The anatomical distribution of information then may 

represent a foundational “bias” that the neural system must then incorporate into its 

response. However, the random nature of the input in the previous work, though useful in 

characterizing the dynamical properties, precluded an analysis relating topography, or other 

model parameters, to higher level functions of the system. Therefore, physiological inputs 

were sought to allow the activity of the model to be interpreted with respect to higher level 

function.

Grid cells of the medial entorhinal cortex (MEC) encode information about position, 

expressing spatial receptive fields in a grid-like pattern that span the environment that an 

animal explores [10]. They represent a large portion of the inputs to the hippocampus and 

are necessary for the formation of place cells within the hippocampus [11]–[15]. Thus, grid 

cells and place cells are important as they provide the spatial context for memory events 

[16]. Measurement of various properties of the grid cells in rat have revealed that the size of 

the spatial receptive fields, i.e., the grid fields, varies among grid cells following an 

anatomical gradient [10], [17], [18].

Using the spatially-correlated activity provided by grid cells to drive a large-scale, 

mechanistic, spiking neuronal network model of the rat entorhinal-dentate system which 
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included120,000 granule cells and 5,600 basket cells, the influence of topography on a 

network’s ability to encode spatial information was investigated. The size of the axon 

terminal field of the entorhinal-dentate projection was varied to explore how different 

feedforward architectures affected network dynamics, spatial representation, i.e., place field 

properties, and neuronal spatial information. A point process filter based on the work of 

Brown et al., 1998 [19] was used to assess the ability of the different feedforward 

architectures to encode spatial information and quantify it at the network level. Using these 

methods, we explore the role of network architecture on the neural encoding of spatial 

information.

II. Materials & Methods

The large-scale model simulations described here were designed to be analogous to typical 

in vivo experiments for determining place fields. In such experiments, a rat explores an 

environment during which neuronal spiking activity is recorded. The distribution of spikes is 

plotted against the location of the rat to identify regions in space where the neuron prefers to 

fire. Ideally, a rat will randomly and uniformly sample its entire environment for a sufficient 

time to allow the conditional firing probability as a function of x- and y-position to be 

calculated for each neuron. A random sampling is ideal to eliminate correlations that would 

arise based on patterned movements, and a uniform sampling is ideal to ensure that 

sufficient numbers of samples are obtained equally across all possible locations within the 

environment.

For computational simulations, a random path model was used to mimic the movement of a 

rat in a fixed environment. Experimentally, recordings are often performed during sessions 

that range from 20 minutes to one hour [15], [20], [21]. However, the computational 

complexity of the large-scale model had previously limited simulation times to 10 seconds. 

In order to complete 20 minute simulations in a reasonable amount of computational time, 

the complex neuron morphologies were simplified using an equivalent circuit algorithm 

developed by Marasco et al., 2012 [22].

The methods section will first describe the large-scale model and the equivalent circuit 

algorithm. It will then describe the methods for generating realistic grid cell activity, the 

procedure for extracting and characterizing place fields, and the statistical methods used to 

decode position and quantify information at the network level.

A. Large-Scale Model

Neuron models were constructed and simulated using the NEURON simulation environment 

[23]. Granule cells were represented using a multi-compartment model with the 

electrophysical properties of each compartment being modeled by an electrical circuit. The 

reduced granule cell models consisted of four compartments corresponding to the soma and 

the dendrites in the inner, middle, and outer thirds of the molecular layer. The parameters of 

the reduced model were obtained by creating an equivalent circuit model based on the 

complex morphology (see [22]). Compartments in series and parallel could be combined 

using standard circuit approaches to create a reduced model that preserved the 

electrophysiological properties characteristic of granule cells (Table 1). The channel 
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conductances can be found in the Supplementary Materials. Basket cells were represented 

using a single compartment model with properties obtained from [24]. Gaarskjaer [25] 

measured the dimensions of an unfolded rat dentate gyrus and reported a septo-temporal 

length of 10 mm. Neurons were instantiated in a dentate gyrus map following those 

dimensions. synaptic connections between neurons were simulated using a distance-based 

rule that followed anatomically derived constraints. Axons were functionally represented as 

time delays that were computed based on the axonal path length distance between the soma 

at which the action potential was initiated and the receiving postsynaptic neuron using an 

action potential propagation velocity of 0.32 mm/ms [26]. The entorhinaldentate projection 

was mapped based on a comprehensive study that used a series of retrograde tracers injected 

into the dentate gyrus [9]. Quantification of the data is described in [4]. Connectivity was 

stochastically generated by converting spatial axon density data into distance-based 

Gaussian probabilities for entorhinal cortical, granule, and basket cells. Convergence values 

were estimated using dendritic lengths, spine density counts, and presynaptic-postsynaptic 

population ratios (see [4]). Basket cells provided both feedforward and feedback inhibition 

to granule cells (see [27]). Entorhinal input to basket cells provided a basis for feedforward 

inhibition, and granule cell input to the basket cells activated feedback inhibition. 

