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The Convolutional Group Sequential Test: reducing
test time for evoked potentials
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Abstract—When using a statistical test for automatically de-
tecting evoked potentials, then the number of stimuli presented
to the subject (the sample size for the statistical test) should be
specified at the outset. For evoked response detection, this may
be inefficient, i.e. because the signal-to-noise ratio (SNR) of the
response is not known in advance, the user would usually err on
the cautious side and use a relatively high number of stimuli to
ensure adequate statistical power. A more efficient approach is to
apply the statistical test repeatedly to the accumulating data over
time, as this allows the test to be stopped early for the high SNR
responses (thus reducing test time), or later for the low SNR
responses. The caveat is that the critical decision boundaries
for rejecting the null hypothesis need to be adjusted if the
intended type-I error rate is to be obtained. This study presents
an intuitive and flexible method for controlling the type-I error
rate for sequentially applied statistical tests. The method is built
around the discrete convolution of truncated probability density
functions, which allows the null distribution for the test statistic
to be constructed at each stage of the sequential analysis. Because
the null distribution remains tractable, the procedure for finding
the stage-wise critical decision boundaries is greatly simplified.
The method also permits data-driven adaptations (using data
from previous stages) to both the sample size and the statistical
test, which offers new opportunities to speed up testing for evoked
response detection.

Index Terms—sequential testing, evoked potentials, objective
detection methods, data-driven adaptations

I. INTRODUCTION

EVoked potentials are changes in neurophysiological ac-
tivity within the peripheral or central nervous system,

time-locked to externally applied sensory stimuli [9]. They
can be recorded invasively, or non-invasively using electroen-
cephalography (EEG), and can be used to: (i) demonstrate
or confirm an abnormal functioning of the sensory or central
nervous system, (ii) explore underlying anatomical structures,
(iii) provide insight into pathophysiology, and (iv) monitor
changes in neurological activity, e.g. for intra-operative mon-
itoring [27]. For many of these applications, the first step is
to determine whether a response is present or not, which can
be achieved objectively by applying a statistical test to the
acquired data and generating a p value, i.e. a probability that
the null hypothesis, H0, of ‘no evoked response present’ is
true. Such statistical tests avoid the need for highly trained spe-
cialists, who are otherwise given the task to manually inspect
the acquired data, along with the associated experimenter-
dependent subjective judgements. There are many different
statistical tests available for response detection, e.g. the FSP
[10], various Q-sample statistics [3], the Magnitude Squared

Coherence [24], bootstrapped statistics [19], and the Hotellings
T 2 test [5, 12], just to name a few. When using a conventional
approach, the statistical test is applied to the data just once
after all data has been collected, henceforth referred to as a
‘single shot’ test. This may be inefficient in terms of data
needed to accept or reject H0.

In general, the main challenge in detecting evoked poten-
tials within the ongoing EEG activity is their low signal-
to-noise ratios (SNRs, defined as the power of the response
relative to background noise). The auditory brainstem response
(ABR), for example, has a peak amplitude of around 0.5
µV [14], whereas the EEG background activity can have
amplitudes in the range of at least 10 µV after filtering. Many
stimuli therefore need to be presented to the subject, and
the resulting EEG averaged to reduce residual noise levels,
before an unambiguous response can be detected. The SNR
of the evoked response can furthermore vary significantly both
between and within recordings due to non-stationary EEG
background activity (varying noise levels in the recording
environment), changes in the acoustic stimulus, variations
in response amplitude and response morphology, or varying
electrode impedances. Note therefore that any a priori choice
for the sample size will tend to result in either an over-powered
test (and an unnecessarily prolonged test time) for the higher
SNR responses, or an under-powered test (and potentially an
increased type-II error rate, i.e. a reduced test sensitivity) for
the lower SNR responses.

A solution to uncertainty in the SNR is to apply a number of
statistical tests sequentially to the accumulating data over time.
This allows the test to be stopped early for the higher SNR
responses, thus reducing test time, or later for the lower SNR
responses. The challenge with such sequential test procedures
is that the probability of incorrectly rejecting H0 is increased
with the number of interim looks at the data. The latter is
also known as an ‘inflated’ type-I error rate, and adjusted
critical decision boundaries, for rejecting or accepting H0, are
required if the desired type-I error rate is to be obtained.

The main aim for this paper is to present a simple and
intuitive method for finding the critical decision boundaries
and controlling the type-I error rate of sequentially applied
statistical tests. The method, called the Convolutional Group
Sequential Test (or CGST), is similar to previous methods [1,
2, 4, 14, 26] in that data is analysed incrementally, in disjoint
groups of samples. At each stage of the sequential analysis,
a group of samples is analysed with a statistical test, and a p
value is generated. The null hypothesis is then evaluated using
a summary statistic, composed of all stage-wise p values. The
goal is hence to construct the null distribution for this sum-
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mary statistic, achieved by numerically convolving truncated
probability density functions. Because the null distribution
for the summary statistic remains tractable, the procedure for
finding the stage-wise critical decision boundaries is greatly
simplified. The main advantage over some alternative sequen-
tial test procedures is flexibility, simplicity (including low
computational load) and clarity in interpretation.

