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Abstract—The assessment of Parkinson’s disease (PD) poses a
significant challenge as it is influenced by various factors which
lead to a complex and fluctuating symptom manifestation. Thus,
a frequent and objective PD assessment is highly valuable for
effective health management of people with Parkinson’s disease
(PwP). Here, we propose a method for monitoring PwP by
stochastically modeling the relationships between their wrist
movements during unscripted daily activities and corresponding
annotations about clinical displays of movement abnormalities.
We approach the estimation of PD motor signs by independently
modeling and hierarchically stacking Gaussian process models
for three classes of commonly observed movement abnormalities
in PwP including tremor, (non-tremulous) bradykinesia, and
(non-tremulous) dyskinesia. We use clinically adopted severity
measures as annotations for training the models, thus allowing
our multi-layer Gaussian process prediction models to estimate
not only their presence but also their severities. The experimental
validation of our approach demonstrates strong agreement of the
model predictions with these PD annotations. Our results show
the proposed method produces promising results in objective
monitoring of movement abnormalities of PD in the presence
of arbitrary and unknown voluntary motions, and makes an
important step towards continuous monitoring of PD in the home
environment.

Index Terms—Ambient intelligence, Gaussian processes, Med-
ical information system, Wearable sensors

I. INTRODUCTION

PARKINSON’S disease (PD) is the second most com-
mon neurodegenerative disease after Alzheimer’s disease,

largely associated with various forms of movement-related
symptoms [1]. As many as 60,000 new cases are diagnosed
every year in North America [2], and according to a recent
analysis from [3], the prevalence of PD is estimated to
be 217.22/100,000 in Germany. Typically, people with PD
(PwP) show several characteristic movement deficits, such
as brady-hypokinesia, rigidity, tremor, postural instability,
and movement initiation disorder (“freezing”) [4]–[6]. Brady-
hypokinesia is the most salient symptom and is characterized
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by slowness and reduction of movements [7]. Rigidity is a
stiffening of the body parts [8]. Tremor typically occurs as
a rest tremor, and is defined as an involuntary rhythmical
muscle contraction of 4-6 Hz frequency [9], which is a
common initial PD symptom [4]. As the aetiology of PD
lies in dopamine deficiency due to the degeneration of sub-
stantia nigra, these PD symptoms are controlled primarily by
dopaminergic treatments [10]. However, as a side effect, many
patients may exhibit dyskinesia, characterized by involuntary
muscle movements [11].
PD exhibits symptom heterogeneity between patients, espe-
cially in the advanced stages of the disease [12]. In addition,
the short-term influence of medication, and the dependency
on a variety of internal and external factors leads to highly
complex and variable displays of the PD symptoms. For these
reasons, even for highly trained clinicians, there is consider-
able inter-rater and intra-rater variability in judging the severity
of the cardinal symptoms (e.g., [13], [14]), which compromises
both diagnosis and monitoring of PD. Thus, frequent and
objective clinical assessments are important for deriving a
suitable health management plan (e.g., adapting drug dosage).
Nevertheless, PD assessments in a patient’s home environment
are often impractical due to time and economic constraints. An
alternative is self-disclosure by the patients in a diary which
is reported on a regular basis throughout the day. However,
the reliability of those diaries is often questionable as these
reports are subjective and it requires substantial commitment
by the patients [15]. Therefore, we propose a supervised
machine learning method for autonomously estimating and
monitoring PD-specific movement abnormalities using a com-
mercial wrist-worn wearable sensor to track the patients’
motion. These wearable devices can be used to continuously
monitor the movement of the users with minimum intrusion on
their daily activities. In free living settings, however, tracked
movements are often comprised of motor expressions of PD as
well as unknown movements related to daily activities. Thus,
the learning algorithm must be able to attend to the features
of PD symptoms in the face of highly variable inputs.
In the present study, therefore, we estimate the severity of PD-
specific movement abnormalities in the presence of arbitrary
and unknown voluntary motions by learning the movement
features including those in the time-frequency domain. Specif-
ically, we use a multi-layered Gaussian process (GP) model, in
which each of the hierarchically stacked GP models estimates
severity of different PD-related movement abnormality classes,
namely tremor (bradykinetic or dyskinetic), non-tremulous
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bradykinesia and non-tremulous dyskineasia.

A. Related Work

Machine learning has been employed in many studies to
model the relationships between movements of PwP and sever-
ity of PD [16]–[20]. Commonly, the movements are recorded
using wearable sensors such as accelerometer, gyroscope, elec-
tromyography and video-based tracking devices. In the major-
ity of studies (e.g. [16], [17], [19], [21]), wearable inertial mea-
surement units (IMUs) are used with applications in remote
home environments in mind, whereas marker-based motion
tracking systems are often used in a controlled environment
or when they provide a ground truth for other sensors [22],
[23]. Existing studies largely focus on one or two PD-specific
behavior classes including tremor, bradykinesia, dyskinesia,
and gait disturbance, where the presence of abnormality in
these classes is estimated by machine learning [22]. As labeled
training data is necessary for supervised machine learning, a
movement disorder specialist commonly monitors the patients
and labels clinical observations according to the Movement
Disorder Society sponsored Unified PD Rating Scale (MDS-
UPDRS) with which motor symptoms are assessed on a 5-level
rating scale [24], [25].