Suprapyramidal granule cells received 2117 grid cell inputs and 2417 LEC inputs. 

Infrapyramidal granule cells received 1253 grid cell inputs and 1479 LEC inputs. These 

numbers were derived from morphological and spine density data (see [4]) which report that 

suprapyramidal granule cells had a larger total dendritic length [28] and higher spine 

densities than infrapyramidal granule cells [29], [30]. Suprapyramidal and infrapyramidal 

granule cells received 108 and 68 basket cell inputs, respectively. Each basket cell received 

871 MEC inputs, 1161 LEC inputs, and 915 granule cells. The conductance time course of 

synapses upon activation was modeled using two exponentials [24], [31] with parameters 

optimized to match excitatory and inhibitory postsynaptic potential data for the respective 

synapses. The excitatory conductances represented AMPA receptors, and the inhibitory 

conductances represented GABAA receptors.

B. Grid Cell Activity

Blair et al., 2007 [32] developed a mathematical description to model grid maps involving 

the summation of three cosines that are rotated in increments of 60° to form the 

characteristic triangular lattice pattern of grid maps

G(r, λ, θ, c) = g ∑k = 1
3 cos 4π

3λ
u θk + θ ⋅ (r − c) , (1)

where the function u(θk + θ) = (cos(θk + θ) , sin(θk + θ)) determines the relative and global 

rotation of the cosines. The vector r corresponds to the position (x,y) with c = (x0,y0) 

determining the spatial offset of the grid map, and the variable λ sets the distance between 

the grid fields. The function g(x) = ea(x-b) − 1 was chosen to act as a monotonically 

increasing gain function where the parameter a determines the width of the place fields, and 

b = −3/2 is used to set the minimum value of the function to zero. The grid maps then were 
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normalized such that the peak firing rate was 50 Hz. Figure 1D summarizes the major 

properties of grid maps.

The position of a virtual rat as it explored an 80 cm by 80 cm square environment was used 

as an input to the above function to obtain a position-dependent, time-varying firing rate. 

Movement was modeled by sampling from uniform random distributions that defined the 

speed of the rat (0–30 cm/s), the direction of movement (0°–360°), and the period of time 

during which the rat would move with the sampled velocity vector (0–500 ms). If the 

trajectory of the rat would take it beyond the boundaries of the environment, the rat’s 

movement would be reflected by off the boundary.

The resulting firing rate was used as input to an inhomogeneous Poisson renewal process to 

generate spike times (Fig. 1E). When a spike was elicited by a Poisson process, the firing 

rate after the spike time would be modified by a refractory period with an exponential time 

course having a time constant of 35 ms, preventing inter-spike intervals from becoming too 

short. The time constant was estimated from data published by Alonso and Klink 1993 [33].

The parameters of the grid maps were constrained based on the supplementary data 

published by Hafting et al., 2005 [10] (Fig. 1A). They reported a linear relationship between 

both the grid spacing and the grid field area and the entorhinal distance from the postrhinal 

border which corresponds approximately with the dorso-ventral position within the MEC. 

Stensola et al., 2012 [18] further reported a linear relationship between grid spacing and grid 

orientation. Linear regressions between the grid field properties and MEC dorso-ventral 

position were performed to quantify the anatomical organization of grid field properties.

A uniform distribution for grid field sizes and grid spacing was assumed for the model such 

that each grid field size was equally represented. Uniform distributions were constructed by 

transforming the grid map gradient with a sigmoidal function which was based on the 

distribution of grid cells within the MEC (Fig. 1B) following

y(x) = A + K − A

1 + e−B(x − M) (1/v) , (2)

where y(x) represents the grid field size at a given dorsoventral position, A = 0.3256, K = 

2.4239, B = 2.15, M = −1.7858, and v = 0.01.

C. Place Field Calculation

An initial rate map was created by discretizing the environment explored by the virtual rat 

into bins of size 2 cm by 2 cm. The number of spikes that were elicited by a granule cell in 

each bin was counted and divided by the amount of time spent in each bin. The rate maps 

then were smoothed using a modified version of the adaptive smoothing procedure described 

by Skaggs et al., 1996 [34]. The original procedure expanded a circle around each bin and 

used a criterion based on a meta parameter and the number of samples available within the 

circle to determine the size of the circle, i.e., the extent of the smoothing. The circle 

weighted all bins equally. The modified procedure weighted each bin based on the distance 
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from the center using a Gaussian function. The standard deviation of the Gaussian function 

was increased until the weighted number of samples satisfied the criterion set by the same 

meta parameter using the following equation:

Nspikes > α
Nocc

2 σ2 , (3)

where Nspikes corresponds to the number of spikes transformed by the Gaussian function, 

Nocc is the number of samples transformed by the Gaussian function, σ is the standard 

deviation of the Gaussian, and a is the meta parameter that controls the amount of 

smoothing, set at 1.0 × 1013.