The remainder of this paper is structured as follows: the un-
derlying theoretical framework of the CGST is first described
in section II, after which some simulation results are presented
in section III. The goal for the simulations is to explore the
performance of the CGST across a range of SNRs and CGST
design parameters. An analysis of subject-recorded ABR data
is then also presented, with the goal to provide an illustrative
example, and to further demonstrate the benefits of using a
sequentially applied statistical test in practice. In section IV,
various trade-offs associated with CGST design parameters are
discussed, and the adaptive group sequential test is considered
in more detail. Various connections between the CGST and
existing methods are also drawn.

II. THEORETICAL FRAMEWORK AND GRAPHICAL
ILLUSTRATIONS

This section introduces the notation and underlying theoreti-
cal framework for the CGST, after which graphical illustrations
are used to further clarify the approach. Consider first a
sequential test procedure with K stages, i.e. the statistical test
is applied to the data K times, with each stage considering
a new group of independent samples. The choice for the
statistical test will depend on the specific problem, but does
not affect the CGST itself. The goal is to evaluate the global
null hypothesis H0 at nominal significance level α:

H0 : H01 ∩ ... ∩H0K (1)

where H0i (for i = 1, 2, ...,K) is the null hypothesis at
stage i. In the current work, all stage-wise null hypotheses
H0i are defined as ‘evoked response not present’. At each
stage, a new group of samples is collected, and a p value is
generated by analysing this group of samples with a statistical
test (e.g. the Hotellings T2 test, Q-samples, MSC or any
other, as only the p value is required). Similar to [1, 2, 4,
16, 26], it is assumed that all stage-wise p values pi (for
i = 1, 2, ...,K) are stochastically independent, which implies
that the accumulated evoked response data cannot be pooled,
but must be analysed in disjoint sub-samples. Data analysed in
stage i, for example, cannot be re-analysed in the subsequent
stages of the trial, neither can it be pooled with previously
collected data. However, at each stage of the analysis, all
stage-wise p values can be combined into a summary statistic,
after which the test can be stopped for either futility or
efficacy, or the test proceeds to the next stage. Futility implies
that the summary statistic is sufficiently far from statistical
significance, such that additional data collection is deemed
futile, and H0 is accepted, whereas efficacy implies that there
is sufficient evidence for rejecting H0 at level α. The CGST
furthermore requires the summary statistic to be a summation

of the (potentially transformed) p values. The stage k summary
statistic is thus defined as:

Σk =

k∑
i=1

fi(pi) (2)

where fi(pi) is the desired transformation at stage i for pi.
A typical transformation that may be used here is that of
Fisher [11], achieved by defining fi(pi) = −2ln(pi). When pi
is uniform on [0,1] under H0, then −2ln(pi) is χ2

2-distributed.
Note that although transformation is not necessary, combining
the original p values through summation can potentially result
in a small loss of test sensitivity relative to some alternative
combination functions (see e.g. [7]). Fishers method in partic-
ular has some desirable properties in terms of efficiency [18],
which can be attributed to the ln(pi) transform placing more
emphasis on small p values, and because a succession of small
pi is more likely when an evoked response is present.

After combining the stage-wise p values, the test can be
stopped at stage i for futility when Σi < Ci, or for efficacy
when Σi > Ai, where Ai and Ci (for i = 1, 2, ...,K)
are the stage i critical decision boundaries. Note that it is
assumed here that transformation fi(pi) gives large values for
small pi, i.e. that fi(pi) is monotonic with a negative gradient.

Critical decision boundaries
The method for finding the critical decision boundaries Ai and
Ci, such that the nominal α-level of the full test is preserved,
is built around the convolution theorem, which states [13]:

The null distribution for the sum of two independent
random variables is given by the convolution of their
individual null distributions.

Hence, if the stage-wise null distributions (the null distri-
butions for fi(pi), henceforth denoted by φi) are known, then
these can be iteratively convolved to find the null distribution
for the combined statistic Σi, henceforth denoted by φΣi

. An
important caveat is that φΣi

changes when proceeding from
stage i−1 to stage i, as it is not possible to enter stage i with
Σi−1 > Ai−1 or Σi−1 < Bi−1, else the trial would already
have been stopped. The H0 rejection and acceptance regions
for φΣi−1

should therefore be truncated prior to convolving
with φi. More formally, the null distribution for the combined
statistic at stage two is given by:

φΣ2
= φ

T [C1,A1]
1 ∗ φ2 (3)

and for all following stages by:

φΣi
= φ

T [Ci−1,Ai−1]
Σi−1

∗ φi (4)

where ∗ denotes convolution, and where φT [C,A] indicates
that distribution φ contains non-zero values exclusively for
the [C,A] interval (the distribution has been truncated to this
interval).

Once φΣi
has been generated, then finding Ai and Ci is

straightforward. In particular, the stage i critical boundary for
efficacy, Ai, is found by numerically solving:
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ΦΣi [Ai,∞] = αi (5)

where αi is the desired type-I error rate for stage i, and where
ΦΣi [Ai,∞] is the cumulative distribution function for Σi,
calculated across the interval [Ai,∞]. In practice, ∞ is of
course replaced by a sufficiently large value. The αi values
(for i = 1, 2, ...,K) are furthermore chosen freely, under the
condition that

∑K
i=1 αi = α. Similarly, the stage i critical

boundary for futility, Ci, is found by numerically solving:

ΦΣi [0, Ci] = γi (6)

where γi is the stage i fraction of tests to be rejected for
futility when H0 is indeed true, i.e. the stage i true-negative
rate (TNR). The γi values (for i = 1, 2, ...,K) are also chosen
freely, under the condition that α+

∑K
i=1 γi 6 1.