For instance, Eskofier et al. [17] compare several supervised
machine learning pipelines and a deep learning algorithm to
detect bradykinesia. Several specific motor tasks of 10 patients
with idiopathic PD were recorded using IMU sensors. Every
task was rated by a movement disorder specialist according
to the MDS-UPDRS rating scale. Using these data, a classi-
fication accuracy of up to 85% was achieved with standard
machine learning techniques such as support vector machine
(SVM) while deep learning demonstrated 90% accuracy in
predicting the presence and absence of bradykinesia. Angeles
et al. [16] were also able to classify PD symptoms such as
kinetic tremor according to the MDS-UPDRS score given by
clinicians with an accuracy of up to 87% using simple tree,
linear SVM and fine k-nearest neighbor (kNN) algorithms. An
accuracy of up to 92% was achieved in predicting bradykinesia
using Fine kNN. As an alternative to wearable sensors, video-
based methods have been used to investigate the PD motor
symptoms. Butt et al. [26], [27], for example, used the hand
motion data collected using an RGB-D camera to distinguish
PD patients from healthy individuals at an accuracy of up
to 85% using SVM. Alternatively, a semi-supervised classi-
fication algorithm based on k-means and self-organizing tree
map clustering was applied in [28], obtaining accuracies in the
range of 42-99% for patients with different levels of dyskinesia
severity. In a hybrid approach, [29] tailors a different set of
classifiers including the hidden Markov model, decision tree,
SVM, and random forest to estimate the tremor, dyskinesia,
bradykinesia and freezing of gait, respectively. Using the IMU
signals collected from four locations on the body and the
patient’s own diary rating as class labels, the authors predicted
the severity of PD symptoms with above 70% accuracy during
short-term scripted activities.

The experiments for modeling motor aspects of PD de-
scribed so far took place in laboratory environments, where

the patients performed scripted activities. Few examples are
available on symptom modeling during free living in the
literature. In [30] binary classification of bradykinesia and
tremor attained 60-71% sensitivity using a receiver operating
characteristic curve on single kinematic variables. In contrast,
using a neural network with 23 kinematic variables from 6
IMU sensors, Keijsers et al. [31] achieved an average sensitiv-
ity and specificity of 97% for binary classification. Supervised
machine learning is used in [19] to classify bradykinesia
during free movement and daily living. The authors contrasted
a set of classifiers such as SVN and k-means and reported 70%
to 86% classification accuracy for predicting the bradykinesia
severity.

Existing studies largely focus on modeling PD symptoms
either in a controlled environment and/or using a binary classi-
fication algorithms due to the limited PD data set and a highly
variable display of PD symptoms. Thus, the estimation of
the symptom severity has been challenging task, and previous
works have not sufficiently explored the benefits of advanced
machine learning techniques such as Gaussian mixture mod-
eling and Gaussian process regression with which non-linear
functions can be robustly approximated with relatively small
datasets.

B. Contributions and Article Structure
Our contributions in improving severity estimation of be-

havioral abnormalities of PwP during unscripted daily activ-
ities are supported by two key methodological achievements:
(1) identification of appropriate data features for our PD
classes (III-B) and (2) the hierarchical structured machine
learning models which handle each PD class (III-C). We pro-
pose an approach to autonomously estimate severities in three
classes of PD-related motor abnormalities (i.e., PD classes);
namely tremor, and non-tremulous episodes of bradykinesia
and dyskinesia. As the tremor motion is highly characteris-
tic and easily differentiable from other motions, the model
estimates the tremor presence and its severity in the first
layer, based on the frequency ratio of the tremor motion
versus voluntary actions. Subsequently, in the second layer, the
remaining data are used to analyze the severity of bradykinesia
and dyskinesia. For each of the three class estimates, we apply
GP regression and prediction and thus obtain a multi-layer
GP model. Our approach focuses on collections of unscripted
motion data, thus the PD estimation can take place during
unconstrained free living activities. We purposefully use a
single commercially available wrist-worn low-cost wearable
sensor to demonstrate robustness and applicability of our
approach to real-life scenarios.

The remainder of the paper is structured as follows. We first
introduce our methods for data acquisition. Second, we present
our modeling approach, consisting of feature identification,
hierarchical symptom estimation and the application setup.
Then, we present our experimental results. Finally, we discuss
the results and conclude the paper.

II. DATA COLLECTION

In this section we describe how the patient data was
collected, introducing the patient cohort of our study, the
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sensor device and the setting for data capture. Subsequently,
the procedure of data acquisition is explained.

Thirty individuals who took part in the study were diag-
nosed with PD by a neurologist according to the UK Brain
Bank Diagnostic Criteria [32] at the Schön Klinik München
Schwabing, Germany. The average age of the participants was
67+−10, and 20 were male and 10 were female. The mean
disease duration was 11+−5 years. The median of the patients’
disease progress according to the Hoehn and Yahr scale [4]
is 3.5 with an interquartile range of 1. The recruitment of
the patient cohort and the data acquisition were performed at
the Schön Klinik München Schwabing (Munich, Germany).
This study was approved by the ethical board of the Technical
University of Munich (Ref. No. 234/16S).

In order to learn and predict the display of movement
abnormalities using GP, the movements of the participants
were recorded, together with corresponding PD annotations
including their class and severity. The linear acceleration
and angular velocity of the wrist were measured using the
Microsoft Band 2 (Microsoft). Inside the band is a 6-axis
gyroscope/accelerometer module (LSM6D series by STMi-
croelectronics) and a bluetooth communication module (Blue-
tooth 4.0) for transmitting the data to a peripheral device. The
accelerometer registers motion up to +−8 G (G = 9.81 m/s2)
with sensitivity of 0.244 mG/LSB (least significant byte).
The data range of the gyroscope is +−1000 dps (degree
per second) with sensitivity of 35 mdps/LSB. An Android
application, ”MS band data collector (pro)” was used to stream
and store the data on a Samsung Galaxy A5 (Android 6.0.1).