A grid-based version of the density clustering algorithm, DENCLUE, was used to quantify 

the number of place fields and areas of the place fields of the smoothed rate maps. The 

original DENCLUE algorithm smooths the data using a density kernel and uses a local hill 

climbing procedure to identify data points that share the same local maxima as clusters [35]. 

A grid-based version was developed to reduce the number of data points that needed to be 

clustered and increase the speed of the algorithm. The density kernel was a Gaussian 

function that used the standard deviations that satisfied the sampling criterion during the 

adaptive smoothing procedure. Clusters were subjected to a threshold such that bins less 

than 40% of the maximum value of the cluster were removed. Processed clusters with an 

area less than 200 cm2, as described by Muller and Kubie, 1989 [36], were not considered to 

be clusters.

D. Spatial Information Score

The spatial information score was calculated using a histogram-based method proposed by 

Skaggs et al., 1996 [34] with

SI = ∑i = 1
N pi

Ri
R log2

Ri
R , (4)

where the environment was divided into non-overlapping bins indexed by i = 1, … ,N, pi. is 

the probability that the rat is in bin i, Ri is the mean firing rate for bin i, and R is the overall 

mean firing rate. The metric is called spatial information score in this work to differentiate it 

from information as it is defined by information theory. The spatial information score 

resembles the calculation of the mutual information but does not follow the exact form in 

terms of joint and marginal probabilities.

E. Recursive Point Process Filter for Decoding

Brown et al., 1998 [37] developed a statistically-based, recursive point process filtering 

technique that could use the receptive field and spiking activity of one or more neurons to 

estimate the quantity that was being encoded. The same technique was applied to estimate 

the position of the rat using the following equations:
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One-Step Prediction

xk k − 1 = xk − 1 k − 1 + Fxk − 1 k − 1 (5)

One-Step Prediction Variance

Wk k − 1 = FWk − 1 k − 1FT + RWε (6)

Posterior Variance

Wk k
−1 = Wk k − 1

−1 + ∑c = 1
C ∇log λkΔ

c λkΔ
c Δ T − ∇2log λkΔ

c nkΔ
c − λkΔ

c Δ (7)

Posterior Mode

xk k = xk k − 1 + Wk k − 1∑c = 1
C ∇log λkΔ

c nkΔ
c − λkΔ

c Δ (8)

The temporal spiking activity for each neuron was discretized into bins such that a one 

signifies that an action potential was generated and a zero signifies no action potential. The 

bins were indexed by the variable k which denotes the bin number, and Δ defines the bin size 

which was 1 ms.

The variable λkΔ
c  indicates the firing rate for the neuron indexed by the variable c and at time 

kΔ. The generation of an action potential at time kΔ is denoted by nkΔ
c  Thus, the probability 

of firing an action potential is determined by multiplying the firing rate with the bin size, 

λkΔ
c Δ. The ∇ and ∇2 variables represent functions for the first and second derivatives with 

respect to position.

The state evolution matrix F and covariance matrix Wε were calculated by calculating a 

first-order autoregressive model of the path of the rat. During One-Step Prediction, the 

position xk|k−1, is estimated using the autoregressive model parameters and the previous 

position estimate xk−1|k−1, which incorporates the spiking history within the interval (0, 

(k-1)Δ). Similarly, One-Step Prediction Variance estimates the covariance matrix of the One-

Step Prediction position based on the autoregressive model parameters and the previous 

covariance matrix estimate.

The Posterior Mode and Variance use the neuron firing probabilities and the spiking activity 

at time kΔ to update the one-step estimates and obtain the estimate of the current position, 

xk|k, and the covariance matrix of the posterior, Wk|k, under the assumption that the neurons 

are conditionally independent. These estimates incorporate the spiking history within the 

interval (0, kΔ). The derivatives of the log of the firing rates are weighted by the firing 
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probabilities and spike counts to compute these estimates. The derivation of equations (4–7) 

are detailed by Barbieri et al., 2004 [38].

To facilitate the computation of the first and second derivatives of the rate maps during the 

decoding process, the rate maps were represented by a set of Legendre polynomials which 

are differentiable and form an orthonormal basis within the interval [-1,1] [39]. Their 

equations are presented in the Supplementary Materials.

