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Theoretical Value of Deceleration Capacity Points
to Deceleration Reserve of Fetal Heart Rate
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Abstract—Objective: The interpretation of Average Acceler-
ation and Deceleration Capacities (AC/DC), computed through
Phase-Rectified Signal Averaging (PRSA), in intrapartum fetal
heart rate (FHR) monitoring is still matter of investigation. We
aimed to elucidate some behaviours of AC/DC. Methods: We
derived the theoretical value of PRSA for stationary stochastic
Gaussian processes and proved that for these time series AC and
DC are necessarily identical in absolute value. The difference
between DC and AC, termed Deceleration Reserve (DR), was
introduced to detect signals asymmetric trends. DR was tested
on FHR signals from: near-term pregnant sheep model of labor
consisting of chronically hypoxic and normoxic fetuses with both
groups developing acidemia due to umbilical cord occlusions
(UCO); and the CTU-UHB dataset containing fetal CTG record-
ings collected during labor of newborns that resulted acidotic and
non-acidotic, respectively. DR was compared with AC and DC in
terms of discriminatory power (AUC), between the groups, after
correcting for signals power or deceleration area, respectively.
Results: DR displayed higher discriminatory power on the animal
model during severe acidemia, with respect to AC/DC (p < 0.05)
but also distinguished correctly all chronically hypoxic from
normoxic fetuses at baseline prior to UCO. DR also outperformed
AC/DC on the CTU-UHB dataset in distinguishing acidemic
fetuses at birth (AUC: 0.65). Conclusion: Theoretical results
motivated the introduction of DR, that proved to be superior
than AC/DC for risk stratification during labor. Significance:
DR, measured during labor, might permit to distinguish acidemic
fetuses due to their different autonomic regulation, paving the
way for new monitoring strategies.

Index Terms—phase-rectified signal averaging (PRSA), fetal
heart rate variability, fetal monitoring, heart rate variability

I. INTRODUCTION

AVERAGE Acceleration and Deceleration Capacity (AC,
DC) of heart rate [1] are quantified on inter-beat interval

series (RR) through the Phase-Rectified Signal Averaging
(PRSA) technique, proposed by Bauer et al. [2]. The two
indexes gained significant acceptance in the biomedical en-
gineering community for their robustness to signal quality
(noise) and for their proven sensitivity to diverse clinical
conditions, such as myocardial infarction, fetal distress, heart
failure, dilated cardiomyopathy etc. [1], [3], [4], [5], [6], [7].

Given the fact that they measure the “capacity” of the heart
rate to increase or decrease, it might be tempting to associate
AC and DC to the sympathetic and vagal autonomic activity,
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respectively. However, many studies have reported identical
values of AC and DC in the same experimental conditions
[8], [3], [5]. In addition, recent studies based on mathematical
models [9], [10] further corroborated the hypothesis that AC
and DC might measure the same aspects of the autonomic
regulation. For example, the realistic cardiovascular system
model of Ursino and Magosso [11], including several major
aspects of the cardiovascular system, such as systemic and
pulmonary circulations, sympathetic feedback control loops
and sympatho-vagal control of heart period, was investigated
by Pan et al. [10] to assess the role of short-term regulations
on AC and DC values. In this condition, DC and AC provided
similar information in terms of autonomic control.

Clinical evidences and findings on mathematical models
make thus unclear to what extent AC and DC might be
directly linked to autonomic modulators on short time spans.
On the other hand, on long time scales, it is likely that
the physiological mechanisms responsible for acceleration and
deceleration of heart rate might be different, at least on longer
time scales, as patients with degraded DC and preserved
AC were found to have poor outlook, e.g., after myocardial
infarction in a large clinical study [1].

A technical aspect that complicates the physiological un-
derstanding of AC and DC is their dependence on three
parameters (T , s and, to a minor extent L, which needs to
be greater or equal than both T and s, see section II-A). In
particular, T and s allow to capture different oscillations, with
T selecting their locations in time, and s their periodicities. For
example, for some combinations of these parameters values
(e.g., T = 1, s = 2), both DC and AC appeared solely
dependent on vagal activity, whereas with others (e.g., T = 3,
s = 5), both DC and AC were also linked to sympathetic
activity [10].