Observations of the PD classes and their severities were
concurrently performed every minute during the data col-
lection period by a trained expert (D.P.) who accompanied
PwP and passively monitored them. The symptom labels for
bradykinesia and tremor were performed according to the
MDS-UPDRS in a standard 5-level rating scale, where they
correspond to item III.14 and III.17, respectively. Dyskinesia
was assessed using the abnormal involuntary movement scale
(AIMS, item A2.5). For all these three types of motor signs,
the absence of abnormality is rated as 0 and the severity
levels correspond to 1 = slight, 2 = mild, 3 = moderate and
4 = severe. When none of the abnormalities were present, the
motor state of the patients was considered to be eukinetic, and
classed as balanced. Furthermore, voluntary activities (e.g.,
walking, standing, lying/resting and sitting) were reported
in the same one-minute time window. When multiple types
of the motor signs and activities were present within the
same time window, the predominant motor sign and activity
were reported. The data collection was performed in a free-
living environment during the regular in-patient stay at the
hospital for medication adaptation. On average, the data were
collected for 331.2+−192.6 minutes per participant, totaling
9937.0 minutes across the participants. After being briefed
on the procedure, the participants wore the band on the wrist
of the more affected side. Once the bluetooth connection was
established between the band and smartphone which locally
stored the data, the participants were free to engage in any
daily routine including activities outside of the hospital. The
recording ended when the patients desired, or before going to
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Fig. 1. Distribution of PD class severities and activities of the participants.
The label distributions were calculated from the collected dataset for each
participant and then averaged. The arrows in the PD class chart (left) indicate
increasing severity of dyskinesia (DK) and bradykinesia (BK) scores in 4
levels each. The tremor class (TM) also has four severity levels, but is
visualized here as a single section (purple).

bed at the latest. Furthermore, the sensing device was disabled
when the patients were in the toilet/bath or when requested.

III. HIERARCHICAL PD SYMPTOM RECOGNITION

In this section, the approach for autonomous PD detection
and estimation are presented. We start by characterizing the
collected data and their relevance for estimating PD classes,
thereby motivating a selection of motion features. The PD
classes are then assessed by a multi-layer GP model. In the first
layer, a GP estimates the presence of tremor and its severity.
In case tremor is absent, the second layer is triggered, where
two estimations are performed in parallel; one for dyskinesia
and the other for bradykinesia. Hence, the severity level of
both movement symptoms is predicted for all incoming data
in the second layer.

Then, we select the symptom class with the larger predicted
value, as we intend to estimate the predominant motor symp-
tom. The absence of movement disorders (i.e., balanced state)
is assumed when no sign of these three PD classes is present.

A. Data Analysis

In the following, we provide an overview of the collected
patient data. The descriptive analysis of the PD annotations
shows that 35.95% belongs to the balanced class, while the
bradykinesia and dyskinesia were observed in 38.70% and
21.13% of the data, respectively. The percentages are normal-
ized between participants as the data size differs between them.
The annotations also indicate patients spent a large proportion
of their time sitting on a chair (41.58%), see Fig. 1 for details.
The activities gathered in the category other comprise specific
tasks, for instance eating, climbing stairs and brushing teeth or
activities that externally confound inertia measurements such
as taking a train or being in an elevator.

As interaction of PD and activity annotations result in a
wide bandwidth of motion intensities, we investigate the power
spectral density (PSD) of the corresponding accelerometer
data. The analysis shows that sitting and standing labels have
PSD spread between 1-10 Hz and a clearly differentiated
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Fig. 2. Power spectral density (PSD) of the accelerometer data. The PSD
is visualized for bradykinesia (BK), tremor (TM), dyskinesia (DK) and the
balanced state (none). It shows generally high densities during walking, where
the dotted line depicts the scale limit of the other three plots, and very low
PSD values during lying.

tremor at around 4-6 Hz. For the walking label, the charac-
teristic tremor activity is partially absorbed by the walking
frequency which has harmonics of ≈2.5 Hz, as walking itself
generates a strong peak in PSD. Lying is generally described
by low power across the spectrum, meaning that arm motion
occurs infrequently. The shift of the tremor PSD peak towards
7 Hz during lying might be caused by the change in the reso-
nance frequency of the wrist due to a movement constrained
by a lying surface [33]. Moreover, further analysis reveals on
average increasing PSD in the PD classes from bradykinesia
through the balanced state to dyskinesia, as visualized in
Fig. 3, even though the individual activities introduce a high
noise level. The tremor class is omitted in this figure, as the
PSD of tremor data tends to overshadow the other PD classes.

B. Data Processing and Feature Generation

The collected inertial data are processed to quantify relevant
motion features which are then synchronized with PD and
activity annotations, as schematically visualized in Fig. 4. The
resulting data set is used for modeling the PD annotations in
the hierarchical approach.

As the raw inertial data includes sensor noise, we smooth
the accelerometer and gyroscope data with a two-directional
Butterworth band-pass filter

(ãx, ãy, ãz)
>
= fBw (ax, ay, az, lb, ub) ,

(ω̃x, ω̃y, ω̃z)
>
= fBw (ωx, ωy, ωz, lb, ub) .

(1)

The lower bound lb of the cut-off frequency was set to 0.1 Hz
to filter out sensor drift, and the upper bound ub was set to
20 Hz to filter out high frequency noise. Furthermore, to avoid
dependency of the signal on the wrist band placement (left
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Fig. 3. Average PSD of the non-tremulous accelerometer data per PD class
severity. The mean (visualized by bar height) of each PSD per class severity
level with its standard deviation (gray error bar) is sorted from balanced to
severe. In both figures the yellow bar depicts the average PSD level in the
balanced state. On the left side the severity levels of bradykineasia (without
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Fig. 4. Inertial data and expert ratings processing. The sensor data is
pre-processed before PD features are extracted. The resulting data are then
synchronized with the PD and activity annotations performed by the expert
rater.

versus right wrist) and orientation (lateral versus distal and
upright versus inverted), the vector norm ‖ · ‖ of both filtered
inertial units is calculated,

δacc = ‖ (ãx, ãy, ãz)> ‖
δgyr = ‖ (ω̃x, ω̃y, ω̃z)> ‖,

(2)

and thus scalar signals δacc and δgyr are obtained. All subse-
quent feature generation is performed on the processed signals.