F. Lower Bound of Mutual Information Encoded by Network

Pillow et al., 2000 [40] derived a generalized estimate for the lower bound of the mutual 

information and was used in the present study as an information-theoretic measure to 

characterize the ability of the network to encode position. A brief derivation is located in the 

Supplementary Materials.

I[x; r] ≥ 1
2 log2 (2πe)2 Wε − log2 E r ⋅ rT + log2(2πe) (9)

Here, Wε refers to the covariance matrix in (6), and E [r · rT] corresponds to the covariance 

of the residuals where x or the error of the estimate.

III. Results

A. Emergence of Place Fields

The network was driven by input from both the medial and lateral entorhinal cortices. The 

MEC provided spatially-correlated grid cell input, and the LEC provided spatially-

uncorrelated input as random, Poisson activity, contributing noise to the grid cell input. 

Entorhinal-dentate system simulations were performed using experimentally-derived 

constraints for all aspects of the model (e.g., cellular biophysics, convergence, divergence, 

EPSP/IPSP parameters, grid cell receptive field properties, etc.). Each simulation 

represented 2,000 seconds which took 98 hours per simulation using 1,000 processors. 

Simulation results revealed that under these conditions granule cell activity exhibited 

multiple, irregularly spaced place fields which matched experimental descriptions of granule 

cell place fields (Fig. 2) [41], [42]. Experimental studies reported an average of 2.2 place 

fields with an area of 667.3 cm2 [11], [42]. The average number of place fields per granule 

cell from simulation was 4.10 ± 1.66, and the average area was 719.5 ± 185.6 cm2. 

Neunuebel and Knierim, 2012 [21] had reported an average spatial information score of 1.1 

± 0.56 bits/spike for experimentally recorded granule cells, and the simulations reported here 

resulted in an average spatial information of 0.83 ± 0.03 bits/spike. The quantitative 

similarities between the simulated and experimental place fields demonstrate that the large-

scale model, in addition to accurately representing cellular dynamics, can adequately 

recreate phenomena at a higher level involving network dynamics essential for spatial 

cognition.
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B. Evaluating Gradients in Dentate Gyrus

The gradient of grid map properties within the MEC and the gradient of entorhinal-dentate 

projections align such that grid cells associated with smaller place fields are transmitted 

along projections terminating within the dorsal dentate gyrus, while grid cells associated 

with larger place fields are transmitted along projections terminating within the ventral 

dentate gyrus (Fig. 1C). This relation suggested that the dentate gyrus would exhibit place 

field properties such that granule cells within the dorsal dentate gyrus would express smaller 

place fields and granule cells within the ventral dentate gyrus would express larger place 

fields. Therefore, an analysis was performed to quantify the emergence of any possible 

gradient in the place field properties of granule cells with respect to dorso-ventral position.

A second gradient was hypothesized to emerge along the transverse axis due to the 

difference in number of inputs the suprapyramidal and infrapyramidal blades received, so 

the data was further divided into suprapyramidal and infrapyramidal populations. Therefore, 

the subsequent analyses investigated the presence and magnitude of the dorso-ventral 

gradients that occurred in the suprapyramidal and infrapyramidal blades.

C. Place Field Area Gradient Depends on Axonal Anatomy

A linear regression was performed between the mean place field area and dorso-ventral 

position, and a gradient was discovered in which smaller place fields were generated 

dorsally and larger place fields were generated ventrally. To test the influence of topography 

on the emergence of place field area gradients, the dorso-ventral extent of the axon terminal 

fields of the entorhinal projection were varied in a log-linear manner, i.e., 0.1 mm, 0.5 mm, 

1.0 mm, 2.0 mm, and 10.0 mm, due to the computational resources necessary to complete a 

single simulation. The extent of the axon terminal field constrains the area in the dentate 

gyrus to which a single entorhinal neuron could form synaptic connections and was used as 

a continuous quantity through which the entorhinal-dentate connectivity could be 

transitioned between a lamellar connectivity and a uniform random connectivity (Fig. 3B). 

The spatio-temporal activity due to different axon terminal field extents and a conceptual 

representation of the axon terminal field are depicted in Fig. 3A. As previously reported in 

[4], the axon terminal field controls the spatial extent of the clusters.

Shorter axon terminal field extents resulted in a linear decrease in place field area along the 

dorso-ventral axis (Fig. 4A). The slope was used as a measure to quantify the range of place 

field sizes, i.e., spatial resolutions, that the network represented. The slope decreased 

following a power law, i.e., log-linearly, as the axon terminal field extent increased (Fig. 

4B). The mean place field area for the population was weakly correlated with the axon 

terminal field extent (Fig. 4C).