It is worth emphasizing here that φΣi
can be viewed as

the joint PDF of variables fi(pi) and Σ
T [C,A]
i−1 , where Σ

T [C,A]
i−1

is the stage i − 1 summary statistic, restricted to the specific
range of values (the [C,A] interval) for which entry to stage
i is ensured. Note also that the area under the joint PDF φΣi

is decreased with each additional truncation, which implies a
limit to the total number of stages permitted. In particular, the
total area under φΣk

, say ARk, after the stage k−1 truncations
is given by ARk = 1−

∑k−1
i=1 γi + αi.

For the remainder of this paper, it is assumed that all
stage-wise p values are uniformly distributed on [0,1] under
H0 (φi ∼ U(0, 1) for all i), as is customary for evoked
response detection. This assumption is valid when H0 is
true and the assumptions underlying the statistical test
are satisfied. If assumptions are violated (typically due to
non-stationarity of the EEG signals, non-Gaussianity of
the data, or serial correlation between epochs), then the
distribution of p values will be non-uniform, and the critical
decision boundaries generated by the CGST will be inaccurate.

Graphical Illustrations
The goal for this section is to clarify the procedure using
graphical illustrations and a generic example. First, let the
nominal α-level be 0.15 (an unusually high type-I error rate
is chosen for illustration purposes only), and be spread equally
across 3 stages (K = 3), giving stage-wise type-I error rates
α1 = α2 = α3 = 0.05. The γi values are furthermore
specified as γ1 = 0.2, γ2 = 0.4, and γ3 = 0.25, such that
α +

∑
i=1 γi = 1 (further considerations on how to choose

the stage-wise αi and γi values are made in the discussion).
For this example, the generalized inverse χ2-method (see e.g.
[15]) will be used as p value combination function:

Σk =

k∑
i=1

[χ2
vi ]

−1(1− pi) (7)

where [χ2
vi ]

−1 is the inverse of a χ2 distribution with vi DOF,
and where DOF vi (for i = 1, 2, ...,K) can be chosen freely by
the user. The vi values function as weights for the stage-wise p
values, with larger values corresponding to a larger weighting,

i.e. when DOF vi are increased, then the [χ2
vi ]

−1(1 − pi)
transform will give larger values, in which case pi will make a
larger contribution towards summary statistic Σk (more weight
is placed on stage i). It is also worth mentioning here that
when vi = 2 for all i, Fisher’s method is obtained (−2ln(pi) =
[χ2

2]−1(1−pi)). For the current example, v1, v2, and v3 are set
to 2, 3, and 4 respectively (chosen to illustrate the possibility
of using distinct functions at each stage). Transforming pi with
[χ2
vi ]

−1(1−pi) furthermore results in a χ2
vi -distributed random

variable, under the condition that pi is uniform on the [0,1]
interval under H0. For the current example, the φi distributions
are therefore given by χ2

vi distributions. Next, the choice for
statistical test along with the ensemble size for the first stage
of the analysis needs to be chosen, after which data for stage
one is collected and analysed with the statistical test of choice,
thus generating p value p1. The test can then be stopped for
efficacy if p1 6 α1, and for futility if p1 > 1−γ1, else the trial
proceeds to stage two of the analysis. It is worth emphasizing
here that A1 and C1 need not be generated for the first stage
of the analysis. For completeness, however, the φ1 distribution
(given in this example by a χ2

2 distribution, in accordance with
the choice v1 = 2) is shown in Fig. 1 (plot a), along with the
stage one critical boundaries A1 and C1. Efficacy boundary
A1 was found by solving (5), i.e. the area under φ1 to the
right of A1 should equal α1 = 0.05, giving A1 = 5.992.
Futility boundary C1 was found by solving (6), i.e. the area
under φ1 to the left of C1 should equal γ1 = 0.2, solved for
C1 = 0.446.

Assuming p1 fell within the [C1, A1] interval, stage 2 is
initiated by collecting a second group of samples. Stage two
data is then analysed with the statistical test, giving p value
p2. Results from stages one and two are then combined using
(7), giving Σ2 = [χ2

2]−1(1 − p1) + [χ2
3]−1(1 − p2), and the

null distribution for Σ2 is found using (3):

φΣ2 = [χ2
2]T [C1,A1] ∗ χ2

3 (8)

This procedure is illustrated in Fig. 1: The truncated stage one
null distribution φT [C1,A1]

1 (Fig. 1b) is convolved with φ2 (Fig.
1c), giving φΣ2 (Fig. 1d). Note that the area under φT [C1,A1]

1

(and consequently under φΣ2
) is now equal to 1− γ1 − α1 =

0.75. Stage two critical boundaries A2 and C2 are again found
by solving (5) and (6), respectively, i.e. the area under φΣ2

to
the right of A2 should equal α2 = 0.05, giving A2 = 9.695,
whereas the area under φΣ2 to the left of C2 should equal
γ2 = 0.4, giving C2 = 4.798. If Σ2 6 C2 or Σ2 > A2, the
test is stopped for futility and efficacy, respectively, else the
trial proceeds to stage three.