As demonstrated in Fig. 3, the PD classes have different
spectral characteristics. Therefore, we base the feature gener-
ation on a time-frequency transformation, namely on wavelet
decomposition of the processed sensor data. The signals δacc
and δgyr are transformed using Daubechies wavelets ψ3 of
order 3. The odd-numbered decomposition levels 1, 3, 5, 7
and 9 are employed, as those layers cover the bandwidth of
activity levels present in daily living activities according to
our observation (III-A). In Fig. 5 a raw accelerometer signal
and the third wavelet decomposed level of the corresponding
filtered signal vector norm are depicted. The lower part of
the figure shows that wavelet decomposition is capable of
differentiating voluntary motion (white background) from the
tremor-induced motion (green shaded area). We remove the
even-numbered layers from the model to minimize redundancy
in the feature space. Then, for each decomposed level δ̃acc,i =
ψ3(δacc, i) and δ̃gyr,i = ψ3(δgyr, i), where i ∈ {1, 3, 5, 7, 9},
characteristic features are calculated. The features consist
of standard deviation, norm, maximum, root mean square,
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Fig. 5. Wavelet transformation of the accelerometer data. The discrete
wavelet decomposition is performed on the vector norm of 3D accelerometer
(and gyroscope) measurements to calculate features that describe characteris-
tics of the 60 seconds time window. Only the third level of the accelerometer
signal decomposition is depicted. The green shaded area indicates presence
of the tremor according to the PD annotation.

kurtosis and skewness, as they encode motion properties of the
displayed PD class and activity. In addition, the signals δ̃acc,i

and δ̃gyr,i are differentiated for all i ∈ {1, 3, 5, 7, 9} and the
standard deviation, norm and root mean square are reapplied
to the differentiated signals. A logarithmic scaling is used on
a selection of features to improve the activity level separation,
as the logarithmizing stretches small positive signals. More
specifically, the logarithm is taken of all features obtained from
the gyroscope and of the differentiated accelerometer features.

Every feature is computed for each one minute time win-
dow t, if the size of the sample set Jt that is captured during
window t, contains at least 10% of the number of data samples
that should be captured during one minute, i.e. #Jt ≥ 360
sensor measurements (60 Hz sampling rate times 60 seconds
corresponds to 100%). Hence, we only omit data windows that
suffer from severe data loss. We allow this small percentage of
data samples per captured time window, because the Bluetooth
data transmission between the smartwatch and the storage
device (smartphone) was occasionally interrupted.

The features introduced so far characterize the power in
the inertial data and are thus best suitable for describing
the tremor and dyskinesia. As bradykinesia is characterized
by very slow motion and complete absence of motion, rest
phases in the patients’ sensor data additionally need to be
quantified. Therefore, features encoding the length of rest
phases within the time window are investigated. We define
rest as the proportion of data where the processed inertial
signals (2) are below a given threshold c,

restacc/gyr =
∑
j∈Jt

B (δacc/gyr(j) < c)

#Jt
, (3)

where B(·) denotes the boolean operator that assigns the
numbers {0, 1} depending on whether the relation on the
inside is false or true. Multiple thresholds are introduced to
compensate for inter-patient and inter-activity variability and
to cover all severity levels of the PD classes. We use 0.1, 0.15,

0.2, 0.25 and 0.3 G as thresholds c for accelerometer and
1, 1.25, 1.5, 1.75 and 2 dps for gyroscope, respectively. As
during severe bradykinesia it can happen that the patient does
not move during the whole one minute window, additionally
the rest proportion over a 5 minute window

⋃
τ∈T Jτ is

calculated, consisting of the two minutes before and after the
current time window, T = {t− 2, t− 1, t, t+ 1, t+ 2}.

Additionally to the previously mentioned features, we in-
clude features that are inspired by the Parkinson’s KinetiGraph
system [34]. The two raw inertial signals are filtered, using
a stronger bandpass filter (with limits 0.2 Hz and 4 Hz) to
keep voluntary motion only. Then, the maximum and the
mean spectral power at the maximum are calculated, as those
features have been reported to provide promising results for
severity estimation of PD classes [35].

The total number of features obtained is 132 for both
inertial sensors (the accelerometer and gyroscope). They are
concatenated into the feature vector λ ∈ R132. We use this
vector to model and predict the PD classes.

C. Multi-layer Gaussian Process

In the following, we present our technique to estimate PD
class severity ξ from the feature vector λ. We propose to use
multiple successive GPs to estimate the unknown function

ϕ(λ) = ξ. (4)

GPs are well suited for modeling human movement behavior
due to their property to generate smooth motion predictions
for nonlinear dynamics.

The training input set {xi}νi=1 to the multi-layer GP is
the feature vector {λi}νi=1. Specifically, at first a tremor GP
is trained to recognize the severity of the tremor from the
training input {λi}νk=1. The training output set {yTM,i}νi=1 is
optimized to approximate the severity,

yTM,i ≈
{
ξi if i ∈ JTM,

0 otherwise,
(5)

where the set JTM := {j ∈ {1, . . . , ν} ∧ ξj contains tremor}.
The next hierarchical level is triggered for the non-tremor
data only {λi}νi=1,i/∈JTM