The place field area gradient was present in both the infrapyramidal and suprapyramidal 

populations with both populations exhibiting larger ventral place fields and smaller dorsal 

place fields. However, the suprapyramidal blade exhibited a steeper gradient. When 

comparing the mean place field areas between the infrapyramidal and suprapyramidal 

populations, the suprapyramidal granule cells had larger place fields regardless of the axon 

terminal field extent (p≪0.001 for all axon field extents).
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There was no dorso-ventral gradient for the number of place fields generated per granule cell 

(data not shown). Suprapyramidal granule cells exhibited a slightly lower number of place 

fields (0.14 ± 0.03 place fields) though it was statistically significant (p ≪ 0.001 for all axon 

field extents).

D. Spatial Information Score Depends on Axonal Anatomy

A linear regression was performed between the spatial information score and dorso-ventral 

position which revealed that a spatial information gradient was present in the data for the 

dentate gyrus. The spatial information score was highest for the activity emerging from the 

dorsal dentate and was lowest for activity from the ventral dentate. Like the place field area 

gradient, the spatial information gradient approached zero as the topography became random 

(Fig. 5A and 5B). Contrary to the mean place field area which had a very weak correlation 

with axon field extent, the mean spatial information score for the population increased as the 

axon field extent increased (Fig. 5C). The 10 mm axon terminal field network had the 

highest spatial information score, whereas the 0.1 mm axon terminal field network had the 

lowest spatial information score.

The spatial information gradient was present in both the infrapyramidal and suprapyramidal 

blades, but the suprapyramidal blade displayed both a steeper spatial information gradient 

and a larger mean spatial information score than the infrapyramidal blade (p≪0.001 for all 

axon field extents).

E. Multi-Resolution Inputs Affect Spatial Information Score

We next investigated the mechanism by which axon terminal field contributed to the spatial 

information score. Theoretical studies have concluded that a multi-resolution representation 

of space in the input is important to generate singular place fields [14], [43]. We 

hypothesized that wider axon terminal fields would result in granule cells receiving inputs 

composed of a larger variety of grid field sizes which would cause the granule cells to 

exhibit a higher spatial information score. To test this hypothesis, a linear regression was 

performed between the spatial information score and the amount of different spatial 

resolutions, i.e., grid field sizes, represented by the total input to a granule cell which 

demonstrated that the spatial information score is improved by a multi-resolution input (Fig. 

5D). The amount of different resolutions encoded by the input was quantified by calculating 

the standard deviation of the grid field areas that comprised the inputs to a granule cell. 

Additionally, the amount of different spatial resolutions received by granule cells was 

correlated with the extent of the axon terminal fields as the axon fields constrained the 

divergence of the input within the postsynaptic region (Fig. 5E).

F. Spatial Information Score and Multi-Resolution Representations of Space Predict 
Decoding Performance

The next investigation evaluated position decoding performance using the activity generated 

by the neuronal network under the different axon terminal field conditions. A subset of 2000 

neurons from the suprapyramidal blade and 2000 neurons from the infrapyramidal blade 

were chosen using a uniform random sampling along the longitudinal axis of the dentate 

gyrus. For each blade, decoding was performed using the same 2000 neurons for each axon 
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terminal field extent. The position estimates and decoding performance are plotted in Fig. 6. 

Rather than a monotonic relation, decoding error varied nonlinearly as a function of axon 

terminal field extent. The smallest axon terminal field extent at 0.1 mm yielded the best 

estimate for both blades, followed by a large increase in error at 0.5 mm, a local minimum at 

2.0 mm, and another increase in error at10.0 mm (Fig. 6B). The lower bound of spatial 

information was found to vary with the decoding error (Fig. 6C). To explore the relation 

between axon terminal field size and decoding error, we performed an analysis using the 

results obtained in the previous sections. We had demonstrated two opposing gradients: the 

range of place field areas that are represented by the population decreased as the axon field 

increased, but the spatial information score increased as the axon field increased. We 

hypothesized that, due to their opposing relations, decoding performance may be related to a 

combination of the two properties. The variables and their interaction were linearly 

combined using an equation of the form

E(x) = A ⋅ f SI(x) + B ⋅ f G(x) + C ⋅ f SI(x) ⋅ f G(x) + D, (10)

where E refers to the predicted decoding error, x refers to the axon terminal field extent, fG 

(x) refers to power law equations for place field size gradient from Fig. 4B, and fSI(x) 

corresponds to the power law equations for spatial information score from Fig. 5C. The 

power law equations were also used to interpolate additional points along the predicted 

decoding performance curve. The effect size of each variable was quantified using ω2 which 

indicated that the interaction between spatial information score and slope was a significant 

predictor of decoding error (Fig. 6B). These results suggest that a combination of a multi-

resolution input and the spatial information score contributes to optimal spatial encoding. An 

interesting feature is the local minimum in the actual decoding error that appears at 2.0 mm 

for both blades and in the predicted decoding error at 2.43 mm and 1.32 mm for the 

suprapyramidal and infrapyramidal blades, respectively. These values are comparable to the 

anatomical axon field extents of 1–1.5 mm found in vivo [44].