Assuming Σ2 fell within the [C2, A2] interval, a third (and
for this example final) group of samples is collected for the
third stage of the analysis. Stage three data is then analysed,
giving p value p3, which is combined with p1 and p2 using (7),
now giving Σ3 = [χ2

2]−1(1−p1)+[χ2
3]−1(1−p2)+[χ2

4]−1(1−
p3). The null distribution for Σ3 is then found using (4):

φΣ3 = φ
T [C2,A2]
Σ2

∗ χ2
4 (9)
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The procedure is again illustrated in Fig. 1: Plot (e) shows φΣ2

where the stage two rejection regions have been truncated, thus
further reducing the area under φT [C2,A2]

Σ2
(and hence under

φΣ3
) to 1−

∑2
i=1 αi + γi = 0.3, and Fig. 1f shows φ3 (a χ2

4

distribution). Convolving plots (e) and (f) gives φΣ3
, shown in

Fig. 1g. The stage three critical boundaries A3 and C3 are then
found using the same procedure as in stages one and two: the
area under φΣ3

to the left of C3 should equal to γ3 = 0.25,
giving C3 = 13.396, and the area under φΣ3

to the right of
A3 should equal to α3 = 0.05, giving A3 = 13.396. Note that
when α+

∑K
i=1 γi = 1, that the critical boundaries for futility

and efficacy at the final stage of the analysis will be the same,
i.e. H0 is either accepted for Σ3 6 C3 = A3, or rejected for
Σ3 > C3 = A3.

III. RESULTS

This section presents results from simulations and real
subject-recorded ABR data. For the simulations, the goal is to
explore the performance of the CGST across a range of SNRs
when using different CGST design parameters. For the subject-
recorded ABR data, the goal is to provide an illustrative
example of how the CGST might be used in practice.

A. Simulations

Data for the simulations consists of coloured noise with
similar spectral content as real EEG background activity,
along with ABR waveforms for simulating a response. The
goal is to explore sensitivity and test time as a function
of the SNR when using different values for K and γi (the
stage-wise TNRs).

Method
Simulated coloured noise was generated by filtering Gaussian
White Noise with an all-pole filter, where the poles of the filter
were given by the parameters of an autoregressive (AR) model.
The AR models were estimated from recordings of EEG
background activity using the Modified Covariance method
[21], with a new AR model being fit to each recording. There
was approximately ∼8 hours of artefact-free EEG background
activity available, which was previously recorded by [20] from
17 normal hearing adults. A total of 100 000 recordings of
coloured noise were then simulated, all of which were band-
pass filtered from 100-1500 Hz using a 3rd order Butterworth
filter, and structured into ensembles of N = 3000 30.2 ms
segments (henceforth referred to as epochs). Note that the 30.2
ms epochs correspond to a stimulus rate of 33.11 Hz, i.e. an
additional acoustic stimulus would be presented (and an addi-
tional ABR evoked) every 30.2 ms. For each 30.2 ms epoch,
an ABR was simulated by adding an appropriately rescaled
ABR waveform to the epoch. The ABR waveforms were
obtained from the coherent averages of subject recorded ABR
data (previously collected and described in [19]), under the
condition that the coherent average contained a clear response,
as determined through visual inspection by an experienced
audiologist (for more details, see [5]). There were a total of
34 ABR waveforms available for simulating a response. The

Fig. 1. An overview of the approach for generating the critical
decision boundaries for a three-stage group sequential test: (a) the
probability density function (pdf) for stage one, (b) the truncated pdf
from stage 1, which is convolved with the pdf from stage 2 (c), giving
the pdf for the stage two summary statistic (d). Truncating (d) gives
(e), which is convolved with (f) to give the pdf for the stage three
summary statistic in (g). Further details are presented in the text.
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scaling factor for the ABR waveform was chosen such that a
specific SNR was obtained, which was calculated using:

SNR = 10log10

PABR
PNoise

(10)

where PABR is the mean square of the (rescaled) ABR
waveform, and PNoise the mean square of the ensemble of
epochs, prior to adding the ABR waveform and when treated
as a continuous recording. The SNR was then varied from -50
dB to -20 dB, in steps of 0.5 dB. The no-stimulus condition
was also included, i.e. SNR = −∞.

Data were analysed in K sequential stages using the
Hotelling’s T 2 test (for details on analysing ABR data with
the Hotelling’s T 2 test, see [5]), where K took values of 1, 2,
4, or 8. The stage-wise ensemble sizes, say Ni, were all set to
3000
K , i.e. the 3000 epochs were always split equally across K

stages. The nominal α-level was set to 0.01, which was also
split equally across the K stages, giving αi values of 0.01

K for
all i and K. Finally, the analysis was performed both with and
without futility stopping. When futility stopping was used,
the γi values were set to 0.9

K , for all i and K, whereas when
no futility stopping was used, the γi values were all set to zero.