. This second layer comprises two GP
estimations; the dyskinesia GP for modeling dyskinesia, and
the bradykinesia GP for modeling bradykinesia. Each of the
models is trained to approximate the PD class and severity
with its output

yDK,i ≈
{
ξi if i ∈ JDK ∧ i /∈ JTM,

0 else,

yBK,i ≈
{
ξi if i ∈ JBK ∧ i /∈ JTM,

0 else,

(6)

where the index sets JDK and JBK are defined as {j ∈
{1, . . . , ν} ∧ ξj dyskinetic} and {j ∈ {1, . . . , ν} ∧
ξj bradykinetic}, respectively. In the third layer the decision
among the balanced, dyskinesia and bradykinesia classes is
made based on the results from layer two: When both GP
models provide outputs yDK,i < c̃ and yBK,i < c̃ below a
certain threshold c̃, we consider the correct classification to be
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Fig. 6. Hierarchical algorithm scheme. The feature vector λ is the
input to the hierarchical approach. After testing for tremor in the first model
layer (yTM < 0.5 or yTM ≥ 0.5), the remaining non-tremor data is tested
in the second layer for dyskinesia and bradykinesia severity. Each of the
models provides an estimate of the severity in the continuous space R,
where, however, values outside the interval [−0.5, 4.49] are extremely rare.
In the third layer of the hierarchical approach we decide among the three
remaining classes bradykinesia, dyskinesia or neither (balanced) depending
on the estimated severities across the PD classes. If both predictions obtained
from the dyskinesia GP and the bradykinesia GP, respectively, are below a
certain threshold (c = 0.5), the balanced condition is nominated. If any of
the predicted values exceed the threshold, the PD class of the larger value
is appointed. To determine one of the interval severity levels 1-4 in the PD
annotations, the GP prediction is rounded to an integer value.

balanced. Otherwise the PD class of the GP model providing
the higher predicted value is selected.

After the model training is finished in the multi-layer GP,
we aim to provide PD class and severity estimates for unseen
input data. Given a new feature vector λν+1, the process
output describes a Gaussian distribution, which has the GP
mean prediction as the expected value. The function b·e rounds
the GP mean prediction ŷν+1 ∈ R, which is obtained in
continuous space, to the nearest integer, and in the unlikely
case of predictions outside the scale limits [−0.5, 4.5), maps
the negative and positive values to 0 and 4, respectively. It is
performed to match the interval variable {0, 1, 2, 3, 4} of the
PD annotations. An illustration of the hierarchical approach is
provided in Fig. 6.

Detailed background information on GP modeling is pro-
vided in the Appendix.

D. GP Hyperparameter Characteristics

To ensure that the GPs generalize well to unseen data, the
GPs should learn the characteristics of the movement features
rather than the frequency of the PD class observations in the
input data. Therefore, the estimation of false positives (FP, i.e.
predicting a target when there is none) and false negatives (FN,
i.e. missing the target) are considered as equally undesired, as
this induces impediment of over- and underestimation of a PD
class at the same time. This means the GP models in Fig. 6
are required to satisfy the property FN/FP = 1, which is
achieved by selecting the initial hyperparameters of each of

the GP models to approximate this ratio. As a GP model
that roughly meets the FN/FP = 1 property in the initial
optimization step is already close to a local optimum and
the GP model training employs a gradient descent algorithm,
it is unlikely that during training the model deviates from
producing estimates where FN/FP ≈ 1. Furthermore, a
relatively large signal noise ϑn hinders the overfitting of the
GP models to the training data sets and thus, reduces the
model’s training accuracy, but during testing supports the
generalization property.

IV. STATISTICAL ANALYSIS

In this section we detail the practical application of the
hierarchical approach to the data set. First, we introduce a
feature vector reduction, to ensure efficient performance of
the multi-layer GP. Then, we present how the whole data
set is split into disjoint training and test sets, to analyze the
model’s ability to generalize to unseen data and unknown
patients. Furthermore, we explain how we deal with the non-
uniform PD class distribution in the whole data set. Finally,
we provide the initial training hyperparamters and independent
training accuracies of the tremor GP, the dyskinesia GP and
the bradykinesia GP.

A. Feature Vector Reduction

To reduce the computational complexity of the multi-layer
GP, each internal GP model is trained and tested on a subset
of the 132 dimensional feature vector only. To determine
the informative wavelet decomposition levels a detailed in-
terpretation of the behavioral motion spectrum of the patient
data is required: Decomposition level 1 contains motions
with very low frequency (<0.2 Hz) which is slower than
usual human behavior and thus can be assumed to mainly
contain sensor drift. Decomposition levels 3 and 5 cover
the frequency range of most intended motions and are thus
important to distinguish voluntary motion from PD-specific
motor abnormalities. Decomposition level 7 includes frequen-
cies that correspond to fast movements, rarely found in the
voluntary motion spectrum of daily living activities of elderly
PD patients, but frequently occurring during dyskinetic phases.
Decomposition level 9 contains motions of the characteristic
tremor frequencies (4-6 Hz).

Therefore, we reduce the feature vector λ ∈ R132; for the
dyskinesia GP we delete the wavelet decomposition levels 1
and 9 for both signals (accelerometer and gyroscope), and for
the bradykinesia GP we delete the levels 1 and 7 for both
signals. Hence, in each of the GP models the dimensionality
of the input vector is reduced by 36 = 2×2×9 dimensions (9
is the number of features calculated in one wavelet decompo-
sition level). In the tremor GP the full feature vector λ ∈ R132

is employed to facilitate separation of the PD class from all
other incoming signals.

B. Disjointed Patient Sets

We split the participant cohort, consisting of 30 participants,
into two disjoint sets; one group consists of the training
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dataset and the other group is the test dataset which is used
to test the trained model’s accuracy. With this approach,
we not only quantify the ability of our model for perform
regression and prediction, but also demonstrate the model’s
ability to generalize to datasets of unknown patients. Hence,
we introduce an approach that does not require fine tuning on
the target patient, but is globally applicable to PD patients.

Specifically, we perform a leave-one-subject-out (LOSO)
approach, where we repeat the training and testing procedure
30 times. In each of the independent runs, the test group
consists of one participant and the training is performed on
the remaining 29 participants in the cohort. We iterate through
the participant cohort so that after the 30 trials the dataset of
every participant was once the test set.