IV. Discussion

A. Large-Scale Modeling and the Incorporation of Biological Constraints

Perhaps the most significant finding of the present study is the successful prediction of place 

field properties of dentate granule cells in response to grid cell firing of entorhinal cortical 

neurons as inputs to the dentate. There was no information or constraint relative to place cell 

firing incorporated to any degree into the model. In this sense, then granule cell place fields 

truly represent a property that is emergent from the network. In addition to the simple 

emergence of place fields, the simulated entorhinal-dentate network also displayed multiple 

high-level properties of place fields displayed by granule cells in vivo [11]. For example, 

simulated granule cells exhibited an average of 4.10 ± 1.66 place fields with place field areas 

of 719.5 ± 185.6 cm2 which were comparable to the 2.2 place fields with areas of 667.3 cm2 

that were measured in vivo [11], [42]. Furthermore, the average spatial information of the 

simulated granule cells was 0.83 ± 0.03 bits/spike which were within the experimentally 

reported values of 1.1 ± 0.56 bits/spike [21].

Yu et al. Page 11

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The only substantial constraints included in the model were morphological (e.g. the division 

of the apical dendrites of the granule cell models into the granule cell layer and the inner, 

middle, and outer thirds of the molecular layer and the numbers and densities of synapses), 

anatomical (e.g. the topographical projection of entorhinal axons to dentate gyrus and the 

numbers and distributions of neurons throughout the dentate gyrus), biophysical (e.g. the 

types and densities of the ion channels represented, see Supplementary Materials), and 

electrophysiological (e.g. the threshold, input resistance, spike frequency adaptation ratio, 

etc., see Table 1), and the synaptic dynamics.

Despite the number of components and interdependencies present in the model, the large-

scale neuronal network was able to exhibit place field properties and spatial information 

scores that were within the ranges reported experimentally. Whereas synaptic and cellular 

dynamics represent a bottom-up or lower level validation and are the means by which 

neuronal network models are typically validated, the place fields and spatial information, 

which rely on a combination of multiple elements outside of the individual cell models, 

represent a top-down validation or validation at a higher level. Validation at both levels, 

given the number of components in the model, suggest that at least an appropriate number of 

significant components were included in the model to generate place field behavior and that 

these components were adequately constrained with respect to the biology.

B. Dorso-Ventral Gradient in Dentate Gyrus

A possible dorso-ventral organization in dentate gyrus due to the entorhinal-dentate 

topography and the organization of the grid cell receptive field properties had been proposed 

by Solstad et al., 2006 [14]. However, the quantification of data regarding the topography of 

the entorhinal-dentate projection and grid cell receptive field properties and the integration 

of both datasets into a comprehensive model had not been performed until this work. The 

large-scale model presented here predicts that the dentate gyrus has a functional, dorso-

ventral organization in which smaller place fields are exhibited dorsally and larger place 

fields are exhibited ventrally. A similar gradient for place field area has been reported in vivo 
for the CA3/4 subfield [20] but has not been investigated for dentate gyrus. However, given 

that the entorhinal-CA3 projection is organized in the same manner as the entorhinal-dentate 

projection and that the dentate-CA3 projection has a strongly lamellar organization [45], 

[46], it is plausible that the prediction of the large-scale model is accurate.

C. Transverse Gradient in Dentate Gyrus

A transverse gradient was discovered between the suprapyramidal and infrapyramidal 

blades. Suprapyramidal granule cells exhibited larger place field areas, a greater place field 

area gradient, and higher spatial information scores than infrapyramidal granule cells. The 

key difference between the suprapyramidal and infrapyramidal granule cell models was the 

number of inputs that each received with 2117 and 1253, respectively. The ratio of grid cell 

to LEC inputs was similar with 43% and 46% of the inputs being composed of grid cells for 

suprapyramidal and infrapyramidal granule cells, respectively. The mean firing rates 

between the blades were similar at 0.70 Hz (suprapyramidal) and 0.68 Hz (infrapyramidal). 

Although the number of inputs were dissimilar, the feedback inhibition provided by basket 

cells caused the firing rates to be approximately equal. The range of spatial resolutions 
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available for either the suprapyramidal or infrapyramidal granule cells in their input was also 

similar (Fig. 5E). This leaves the number of inputs as the main factor differentiating the two 

populations in the present model. A study investigating the differences between 

suprapyramidal and infrapyramidal granule cells may reveal additional insights as to the 

functional differences between the groups.