Results
The true-positive-rates (TPRs) and mean test times (calculated
across 100 000 tests) are shown in Fig. 2 as a function of the
SNR, for different K, both with futility stopping (all γi = 0.9

K )
and without (all γi = 0). Results show that at high SNR (>-
27.5 dB), both the single shot test and the sequential test give
a 100% detection rate (both are over-powered), but that test
time for the single shot test is much higher as the trial can
only be stopped after the full N = 3000 stimuli have been
presented. In particular, a reduced test time of ∼50-90% is
observed (for SNRs >-27.5 dB) for the sequential test relative
to the single shot test.

Results also confirm that analysing N samples using a
single shot test will give a higher statistical power relative
to analysing the same N samples using multiple sequentially
applied statistical tests (see also [1]), i.e. a reduced TPR can
be expected for increasing K for a fixed N . The reduced
statistical power for the sequential test can be compensated
for by increasing the ensemble size, which, in turn, increases
test time. Additional simulations demonstrate that the trade-
off between statistical power and test time is highly beneficial
for the sequential test when detecting ABRs, i.e. for a fixed
test sensitivity (achieved by varying N ), the mean test time
for the sequential test was reduced (relative to the single shot
test) by 40-45% [6].

With respect to futility stopping, this had no noticeable
effect on the TPR for these simulations (Fig. 2a and c).
For relatively large SNRs (approximately >-30 dB), futility
stopping also had no noticeable effect on the mean test time
(Fig. 2d). For small SNRs (approximately <-30 dB), on
the other hand, futility stopping resulted in very noticeable
reductions in mean test time (Fig. 2d). The extent to which
futility stopping affects test performance is hence dependent
on the SNR of the response, but also on the choice for the γi

values. In particular, when the evoked response has a high SNR
and the γi values are chosen conservatively, then the Σi values
will tend to be much larger than the Ci futility boundaries, and
the test will typically not be stopped for futility. On the other
hand, when the SNR is low (or a response is absent) and the γi
values are chosen more liberally, then the Σi values will tend
to be closer to the Ci futility boundaries, and the probability of
stopping the test early in favour of H0 is increased, potentially
resulting in an increased false-negative rate (FNR). A more
liberal choice for the γi values might therefore result in larger
reductions in test time, potentially at the cost of a reduced test
sensitivity.

With respect to the no-stimulus condition (SNR = −∞):
when no futility stopping was used, results show false-positive
rates (FPRs) of 0.00949, 0.00989, and 0.00988 for K = 2,
K = 4, and K = 8, respectively, whereas when futility
stopping was used, the FPRs were 0.00953, 0.00994, and
0.00992 for K = 2, K = 4, and K = 8, respectively. For
the single shot test (K = 1), a FPR of 0.0096 was observed.
These results are all close to the nominal α-level of the test
(α = 0.01), and fall within the two-sided 95% confidence
intervals for the expected 0.01 FPR, given by [0.0094, 0.0106].
These confidence intervals were found using a binomial dis-
tribution, constructed from 100 000 observations, where the
probability of a single ‘successful’ Bernoulli trial (defined here
as a false-positive) was set to 0.01 (the theoretical probability
of a false-positive).

Fig. 2. Results from the simulations, which include the true-positive-
rates (TPRs) and the mean test times (calculated across 100 000 tests),
plotted as a function of the SNR, for various K, both with futility
stopping (plots c and d) and without (plots a and b).

B. Application to Auditory Brainstem Response detection

This section provides an illustrative example of how the
CGST might be used for Auditory Brainstem Response (ABR)
detection. Note that the adaptive potential underlying the
CGST is not explored in this section, but is considered in
section B of the discussion. ABRs were previously recorded
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[17] from a normal hearing adult using clicks as stimuli. The
clicks were presented at a range of dB SL (sensation level)
conditions, i.e. relative to the behavioural hearing thresholds.
The behavioural hearing thresholds were hence first deter-
mined, achieved using a simple ‘up down’ approach where
the amplitude of the click was decreased in steps of 10 dB
for every correct response, and increased in steps of 5 dB for
every missed response. The clicks were then presented to the
subjects at 0, 10, 20, 30, 40, and 50 dB SL.

In total, 3000 artefact-free epochs were available for each
dB SL condition. Data were then analysed using a 5-stage
group sequential test. The 3000 epochs were split equally
across the 5 stages, giving stage-wise sample sizes of 600
epochs. The total α-level per dB SL condition was set to
0.01, which was also split equally across the 5 stages, i.e.
α1 = α2 = α3 = α4 = α5 = 0.002. For each dB SL
condition, the fraction of tests rejected for futility was set
to 0.1, 0.15, 0.2, 0.25, and 0.29 for stages 1, 2, 3, 4, and
5 respectively, i.e. γ1 = 0.1, γ2 = 0.15, γ3 = 0.2, γ4 = 0.25,
and γ5 = 0.29 (how one might choose these values is further
considered in the discussion). The function for combining p
values at each stage of the analysis is Fishers method [9],
which can be expressed using:

Σk =

k∑
i=1

[χ2
2]−1(1− pi) (11)