C. Non-uniform Symptom Distribution

With respect to the three independent rating scales for the
PD classes, the whole data set is extremely non-uniformly dis-
tributed. In Fig. 7, top row, the data distributions according to
the independent scales are visualized. For instance, according
to the tremor rating scale, 96% of the data does not belong
to this class and thus, each of the 30 tremor GPs has an
underlying class distribution similar to the pie chart in the
upper right corner of Fig. 7. We say similar, because in each
LOSO experiment run a different participant dataset is left out,
which slightly effects the class distribution of the training data
set of the remaining 29 participants, whereas Fig. 7 shows the
PD class distribution of the whole data set.

Finding suitable GP model hyperparameters that represent
the PD class characteristics, not their frequencies, becomes
more difficult the more non-uniformly the PD classes are
distributed in the training data set. Therefore, we do not train
the three GP models on the whole data set, but on data subsets
that only comprise the balanced data and the data where the
respective class (bradykinesia, dyskinesia or tremor) is present,
see Fig. 7, bottom row. Furthermore, we do not reduce the
amount of balanced data, as the balanced class covers the
most widespread activities in free living and thus, contains
a large diversity of intended motion patterns that need to
be distinguished from the unintended motions caused by the
movement abnormality.

The model testing, however, is performed on the whole data
set, i.e. the GP predictions of each of the GP models in Fig. 6
are tested against the PD annotations of the respective test
dataset regardless of the PD class.

D. Initial Hyperparameters

All 30 training runs per GP model class (tremor, dyskinesia
and bradykinesia) are initialized with the same vector of
starting hyperparameters θ = (ϑf , ϑl, ϑn)

>, in particular for
any tremor GP the initial hyperparamter values are θTM =
(96.83, 0.23, 0.50), for any bradykinesia GP they are θBK =
(96302550, 826659, 0.65) and for any dyskinesia GP they
are θDK = (128741, 2.26, 0.83). Those hyperparameter vec-
tors, found by heuristics, fulfill the FN/FP ≈ 1 property.
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Fig. 7. Distribution of PD class severities according to the different rating
scales. According to the independent scales all data where a specific PD class
is not apparent is assigned to the balanced class. To reduce the non-uniformity
of the class distribution during the GP model training, the dyskinesia GP, the
bradykinesia GP and the tremor GP are trained on the data subsets illustrated
in the bottom row left, middle and right, respectively. For all three GPs the
model testing, however, is performed on the full data sets (top row).

E. Training Accuracy of Symptom Severity

The three GP model classes in the hierarchical approach are
trained independently using the described setup for GP model
training. We denote with training accuracy the percentage of
data, where (after the model training has finished) the re-
estimated PD severity matches the expert label, and provide
the achieved model training accuracies in Table I. Row-wise,
the training accuracy of the tremor GP, dyskinesia GP and
bradykinesia GP are provided in terms of the mean and the
standard deviation of the 30 independent experiment runs in
the LOSO approach. The severity estimation accuracy percent-
ages are given for each of the main activity categories (sitting,
walking, standing, lying and other), and for the total amount
of data under all. The presented accuracies in all GP models
are normalized by the amount of data available in each run,
to prevent biased results due to the distortion of repetitions,
where the data set for a certain PD class differs strongly in
size. During the model training a tradeoff needs to be met
between the model adaptation to the training dataset and the
model generalizability to new patients. To avoid overfitting of
the GP models, the accuracy results of the training are rather
low compared to highest achievable training accuracies as we
attach importance to the generalizability of the trained models.

V. RESULTS

In this section we report the experimental results of our
approach. The test accuracies are first independently evaluated
for each layer of the multi-layer GP, and then the contingent
accuracies over the layers are reported as the total accuracy
of the model performance. All GP model accuracy results are
provided in terms of the mean and standard deviation per main
activity category (sitting, lying, standing, walking and other)
to study whether the model prediction was affected by specific
activity types. In addition to the standard accuracy, the
percentage of predictions where the PD annotations 0-4 match
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TABLE I
TRAINING ACCURACY OF THE SYMPTOM SEVERITY FOR EACH ACTIVITY.

Accuracy mean (std) in % other sitting walking standing lying all

tremor GP 89.06 (1.24) 79.75 (1.58) 82.81 (2.05) 78.11 (2.83) 86.03 (1.66) 83.15 (1.87)
bradykinesia GP 62.56 (3.843) 60.73 (4.52) 60.29 (4.26) 59.80 (3.95) 60.90 (4.79) 60.86 (4.28)

dyskinesia GP 49.32 (3.50) 52.69 (2.16) 44.55 (1.88) 46.14 (4.98) 73.68 (1.24) 53.28 (1.79)

the model output, we report the +−1 accuracy, defining the
percentage when the predicted PD severity is at most one level
off the severity assessed by the expert rater. Previous studies
highlight the agreement rate of PD severity estimation between
movement-disorder specialists suffers from the complexity
in a display of motor abnormalities and an application of
observation-based assessment tools such as UPDRF (e.g., [13],
[14]). As we employed a single rater design to manage the
extensive monitoring of PD patients in unscripted activities,
the PD severity annotations used in the machine learning
expects to have some degree of measurement uncertainty. In
the present study, therefore, we also report +−1 accuracy as
guiding information to show the tendency towards the correct
estimation in the face of the inherent input data uncertainty.

The prediction accuracy of the full test data is provided
in column all, while the accuracies for each of the activity
categories sitting, walking, standing, lying and other are pre-
sented in the corresponding column. The results are presented
in terms of mean and standard deviation (std) of the accuracies
in each of the conducted 30 test runs when iterating through
the test patients. The accuracy results are normalized by the
amount of data available for each patient and activity to avoid
any bias in calculating the mean and standard deviation due
to the different data size across the participants.