D. High-Level Constraints Predict Function of Lower-Levels

Controlling certain properties in neural systems experimentally (e.g. the size of the axon 

terminal field) can be impossible given current technology. Computational models, with 

sufficient detail to represent phenomena within and across different physical scales, can 

predict the role of lower level properties in a larger context. The axon terminal field was 

found to mediate a trade-off between encoding multiple spatial resolutions or achieving a 

high spatial information score. Beyond a highly multi-resolution representation of space as 

achieved by the 0.1 mm axon terminal field extent which resulted in the greatest decoding 

performance, the optimal axon terminal field extents to maximize spatial encoding was 

predicted to be 2.43 mm and 1.32 mm for the suprapyramidal and infrapyramidal blades 

which suggests that both properties are necessary for good encoding. Furthermore, these 

values lie within the range of the reported axon field extent for entorhinal cortical axonal 

fields within the dentate gyrus (roughly 1–1.5 mm by Tamamaki and Nojyo, 1993 [44]). 

These results suggest that spatial encoding efficiency may be one constraint that is used to 

determine the in vivo size of the entorhinal axon terminal field and demonstrate how the 

large-scale model can be used to generate hypotheses that connect lower level biological 

properties to a system level function.

In the context of quantifying high-level properties of neural system activity, information 

theory has been essential by providing a framework through which the non-linear relations 

between external, e.g., neural, biological, and behavioral, correlates and single neuron or 

ensemble neural spiking activity can be reduced into single number metrics. Statistical 

approaches including decoding algorithms and neural functional connectivity estimation 

methods can be used to extract various information-theoretic quantities directly from the 

spiking activity as opposed to histogram-based methods [38], [40], [47]. The lower bound of 

mutual information used in this study directly uses the error of the estimate to quantify 

mutual information, but using and developing more sophisticated techniques are necessary 

to provide accurate metrics for higher-level function.

E. Additional Contributions to Spatial Encoding

Though grid cells are an important physiological input to the hippocampus, there exist many 

other functional cell types in the entorhinal cortex that have not yet been incorporated which 

can add to the dimensions by which the large-scale model can be interpreted. Additional cell 

types from layer II of the MEC include boundary cells [48] and speed cells [49]. Deeper 

layers of the MEC have head direction cells and conjunctive cells [50]. Less is known about 

specific, functional cell types in the LEC and their topographic organization. Studies in rat 

have shown that the LEC responds to multi-modal sensory stimuli such as olfaction and 

vision [51], [52]. Additionally, there is evidence that LEC cells can encode locations of 

objects within an environment [53].
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Basket cells in the model participated in both feedforward inhibition driven by the entorhinal 

cortex and feedback inhibition driven by the granule cells but a thorough investigation into 

their contributions on the processing of spatial information was outside the scope of this 

work. Feedback inhibition has been included in most computational studies of place field 

formation to provide competitive inhibition and promote sparse activity [11], [14], [54], but 

the influence of feedforward inhibition on place field formation has not been investigated in 

the literature. Future works will study the contributions of feedback and feedforward 

inhibition on spatial encoding. Another significant interneuron population, mossy cells, 

comprises the associational system of the dentate gyrus and contributes long-ranging 

projections along the dorso-ventral axis. We have previously explored the effects of mossy 

cells on network dynamics [27] and will also explore their role in spatial encoding.

Another aspect of place field generation and decoding that has yet to be addressed involves 

network oscillation which has been shown to encode spatial information [55]. As the large-

scale model is able to generate spiking data for entire neural populations from which local 

field potentials can be predicted [56], it is uniquely situated to investigate the functional 

consequences of network oscillations. Computational studies have demonstrated the 

importance of oscillations for communicating information [57], [58], and further work will 

be performed to integrate the analysis of oscillations with typical spiking based methods.

V. Conclusion

The accessibility and interpretability of parameters allows parametric models of neural 

systems to simulate unique experiments and provide mechanistic explanations of the 

observed phenomena. The large-scale model presented here is novel in the scope and depth 

of detail included to describe biologically plausible population level activity approaching the 

full scale of a single hemisphere of rat hippocampus. With the introduction of grid cells as 

input, the output of the large-scale neuronal network model and the contributions of its 

model parameters can now be analyzed in the context of spatial cognition. In this work, the 

specific role of the axonal anatomy in the rat entorhinal-dentate system was investigated 

using simulations that would otherwise be impossible to recreate experimentally using 

present technology, and as such, this work offers one of the few investigations that could 

explain how network architecture within and between subfields, e.g., spatial processing 

between dentate gyrus and CA3/4 [59], affect neural encoding and neural system function. 