To partly address the issue, in a preliminary work [9], we
employed synthetic RR series, each with a specific spectral
content, to show that the value of s, more than T , selects
the frequency band (centered at f ≈ 0.371fs/s, where fs is
the sampling rate) which lead to larger AC or DC values. We
also speculated, based on the results of the simulations, that a
difference between the values of AC and DC cannot depend on
the shape of the power spectrum. In fact, for the series x[n]
and its time-reversed version x[−n], the magnitudes of the
discrete-time Fourier transform are identical but, on the other
hand, accelerations turn into decelerations (and AC into DC)
when time is reversed. Thus, AC and DC are identical both
when the power spectrum of a stationary series displays a large
low-frequency component (typically linked to the activation of
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the sympathetic branch of the ANS), and when high-frequency
oscillations (associated to the vagal activity) dominate.

To move a significant step forward in clarifying the phys-
iological understanding of AC and DC, in the first part
of this paper, we showed that it is possible to derive an
analytical closed-form expression of the values of AC and DC
for stationary stochastic Gaussian processes. The theoretical
formulation proves that AC and DC are indeed identical for
such processes. The result is, in our opinion, of seminal
importance. For example, it justifies why they might assume
similar values, when the RR series appear stationary.

On the other hand, the difference between AC and DC might
uncover departures from stationarity and Gaussianity, with a
possible diagnostic value. Thus, we introduced a new PRSA-
based index sensitive to the unbalancing between deceleration
and acceleration capacities, which we termed Deceleration
Reserve (DR). Apart from the theoretical results reported in
the first part of the manuscript, DR was also inspired by the
works on the effects of heart rate asymmetry on AC and DC
performed by Karmakar et al. [12] and Pan et al. [13]. In
particular, the former study focused on fetal heart rate (FHR)
and this is the domain in which we will also test our findings
and new index.

FHR represents the current standard for the evaluation of
the fetus’ well-being in pregnancy monitoring. Despite the
progress obtained with computerized FHR monitoring in pre-
venting life-threatening events, it is still difficult to promptly
predict fetal hypoxia or acidosis. Even when exploiting the
information coming from multiple indexes [14], [15], or when
using recent deep learning strategies [16], [17], the prediction
accuracy displays a high variability across studies (accuracies
might vary from 60% to 90%, but in the latter case sensitivity
can be as low as 56%). AC and DC achieved promising
results in FHR monitoring, being capable to differentiate
healthy fetuses and those with growth restriction [8], [18],
[5], even at different gestational age epochs [3]. Additionally,
significative correlations between AC and DC and biomarkers
of hypoxia were found in a near-term animal model of labor
[19]. Therefore, in the second part of this study, we tested the
suitability of DR in detecting hypoxia from FHR series, where
heart rate asymmetry might play a significant role.

DR was tested on two different datasets. The first one
comprises two in-vivo near-term pregnant sheep models (one
normoxic and one chronically hypoxic) [20]. It was used
to assess the correlation between DR and three biomarkers,
i.e., pH, lactate, base deficit, and to determine the DR’s
discriminatory power by means of ROC analysis. The second
one is a dataset collected intrapartum and used to rank DR,
AC and DC based on their discriminatory power in detecting
fetal acidemia at birth [21].

II. METHODS

A. Definition of AC and DC

Acceleration and Deceleration Capacities are computed
through the Phase-Rectified Signal Averaging (PRSA) tech-
nique introduced by Bauer et al. [2], [22]. PRSA is meant to
provide an estimate of the autonomic regulation of the HR

even when phase de-synchronizations, due to abrupt changes
in the system, miss-detected beats and signal losses, are
present.

In order to compute DC on the RR series, all the time points
t such that

ADC =

{
t :

1

T

T−1∑
i=0

RR[t+ i] >
1

T

T∑
i=1

RR[t− i]

}
(1)

are termed “anchor points”. The integer value T sets the
“timescale” and the set ADC is the “decelerations’ list”. The
“accelerations’ list” AAC is instead built by changing the
direction of the inequality in (1).