A. Individual GP Model Accuracies

We start by analyzing the accuracies of each hierarchical
layer independently. Hence, the accuracies in the second layer
are obtained assuming 100% correct tremor detection in the
first layer. In Table II the independent in-layer results are
presented. The severity estimations exceed 75% accuracy in
each activity for the tremor GP and in fewer than 5% of cases
is the predicted severity more than one level off the expert
ratings for each activity. Hence, the tremor estimation in layer
one is soundly separating the patient data into tremor and
non-tremor data, and provides quite accurate predictions of
the tremor severity independent of the performed activity. The
captured movements’ composition of intended motion and the
unintended motor abnormality of dyskinesia and bradykinesia
varies from patient to patient, and usually requires individual
model tuning to the test patient. Our approach of training the
GP models with unified initial hyperparameters, however, is
designed to generalize among patients and therefore shows
in cases a high standard deviation in the prediction accu-
racy, indicating a decreased suitability of the GP models for
individual patients with atypical movement composition in
comparison to the training patient set. However, the accuracy
of the severity estimations in layer two clearly exceeds 50% on
average for bradykinesia and dyskinesia. The +−1 accuracy of

the severity estimation for bradykinesia and dyskinesia classes
exceeds 80% across all activities. The motor abnormalities are
exhibited more in some activities than others; the dyskinesia
GP performs particularly well in estimating the PD classes
and severities during lying, while this is the most difficult
activity for the bradykinesia GP. The severity predictions of
the dyskinesia GP during lying are more than 98% correct
or by at most 1 level off. For the testing results we obtain
averaged FN/FP ratios of 1.16, 0.98 and 0.87 for the tremor
GP, the bradykinesia GP and the dyskinesia GP, respectively.

B. Total GP Model Accuracies

Next, we investigate the total accuracy of the GP models,
i.e. the probability of both layers (the first and the second)
being predicted correctly at the same time. Specifically, the
total accuracies are the percentage of accurate predictions
of the bradykinesia GP and the dyskinesia GP, respectively,
intersected with the accuracy of the tremor GP. For simplicity
of presentation we provide the accuracy and the +−1 accuracy
in terms of the percentage of correct predictions of the
hierarchical approach for all patients taken together. In total,
in 1318 instances of GP predictions tremor is estimated. The
remaining 8619 data samples are processed in the second
layer of the hierarchical approach. Inside the second layer, the
bradykinesia GP and the dyskinesia GP never falsely predicted
the presence of both PD classes in parallel for data of the same
one minute time window. Hence, the discrimination worked
precisely with the proposed motion features. Table III notes the
total test accuracy for the tremor, bradykinesia and dyskinesia
and for the balanced condition, where movement disorders are
absent. The accuracies of the severity estimations (0-4) are
provided for the activity categories sitting, walking, standing,
lying, other and all. For the full data set the tremor severity
is estimated precisely in more than 80%, the bradykinesia
severity in more than 60% and dyskinesia severity in almost
50% and the balanced condition is detected correctly in more
than 36%. For all PD classes the +−1 severity estimation
accuracy exceeds 80% on the whole data, demonstrating a
reliable detection of movement abnormalities in PD patients.

VI. DISCUSSION

The results from the previous section show that our hier-
archical approach is capable of estimating PD classes with
a good accuracy. We maintain quite precise estimation of
the class severity across the presence of various activities
including sitting, walking, standing, lying and other, indicating
that our approach is robust against task-oriented arbitrary
motions that are non-specific to PD.
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TABLE II
INDIVIDUAL LAYER TESTING ACCURACY OF THE SYMPTOM SEVERITY FOR EACH ACTIVITY.

GP type accuracy (%) other sitting walking standing lying all

tremor
mean (std) 88.77 (15.72) 79.13 (24.37) 81.56 (20.58) 78.50 (26.53) 84.97 (15.64) 82.58 (20.57)
+−1 mean (+−1 std) 98.92 (5.17) 95.53 (9.22) 97.77 (7.57) 95.74 (11.93) 97.52 (6.55) 97.09 (8.09)
mean (std) 70.44 (22.17) 71.89 (22.29) 67.24 (25.15) 49.75 (33.15) 47.54 (30.81) 61.37 (23.16)

bradykinesia
+−1 mean (+−1 std) 89.28 (16.40) 89.54 (20.67) 91.25 (20.18) 93.63 (12.56) 82.69 (26.03) 89.28 (18.18)
mean (std) 46.99 (18.91) 53.52 (20.36) 50.11 (22.47) 52.21 (24.77) 85.84 (12.89) 57.15 (19.87)

dyskinesia
+−1 mean (+−1 std) 88.49 (20.63) 88.61 (16.43) 89.53 (14.23) 87.50 (16.09) 98.31 (3.22) 90.23 (13.33)

TABLE III
TOTAL TESTING ACCURACY OF THE SYMPTOM SEVERITY FOR EACH ACTIVITY.

PD class severity (%) other sitting walking standing lying all

tremor
accuracy 88.77 79.13 81.56 78.50 84.97 82.58
+−1 accuracy 98.92 95.53 97.77 95.74 97.52 97.09
accuracy 66.09 67.44 58.64 43.38 45.05 61.15

bradykinesia
+−1 accuracy 83.52 83.54 79.50 85.54 77.33 81.99

dyskinesia
accuracy 40.80 47.41 37.13 43.38 77.48 49.24
+−1 accuracy 81.95 81.67 76.27 78.68 89.80 81.98
accuracy 34.46 39.91 19.76 23.98 48.28 36.70

balanced
+−1 accuracy 84.74 81.24 67.38 78.32 90.85 81.06

In more detail, our model found the activities labeled as
standing and lying most difficult for estimating the severity
of bradykinesia. This might be due to the absence of large
motions in these cases and apparent similarities in behavior
between the activity and the motor symptom, including the
eyes of the observers who denotes PD annotations. Further-
more, lying frequently is reported for the participants with
severe bradykinesia. The severity predictions of the dyskinesia
GP during lying, in contrast, are extremely precise. It seems
that the much reduced presence of voluntary motions in
these activities results in a higher signal-to-noise ratio during
dyskinesia estimation. Detecting the balanced class correctly
was particularly difficult during walking, since this activity
has an extraordinarily high PSD compared with the other
activities (see Fig. 2) and thus, is likely to be mistaken
as tremor or dyskinesia. Note that due to the difference in
the training and testing datasets the testing accuracies partly
exceed the corresponding training accuracies. The GP models
learned the characteristics of the various PD classes and thus,
detected data with high accuracy that belongs to a different
class than the individual GP model.