Adopting these settings, and applying the CGST described
in section two, gives the following thresholds for efficacy:
A1 = 12.429, A2 = 16.049, A3 = 19.195, A4 = 22.085,
A5 = 24.774, along with the following thresholds for futility:
C1 = 0.211, C2 = 1.673, C3 = 4.46, C4 = 8.953,
C5 = A5 = 24.774. At each stage of the analysis, the sub-
sample of 600 epochs was analysed using the Hotellings T 2

test. The resulting stage-wise p values are shown in Table
1, whereas the summary statistic Σi (for i = 1, 2, ..., 5) is
shown in Table 2. The dark grey and black cells in Table
2 indicate that the trial was stopped for efficacy and futility,
respectively, whereas the light grey cells indicate that the trial
was allowed to proceed to the next stage of the analysis.
Results from the single shot test (data were pooled across
stages) confirm a detected ABR (p < 0.01) for the 50, 40, 30,
20, and 10 dB SL conditions, along with no detection for the
0 dB SL condition (p = 0.6027). The power of the sequential
test is furthermore illustrated nicely in the 50 and 10 dB SL
conditions, i.e. although no p value individually fell below the
0.002 threshold, the combination of multiple small p values in
successive stages still resulted in H0 being rejected. For the
0 dB SL condition, on the other hand, a succession of large
p values led to an early acceptance of H0 (additional data
collection in the final stage would most likely be futile). It is
also worth noting that although higher dB stimuli will tend to
decrease the average detection time, it is well known that this
is not guaranteed in each individual, which can be attributed
to variability in the SNR, even within the same individual (due
to e.g. non-stationary EEG background activity). The latter is
also evident in Table 2: the 50 dB SL condition required more

stages (and more stimuli) than the 20, 30 and 40 dB SL condi-
tions before the response became statistically significant. This
again emphasizes the limitations of any a priori choice for the
sample size at any given stimulus level, even if the subjects
are expected to have normal hearing. Finally, in terms of test
time, early stopping at stages 4, 1, 1, 3, 4, and 4 for the 50,
40, 30, 20, 10, and 0 dB SL conditions, respectively, resulted
in a total of 2400 + 600 + 600 + 1800 + 2400 + 2400 = 10200
stimuli being used. For a stimulus rate of 33.11 Hz, this
gives a total test time of 10200 · 1

33.11 ≈ 306 seconds. When
compared to the single shot test where the full 3000 epochs
are analysed for each dB SL condition (giving a total test time
of 3000 · 6 · 1

33.11 ≈ 541 seconds), a reduction in test time of
∼43% is observed.

TABLE 1
THE STAGE-WISE p VALUES GENERATED BY THE HOTELLING’S T 2 TEST,

PER DB SL CONDITION, FOR A SINGLE SUBJECT.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
50 dB SL 0.23 0.054 0.021 0.006 0.01
40 dB SL 0.001 <0.001 <0.001 <0.001 <0.001
30 dB SL 0.001 0.001 0.001 0.635 0.004
20 dB SL 0.015 0.105 <0.001 0.106 0.004
10 dB SL 0.342 0.282 0.015 0.006 0.04
0 dB SL 0.656 0.158 0.438 0.601 0.891

TABLE 2
THE SUMMARY STATISTIC Σi (FOR i = 1, 2, ..., 5) CALCULATED FROM

THE STAGE-WISE p VALUES (TABLE I) USING (11), PER DB SL
CONDITION, FOR A SINGLE SUBJECT. A DARK GREY CELL INDICATES

THAT THE TRIAL WAS STOPPED FOR EFFICACY, A BLACK CELL INDICATES
THAT THE TRIAL WAS STOPPED FOR FUTILITY, AND A LIGHT GREY CELL
INDICATES THAT THE TRIAL WAS ALLOWED TO PROCEED TO THE NEXT
STAGE OF THE ANALYSIS. THE DATA IN THE WHITE CELLS IS PROVIDED
FOR COMPLETENESS, THOUGH THESE VALUES (AND THE DATA NEEDED

TO OBTAIN THEM) WERE NOT USED WHEN REJECTING OR ACCEPTING H0 .

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
50 dB SL 2.939 8.769 16.475 26.584 35.821
40 dB SL 15.331 33.563 55.322 74.05 106.4
30 dB SL 14.866 28.341 42.726 43.634 54.634
20 dB SL 8.42 12.928 31.965 36.452 47.552
10 dB SL 2.149 4.682 13.056 23.227 29.651
0 dB SL 0.938 4.625 6.276 7.296 7.527

IV. DISCUSSION

This paper presented a novel method for finding the stage-
wise critical decision boundaries (for rejecting or accepting
H0) and controlling the type-I error rate for sequentially ap-
plied statistical tests. Although originally designed for evoked
response detection, the CGST can potentially be used for a
wide range of applications. Indeed, the only condition for
using the CGST is that the following two assumptions are
satisfied: (i) the φi distributions (for i = 1, 2, ...,K) are
mutually independent under H0, and (ii) the φi distributions
(for i = 1, 2, ...,K) are known a priori. With respect to (ii),
it was assumed throughout this work that the stage-wise p
values were uniform on the [0,1] interval under H0, which
is only true when the assumptions underlying the adopted
statistical test are satisfied. When these assumptions are vio-
lated, then the critical decision boundaries will be inaccurate,
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and increased or decreased type-I and type-II error rates can
be expected. This emphasizes the importance of choosing a
suitable statistical test for analysing the EEG data. For ABR
detection, the reader might consider using the Hotelling’s T 2

test or bootstrapped test statistics, as these have previously
shown to have a good control over the FPR [5].