A window of length 2L samples is centered on each anchor
point (the anchor point is at position L+1). Then, the windows
(one for each anchor point) are aligned and averaged, obtaining
the PRSA series. Finally, the PRSA series is used to compute
the DC with

DC =
1

2s

s∑
i=1

PRSA[L+ i]− 1

2s

s−1∑
i=0

PRSA[L− i] (2)

where s is the scale. AC is computed with the same formula,
but with a different PRSA series obtained using the accelera-
tions’ list AAC.

Summarizing, the three parameters T , L and s need to be
specified when computing AC or DC. T sets the number of
points of the low-pass moving average filter used to detect the
anchor points. L determines the span of the PRSA series and it
needs to be larger than the period of the slowest oscillation to
be detected with PRSA. The scale s selects the oscillations in
the PRSA series that most affect AC and DC. Further details
on their effect can be found in [9].

B. Theoretical Value of AC and DC for Gaussian stationary
processes

Given a realization of a stochastic process, the procedure
outlined in the previous section can be applied to compute its
associated PRSA series. Clearly, the estimated PRSA series
might slightly change while selecting a different realization of
the same process. However, the expected value of the PRSA
series is strictly linked to the properties of the stochastic
process itself. In this section, we derive the value of the
theoretical (expected) value of the PRSA series associated to
a given stationary Gaussian stochastic process X , with mean
µX = 0 and autocorrelation function ρX(k). Without lack
of generality we deal with decelerations first and give an
equivalent formula for accelerations at the end of section.

Exploiting the fact that a stationary Gaussian process is also
ergodic, in place of using time-averages to estimate PRSA
values, we use ensemble averages instead. Therefore, let us
consider 2L consecutive samples, x = [x1, x2, . . . , x2L]

ᵀ

(where ᵀ is the transpose operator). The joint probability
density function of x is

pdfX(x) =
(detΣx)

− 1
2

(2π)L
e−

1
2xᵀΣ−1

x x

where Σx is a covariance matrix built using the first 2L values
of ρX(k).
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Fig. 1. Panel a) Power spectral density of the two autoregressive processes used in the simulations. Panel b) average percentage error on DC (difference
between the DC theoretical and estimated values, over 100 random repetitions). Panel c) theoretical value of the PRSA series and its estimate (dashed line),
obtained from a series of 7500 samples for the first process. Panel d) as panel c) but for the second process. a.u. refers to the unit of the input signal. Bold
lines refer to process 1, with prominent high frequency components. Simulations were performed with T = 10, L = 50 and s = 1.
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Fig. 2. Boxplot of the three biomarkers for each protocol phase in both normoxic (white) and chronically hypoxic (light grey) sheep. BASELINE refers to
measures collected before the onset of the UCO stimulation protocol.

Using ensemble averages instead of time averages, anchor
points in (1) are mapped to the region ADC in the 2L-
dimensional space where

∑T
i=1 xL+i >

∑T−1
i=0 xL−i (the

anchor point, AP, is conventionally located in position xL+1).
Equivalently:

ADC = {x : gᵀx > 0}

g = [0, · · · , 0,−1, · · · ,−1︸ ︷︷ ︸
T values

,

AP︷︸︸︷
1 , · · · , 1︸ ︷︷ ︸
T values

, 0, · · · , 0]ᵀ
. (3)

The PRSA series can be determined as the expected value of

x over one of the two hyperspaces defined by g. It can be
computed, for each sample i, as follows

PRSA[i] = E[xi]|x∈ADC
= 2

∫
gᵀx>0

eᵀ
i xpdfX(x)dx, (4)

where ei is the ith unitary vector (which is one only at position
i and zero otherwise). The factor 2 is necessary to normalize
the pdf (only half of the space is considered). In order to com-
pute analytically the integral in (4), two changes of variables
are instrumental. First, considering that Σx is a positive semi-
definite matrix, we can factorize it by using a product of an
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Fig. 3. Panel (a): FRR standard deviation (STD) across protocol phases. The larger standard deviation in the chronically hypoxic model is due to a greater
reduction of FHR during UCOs. Panel (b): Absolute value of the Spearman correlation between STD and biomarkers, for both normoxic (left) and chronically
hypoxic (right) sheep.