The +−1 accuracies, which we consider more significant than
the accuracies themselves, demonstrate particularly reliable
tendency estimations; they exceed 80% for all activities in the
individual layer testing and often are above 90%. Likewise, in
the total accuracy testing the +−1 accuracies mostly are above
80% and only once fall below 75% (for predicting the balanced
class during walking). These results support the importance of
predicting PD manifestation with a hierarchical approach using
advanced machine learning techniques. In comparison to the
state of the art in autonomous PD class recognition for PD, we
cover a wider range of PD states than most related work by
considering tremor, bradykinesia and dyskinesia. Further, our
approach allows for state estimation during unscripted daily

living activities only with one inertial sensor, and without
imposing specific tasks or motion patterns.

A weakness of the approach concerns the data separation
in the first hierarchical layer. Currently, a single GP model
is trained for all tremor cases, thus this class does not
differentiate whether the patients are co-exhibiting dyskinetic
or bradykinetic symptoms. As the tremor is reported as a
major initial symptom of PD [4], finer classification of the
tremor movements will make an important improvement upon
the current results. The major hurdle in achieving this with
the present study was an observation of a very few cases of
tremor with dyskinetic tendency in our patient group. With a
sufficient amount of data, estimating of tremor model with a
finer class resolution might become possible.

In the current approach we assume false positive (FP) and
false negative (FN) predictions to be equally undesired. In
other medical applications, however, other prediction charac-
teristics could be prioritized, which require the adaptation of
the initial GP hyperparameters. To give an example of another
FN/FP-ratio: if detecting all non-balanced PD classes is three
times more important than predicting FPs, this induces a GP
model prediction ratio of FN/FP ≈ 0.33. An alternative
prediction characteristic is for instance: a PD class should
be missed in at most 5% of the estimations. In the present
approach, appropriate hyperparameters for such prediction
characteristics are found by heuristics.

VII. CONCLUSION

In this article, we introduced a hierarchical approach for
autonomous severity estimation of PD states from inertial
sensor data, namely for non-tremulous bradykinesia, non-
tremulous dyskinesia, and tremor. We motivate the hierarchical
structure of the GP over these classes of PD symptoms by
analyzing their class characteristics and propose expressive
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inertial data features, including those in the time-frequency
domain. The results showed reliable estimation of symptom
severities, and suggest that the proposed approach can dif-
ferentiate the patient’s symptoms with good precision during
daily living, without imposing specific activities on patients.

APPENDIX
GAUSSIAN PROCESS

A Gaussian process (GP) model is a data-driven approach
that convinces owing to its robustness in describing dynamics
from mere observations. It is a nonparametric regression
method defined in continuous space. We employ GP regression
for its suitability to model non-linear mappings and for its
natural ability to model predictive conditional probabilities
including a best estimator and a prediction confidence.

Compactly stated, a Gaussian process is a collection of
random variables, any finite number of which have a joint
Gaussian distribution [36]. Additionally, we give a more
explicit formulation.

Definition 1: Let X be a (multidimensional) index set,
and denote by {ϕ(x)}x∈X a real-valued stochastic process
over X . Such a process is called Gaussian, if and only if any
finite collection of random variables {ϕ(x1), . . . , ϕ(xν)},
where ν ∈ N, is ν-dimensional multivariate Gaussian.

To provide an intuitive understanding of the process, we
explain the process functioning in the following. First, a
GP model is trained to approximate an unknown scalar-
valued mapping ϕ. The learning comprises the optimization of
process hyperparameters, to best describe the mapping from
input {xi}νi=1 to output {yi}νi=1. Hence, our training data
set {(xi, yi)}νi=1 consists of input-output pairs, where the
input can be multidimensional but the output yi = ϕ(xi)
has to be scalar. Then, the GP model returns for any new
input value x∗ ∈ X an estimate y∗ for ϕ(x∗) in form of a
predictive Gaussian distribution N (µx∗ , σx∗). An important
GP characteristic is shown by [36], which states, a GP is fully
specified by a mean function m(x) and a kernel function
k(x, x′)

m(x) = E[ϕ(x)],
k(x, x′) = E[(ϕ(x)−m(x))(ϕ(x′)−m(x′))].

(7)

Thus, we can write

ϕ(x) ∼ GP(m(x), k(x, x′)), (8)

meaning that the unknown underlying function ϕ(x) has the
same distribution as our learned GP model and hence, can be
approximated by it.

In many applications the mean function m(x) is set to
zero, m(x) ≡ 0ϕ(X ) as this reduces the computational
complexity without limiting the expressive power of the pro-
cess [37, Chap. 6.4.1]. Hence, the heart piece of GP modeling
concerns the selection and optimization of the kernel function.
Apart from few exceptions, the kernel functions can be divided
in two classes: stationary and dot-product kernels. Dot-product
kernels are based on the magnitude of the samples, while
stationary kernels are based on the distance between samples
and consequently, are invariant to translation in input space,

which is an often desired property. The most prominent
example of this second kernel class is the squared exponential
kernel function,

k(x, x′) = ϑ2f exp

(‖x− x′‖
2ϑ2l

)
+ ϑnδ(x, x

′), (9)

where δ describes the Kronecker delta function and θ =
(ϑf , ϑl, ϑn)

> > 0 the hyperparameter vector.
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