The successful inclusion of grid cells at this stage allows behaviorally relevant 

computational studies to be performed using the large-scale model as it is further expanded 

to include the CA3/4 and CA1/2 subfields, and the differences in feedforward connectivity 

that exist among the subfields will offer additional opportunities in studying how the 

differences in architecture, and other model elements, affect the processing of spatial 

information as it is successively transformed by the trisynaptic pathway.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Distribution of grid field parameters and generation of grid cell activity. (A) Data from 

Hafting et al., 2005 (left and middle) and Stensola et al., 2012 (right) were used to constrain 

the grid field properties. (B) The grid field properties were normalized along the dorso-

ventral axis of the medial entorhinal cortex using a generalized logisitic function such that 

the grid field properties were represented approximately equally. (C) The gradient of grid 

field parameters in the medial entorhinal cortex (left) and the mapping between medial 

entorhinal cortex and dentate gyrus (center) determine where the grid field information is 

communicated to within the dentate gyrus. The final distribution of grid field parameters 

results in a gradient in the dentate gyrus (right). (D) An example grid field is shown with 

notation describing the field area, distance, and orientation properties. (E) Left: The 

movement of a virtual rat in white is overlaid on a grid field with a triangle and circle 

denoting the start and end points of the movement, respectively. Right: The firing rate (red) 

is determined using a grid field and the movement of the rat through the field. A non-

homogeneous Poisson process is used to generate spiking activity (black) using the firing 

rate.
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Fig. 2. 
Smoothed rate maps from simulated dentate granule cells at different locations along the 

dorso-ventral axis. A dorso-ventral gradient for the size of the place fields was observed. 

Ventrally-located granule cells exhibited larger place fields, and dorsally-located granule 

cells exhibited smaller place fields. The color scale denotes high firing rates in red and low 

firing rates in blue.
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Fig. 3. 
Raster plots of the spiking activity due to different axon terminal field extents. (A) Spiking 

activity is represented using black dots which represent the time and position along the 

longitudinal extent at which an action potential was generated. Clustered activity is apparent 

with smaller axon terminal field sizes and organizes into vertical bands at larger axon 

terminal field sizes. (B) A conceptual representation of the consequences of changing the 

axon terminal field have on connectivity is depicted. As the axon terminal field grows larger, 

a larger area of neurons can be contacted, and the input is more dispersed spatially. At 

smaller axon terminal fields, the area in which neurons can be contacted becomes restricted.
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Fig. 4. 
The effect of axon field terminal extent on granule cell place field properties and 

suprapyramidal-infrapyramidal differences. (A) The mean place field area within 0.5 mm 

bins along the dorso-ventral axis were plotted as a scatter plot with the corresponding linear 

fits. The mean values within a bin were plotted for visual clarity, but the regressions were 

performed using the raw data. (B) The magnitude of the slope between place field area and 

dorso-ventral position decreased log-linearly with the axon terminal field extent. The error 

bars denote the standard error of the estimates of slope. (C) The mean place field areas of 

the populations were weakly correlated with the axon terminal field extent. The error bars 

denote standard error. Nsupra=65,000 and Ninfra=55,000 for each field extent.
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Fig. 5. 
The effect of axon terminal field extent on spatial information score and the effect of multi-

resolution input on spatial information score. (A) The mean spatial information score within 

0.1 mm bins along the dorso-ventral axis were plotted with the corresponding linear fits. The 

mean values within a bin were plotted for visual clarity, but the regressions were performed 

using the raw data. (B) The magnitude of the slope between the spatial information score 

and dorso-ventral position decreased exponentially with the axon terminal field extent. The 

error bars denote the standard error for the estimates for slope. (C) The mean spatial 

information increases exponentially with axon field extent. The error bars denote standard 

deviation. (D) The standard deviation of the grid field areas that a granule cell received were 

plotted against the corresponding spatial information score. (E) The standard deviation of 

grid field areas in the input is correlated with the axon terminal field extent. A larger axon 

terminal field results in a granule cell receiving a total input with a larger variety of grid field 

sizes.
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Fig. 6. 
Decoding performance as a function of axon terminal field extent. (A) The position 

decoding estimates under different axon terminal field conditions are plotted over the actual 

positions. (B) The average error, represented by the Euclidean distance between the 

predicted and actual position, is plotted against axon terminal field extent (black). A linear 

regression was used to predict decoding performance using two variables: place field area 

slope and spatial information score (red). The p-values of the regressions were ≪ 0.001 for 

both blades. The coefficients to Eq. 17 and the effect sizes are listed within each figure. (C) 
The estimated lower bound of the mutual information between position and the spiking of 

the neural population is plotted as a function of axon terminal field extent.
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