orthogonal and diagonal matrix, i.e., Σx = UDUᵀ, where U
is a matrix containing the eigenvectors of Σx and D is the
diagonal matrix of eigenvalues. Then, performing the variable
change y = D−

1
2 Uᵀx, (4) becomes:

PRSA[i] =
2

(2π)L

∫
wᵀy>0

εᵀi ye−
1
2yᵀydy (5)

where w = D
1
2 Uᵀg, εi = D

1
2 Uᵀei and detU = 1 as it

is a special orthogonal matrix. This procedure is equivalent
to the whitening of the statistical process X (similar to
that commonly performed when using Principal Component
Analysis). Indeed, the covariance matrix of the stochastic
process Y , obtained with the linear transformation, is the
identity matrix.

With the second change of variables z = Hy, the probabil-
ity density function of Y is rotated such that the hyperplane
defined by w, separating the two regions containing either
anchor points or not, becomes orthogonal to one of the
canonical axes (without lack of generality, we select the L+1
one, i.e., eL+1, so that it is at the conventional location of
the anchor point). This operation can be achieved with the
Householder transformation, that is an orthogonal matrix H
such that

Hw = ‖w‖eL+1,

where H is given by1

v = w − ‖w‖eL+1

H = I− 2
vvᵀ

vᵀv

(6)

and I is the identity matrix. The integral in (5) becomes

PRSA[i] =
2

(2π)L

∫
‖w‖eᵀ

L+1z>0

εᵀi Hᵀze−
1
2zᵀz|detH|dz

=
2

(2π)L

∫
zL+1>0

εᵀi Hᵀze−
1
2zᵀzdz

=

√
2

π
eᵀ
L+1Hεi =

√
2

π
eᵀ
L+1HD

1
2 Uᵀei,

(7)

1When the vector v, provided by (6), is a zero vector 0, it is necessary
to use an alternative formulation of the Householder transformation, with
v = w + ‖w‖eL+1 and H = −I+ 2vvᵀ/(vᵀv).

given that |detH| = 1 as H is an orthogonal matrix. In vector
form, (7) can be rewritten as

PRSA =

(√
2

π
eᵀ
L+1HD

1
2 UᵀI

)ᵀ

=

√
2

π
UD

1
2 HᵀeL+1 = p.

(8)

A wavelet transform (using a Haar mother wavelet function)
of the PRSA series, evaluated at scale s (the third free
parameter) and location L + 1, is employed to derive the
capacities as in (2). Given

h = [0, · · · , 0,−1, · · · ,−1︸ ︷︷ ︸
s values

, 1, · · · , 1︸ ︷︷ ︸
s values

, 0, · · · , 0]ᵀ.

then
DC =

1

2s
hᵀp. (9)

The quantity in (9) is the theoretical value of deceleration
capacity for a series generated by a Gaussian stationary
stochastic process. For acceleration capacity, the procedure
which has to be followed is identical, with the exception of (3),
where ADC is replaced by

AAC = {x : −gᵀx > 0}.
The change of sign in g leads into the following equations,
and given the fact that the 2L-dimensional space is partitioned
into two identical parts, then

AC = − 1

2s
hᵀp. (10)

Comparing (10) and (9), it is clear that for a stationary stochas-
tic Gaussian process AC and DC are identical in magnitude
and AC = −DC.

As a final remark, the theoretical framework outlined in this
section can be used to clarify other characteristics of AC and
DC. A couple are verified in the appendix. In particular, while
the average number of anchor points found in a given series
might depend on T , for realizations of a stationary stochastic
Gaussian process, half of the samples are anchor points for
AC and the other half are anchor points for DC (see App. A).
Also, it is possible to prove what was speculated in [9], that is,
for a stationary stochastic Gaussian process, after time-reversal
AC turns into -DC (and viceversa, see App. B).
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TABLE I
AC, DC AND DR VALUES (MEDIAN AND INTERQUARTILE RANGE) FOR NORMOXIC AND CHRONICALLY HYPOXIC SHEEP IN EACH PROTOCOL PHASE (NOT