In general, the main advantage of using a sequential test
strategy over a conventional single shot approach is a reduced
mean test time, which may come at the cost of a reduced
statistical power [1]. For the CGST, the trade-off between test
time and statistical power is dependent on both the SNR of the
response and the adopted design parameters, which include;
the number of stages K; the ensemble size N ; the αi and γi
values; and the p value transformation functions fi(). Further
considerations on how to choose these parameters are made
in section A below.

Finally, the CGST permits a high degree of flexibility when
analysing data, i.e. at each stage of the sequential analysis,
all previously analysed data can be used to modify both
the stage-wise ensemble sizes and the statistical test for all
remaining stages. This offers new opportunities for optimising
sequential test procedures in future studies. The adaptive
potential underlying the CGST is further considered in section
B below. Some connections between the CGST and existing
methods from the literature are also drawn in section C.

A. CGST design parameters

As mentioned in section III, analysing N samples using a
single test (K = 1) will always have a higher statistical power
compared to analysing the same N samples using multiple
sequentially applied tests [1]. Test time, however, will tend
to be higher for the single shot test, as the test can only be
stopped after the full ensemble of epochs has been collected
and analysed. As shown in Fig. 2, for a fixed number of
stimuli (N = 3000 in this case), the sequential test was highly
beneficial at high SNRs (large reductions in test time, with
minimal cost in test sensitivity), but less so at low SNRs
(relatively small reductions in test time at the cost of large
reductions in test sensitivity). If the SNR were known a priori,
then a single shot test with an appropriate number of stimuli
would be the best choice to ensure both a highly sensitive
test and a short test-time. This prior knowledge is, however,
typically not available, particularly so in a mixed cohort of
patients tested at different stimulus intensities. Hence, in order
to ensure adequate test sensitivity, one would usually err on the
cautious side and include a high number of stimuli. Although
this will increase the test-time for the single shot test, for
the CGST such caution will have less impact, as tests with
strong responses (high SNR) will still be stopped early. An
additional consideration is how to split N across the K stages.
Results from the current paper and [6] suggest that a relatively
robust and sensitive test performance is obtained by splitting
the N epochs equally across the K stages, giving stage-wise
ensemble sizes of N

K .
With respect to the αi values, there is the usual trade-off

between the type-I and type-II error rate with an increase in
α resulting in an increased type I and decreased type II error

rate. The αi values might therefore be chosen to optimize
how statistical power accumulates throughout the sequential
analysis. As an example, if the user expects a large effect size
for stage one (or if N1 is chosen to be relatively large), and a
smaller effect size for stage two, they might choose to assign
more α to the first stage of the analysis. If the effect size is
expected to be constant throughout the test (and N is split
equally across the stages), then the safe approach is to split
the available α equally across the K stages, giving αi values
of α

K .
With respect to the p value transformation functions fi,

these might similarly be chosen to optimise statistical power.
The vi values in the sum of inverse χ2-distributed random
variables in (7), for example, can be used as a weighting for the
stage-wise p values (see section II). Again, depending on the
expected effect size at each stage, vi can be used to optimise
how statistical power accumulates throughout the sequential
analysis.

Finally, with respect to the γi values, a trade-off is intro-
duced between statistical power and test time, i.e. larger γi
values result in an increased probability of stopping the test
early in favour of H0, which decreases test time, potentially
at the cost of an increased type-II error rate (a reduced
statistical power). An additional effect associated with the γi
values is that they reduce the remaining area under the null
distribution, which affects the critical decision boundaries (for
both efficacy and futility) for the remaining stages. Taking
the example presented in section II, and setting γ1 = 0 (as
opposed to γ1 = 0.2) would give stage two critical boundaries
A2 = 9.899 and C2 = 3.654, as opposed to A2 = 9.694
and C2 = 4.796. Note that A2 is reduced as γ1 is increased,
i.e. reaching statistical significance becomes easier. Hence,
increasing the γi values can potentially reduce the risk of a
type-II error. That said, the C2 boundary for futility stopping is
of course also increased, which increases the probability of a
false-negative. In general, increasing the γi values will indeed
tend to result in a reduced statistical power and a reduced test
time. As shown in the simulations (section III), a relatively safe
choice for the γi values (i.e. minimal loss in test sensitivity)
is to split the available γ equally across the K stages, giving
γi values of 1−α

K .

B. An adaptive group sequential test

An adaptive group sequential test is a repeated testing
procedure (applied to sequentially acquired groups of samples)
that allows test parameters to be modified throughout a trial
without compromising the overall type-I error rate [28]. Exam-
ples of the type of adaptations permitted include the stage-wise
sample sizes (see e.g. [17, 23]), modifications to the number
of remaining tests within the trial (e.g. [15]), and potentially
even a change in the choice of statistical test.