CORRECTED FOR SIGNAL’S POWER).

a) Normoxic T s BASELINE MILD MODERATE SEVERE

AC 1 2 −2.0 (-2.3, -1.7) −2.2 (-2.6, -1.8) −3.7 (-5.2, -2.9) −7.2 (-8.9, -5.2)
DC 1 2 2.2 (2.0, 2.8) 2.5 (2.0, 3.1) 4.6 (3.5, 5.9) 8.3 (5.5, 11.6)
AC 5 5 −3.3 (-3.8, -2.7) −3.7 (-3.9, -3.5) −6.2 (-7.7, -5.7) −12.0 (-15.0, -9.0)
DC 5 5 3.4 (2.9, 4.4) 4.0 (3.6, 4.5) 7.6 (6.1, 9.2) 12.1 (9.7, 14.7)
AC 9 9 −4.0 (-4.1, -3.3) −4.5 (-4.7, -4.0) −7.9 (-8.8, -7.8) −12.1 (-16.6, -11.2)
DC 9 9 3.9 (3.4, 4.9) 4.6 (4.5, 5.7) 9.8 (9.1, 11.5) 15.0 (13.3, 17.4)
AC 40 1 −0.4 (-0.4, -0.3) −0.4 (-0.5, -0.3) −0.6 (-0.7, -0.5) −1.0 (-1.1, -0.7)
DC 40 1 0.4 (0.3, 0.4) 0.5 (0.4, 0.5) 1.0 (0.9, 1.4) 2.1 (1.5, 3.8)
DR 1 2 0.3 (0.2, 0.3) 0.3 (0.2, 0.4) 0.7 (0.4, 0.8) 1.1 (0.6, 2.1)
DR 5 5 0.1 (0.0, 0.6) 0.3 (0.1, 0.5) 1.0 (0.6, 1.4) 0.7 (0.2, 1.8)
DR 5 1 0.0 (0.0, 0.2) 0.2 (0.0, 0.3) 0.4 (0.3, 0.5) 0.6 (0.2, 1.4)
DR 9 9 0.0 (-0.2, 0.4) 0.3 (0.1, 0.6) 1.7 (1.3, 2.7) 2.1 (1.5, 4.7)
DR 9 1 0.0 (-0.0, 0.1) 0.1 (0.0, 0.2) 0.5 (0.4, 0.6) 0.8 (0.4, 1.8)
DR 40 1 0.0 (-0.0, 0.0) 0.1 (0.0, 0.1) 0.5 (0.4, 0.8) 1.1 (0.3, 2.9)

b) Chronically hypoxic

AC 1 2 −2.8 (-3.2, -2.4) −3.1 (-3.5, -2.5) −5.9 (-8.1, -4.3) −8.0 (-12.5, -8.0)
DC 1 2 3.5 (3.0, 3.9) 3.9 (3.2, 4.4) 7.1 (5.8, 8.4) 9.7 (8.1, 12.1)
AC 5 5 −4.9 (-5.3, -4.1) −5.5 (-6.5, -4.3) −10.0 (-12.2, -6.9) −13.4 (-18.2, -13.0)
DC 5 5 5.3 (4.5, 5.9) 6.2 (5.1, 7.6) 9.8 (8.8, 12.3) 12.4 (10.7, 16.4)
AC 9 9 −5.6 (-6.1, -4.7) −6.5 (-7.5, -5.5) −11.7 (-14.8, -8.9) −16.3 (-20.3, -15.6)
DC 9 9 5.6 (5.0, 6.4) 7.2 (6.3, 9.1) 12.3 (10.9, 15.1) 14.7 (13.8, 21.1)
AC 40 1 −1.3 (-1.9, -1.1) −1.2 (-1.4, -0.9) −1.5 (-1.8, -1.4) −1.9 (-4.8, -1.6)
DC 40 1 1.3 (1.1, 1.9) 1.3 (1.1, 1.8) 2.0 (1.6, 2.7) 1.5 (1.3, 3.8)
DR 1 2 0.6 (0.5, 0.8) 0.8 (0.5, 1.1) 1.0 (0.3, 1.3) −0.2 (-0.7, 0.7)
DR 5 5 0.6 (0.4, 0.6) 0.8 (0.4, 1.5) 1.3 (-0.5, 1.6) −1.3 (-2.2, -1.2)
DR 5 1 0.3 (0.2, 0.4) 0.4 (0.2, 0.8) 0.7 (-0.2, 1.2) −1.0 (-1.7, -1.0)
DR 9 9 0.4 (0.1, 0.6) 0.8 (0.5, 2.0) 1.6 (-0.4, 2.7) −0.1 (-1.8, 1.0)
DR 9 1 0.1 (0.0, 0.2) 0.3 (0.2, 0.7) 0.6 (-0.1, 1.0) −0.7 (-1.5, -0.1)
DR 40 1 0.0 (-0.0, 0.1) 0.2 (0.1, 0.5) 0.2 (0.0, 1.0) −0.4 (-0.9, 0.5)