Various adaptive group sequential tests can be found in
the literature, the majority of which are built around either
(1) conditional error functions [16,22,23], i.e. the conditional
probability of incorrectly rejecting the null hypothesis given
the test statistic from the previous stage, or (2) analysing
the data in disjoint sub-samples and finding an appropriate
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critical decision boundary for some combination function of
the stage-wise p values [1, 2, 4, 15, 26]. These methods differ
primarily in terms of complexity and flexibility. The earlier
designs in [1] and [23], for example, are limited in regards
to both the number of stages permitted and the choice for the
stage-wise critical decision boundaries. The methods following
these earlier designs strive to either simplify the construction
of adaptive group sequential tests [25], or to provide additional
design flexibility in terms of the choice for critical decision
boundaries and the type of adaptations permitted [2,4,15-
17,22].

With respect to the CGST, all previously analysed data can
be used to choose the sample size and the statistical test (in-
cluding the statistical features) for the remaining stages of the
sequential analysis. The stage-wise critical decision boundaries
Ai and Ci (for i = 1, 2, ...,K), however, should be designed
a priori, i.e. independently of the data being analysed. This
implies that the following CGST design parameters should
be fixed in advance: the total number of stages to perform
K; the stage-wise type-I error rates αi; the γi values for
futility; and the p value transformation functions fi(). Note
again that the CGST only uses the p values generated by the
statistical analyses. The Ai and Ci boundaries are therefore
not dependent on N , neither are they dependent on choice
for statistical test. Consequently, both the sample size and
the choice for statistical test can be adapted throughout the
sequential analysis without introducing a bias.

C. Some connections to existing methods

For auditory evoked response detection, an alternative
sequential test strategy has previously been proposed by
Stürzebecher et al (2005) in [26]. In this approach, data is
continuously being pooled in a single ensemble, which is
re-analysed at various pre-determined time intervals. The
critical decision boundaries are then found a priori using
Monte-Carlo simulations. An important difference between
this approach and the CGST is the independence assumption
between each stage of the sequential analysis, which is
not required in Stürzebecher et al (2005). As a result, the
approach in Stürzebecher et al (2005) does not permit
data-driven adaptations.

Various connections between the CGST and some adaptive
methods from the literature firstly include the class of ‘self
designing tests’ described by Hartung & Knapp (2003) in [15].
In Hartung & Knapp, data is analysed in disjoint groups of
samples (as is the case with the CGST), and a p value is
generated at each stage of the sequential analysis. The stage-
wise p values are then combined using the generalized inverse
χ2-method (see also (7) in section II), and the null hypothesis
H0 can be rejected at stage k when summary statistic Σk
exceeds some threshold AvΣ , i.e. Σk > AvΣ . Note that, unlike
the CGST, there is now just a single critical decision boundary,
which is calculated directly using:

AvΣ
= [χ2

vΣ
]−1(1− α) (12)

where vΣ are the DOF of a χ2 distribution, chosen freely (prior
to the test) by the user. The DOF vΣ essentially functions as a
‘currency’ that the user is free to ‘spend’ throughout the trial,
e.g. at stage i, the user should specify degrees of freedom vi+1,
which is then used to transform pi+1 into a χ2

vi+1
-distributed

random variable, after which it is combined with all previously
generated (and χ2-transformed) p values (see (7)). The main
advantage for this approach over some alternatives is that the
number of stages K need not be specified. Instead, the user is
free to spend vΣ until it has been depleted, i.e. until

∑K
i=1 vi =

vΣ. A potential disadvantage for this approach is that early
stopping in favour of H0 is not permitted. Note also that the
stage-wise type-I error rates are ‘hidden’ from the user, i.e.
how statistical power accumulates throughout the trial is not
transparent. When using the CGST, on the other hand, the user
is given the choice to explicitly specify the stage-wise type-I
error rates (through the αi values), which makes the choice
easier to understand and hence optimize.

Connections with additional adaptive methods worth men-
tioning include the ‘sum of p values’ approach described by
Chang (2007) in [4], which can be represented by the CGST by
setting the combination function to Σk =

∑k
i=1 wipi, where

wi is the chosen weight for stage i. The φi distributions are
then uniformly distributed on [0, wi] under H0. The CGST
also represents the class of adaptive group sequential tests
described by Bauer & Köhne in [1], achieved by using Fishers
method as p value combination function, and by choosing
appropriate values for K, αi, and γi.

V. CONCLUSION

The CGST is a flexible and intuitive method for finding
the stage-wise critical decision boundaries and controlling
the type-I error rate of sequentially applied statistical tests.
Although originally designed for evoked response detection,
the CGST can be used for a wide range of sequential test
applications, albeit under the condition that the stage-wise p
value null distributions (the φi distributions) are both mutually
independent and known a priori. In general, sequential testing
introduces trade-offs between statistical power and test time.
For the CGST, this trade-off is dependent on both the SNR
of the response and the choice of CGST design parameters.
A suitable selection of CGST design parameters is therefore
essential when optimising test performance. The CGST fur-
thermore falls under the class of ‘adaptive group sequential
tests’; a category of sequential test strategies that permit data-
driven adaptations to test parameters throughout the sequential
analysis. For the CGST, adaptations to the sample size and the
statistical test are permitted, which can be explored in future
studies when further optimising sequential test procedures.
Finally, as shown in the discussion, the CGST is a generalized
form of some alternative adaptive group sequential tests found
in the literature, and one that facilitates understanding and
permits a high flexibility in the choice of strategy.
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