C. A relevant case: T = 1 and s = 1

A relevant applicative case is when T = 1 and also s = 1;
it then also suffices to consider L = max(s, T ) = 1. Let
the 2L = 2 dimensional covariance matrix of the stationary
sthocastic Gaussian process be

Σx = σ2

[
1 ρ
ρ 1

]
,

where ρ is the lag 1 correlation coefficient between xk and
xk+1, and σ2 is the variance. The eigenvalues of Σx are
σ2(1+ρ) and σ2(1−ρ), while the corresponding eigenvectors
are [1/

√
2, 1/
√
2]ᵀ and [1/

√
2,−1/

√
2]ᵀ. With respect to

decelerations, it is then straightforward that g = [−1, 1]ᵀ,
w = [0,−σ

√
2(1− ρ)]ᵀ, v = 2w, and H is a diagonal matrix

with H11 = 1 and H22 = −1. Given that HeL+1 = −e2 and
h = [−1, 1]ᵀ,

DC = σ

√
1− ρ
π

.

Considering accelerations, w = [0, σ
√
2(1− ρ)]ᵀ and v =

2w (using the alternative formulation of the Householder
transformation), while H is a diagonal matrix with H11 = −1
and H22 = 1. Therefore, HeL+1 = e2 and

AC = −σ
√

1− ρ
π

.

As expected, AC and DC only differ in sign. Both linearly
depend on the standard deviation of the series and reach the
maximum when the process is strongly anti-correlated. For a
white Gaussian noise, ρ = 0 and −AC = DC = σ/

√
π.

D. Comparison with numerical simulations

For illustration, and as a further check, we compared the
PRSA series predicted for a stationary stochastic Gaussian
process by (8) and its estimate obtained using the algorithm
described in section II-A, on a synthetic series generated by the
same process. Specifically, we considered two autoregressive
processes having different power spectral densities (reported
in Fig. 1a). The transfer functions of the processes were
1/(1− 0.9z−1 + 0.81z−2 − 0.729z−3) and 1/(1− 0.9z−1 +
0.25z−2 − 0.225z−3), while the variance of the input noise
was set so that the power σ2 = 1. Empirically, we set L = 50,
T = 10 and s = 1.

Fig. 1c and 1d contain the predicted values of PRSA and
a numerical estimate obtained from a single series of 7500
samples (dashed lines), for both processes: the matching is
evident. Moreover, when increasing the number of samples,
the estimated PRSA series converged to its theoretical value
(in terms of mean square error). This is confirmed by the
decreasing average percentage error on DC reported in Fig.
1b, which displays an average computed over 100 Monte Carlo
runs.

Interestingly, Fig. 1c strongly resembles the Fig. 2c con-
tained in the original paper of Bauer et al. [2]. As clearly
visible, the relevant frequency components of the original RR
series are enhanced in the PRSA series.
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TABLE II
SPEARMAN’S CORRELATION COEFFICIENT BETWEEN POWER-CORRECTED AC, DC, DR VALUES AND BIOMARKERS CONSIDERING THE ENTIRE

EXPERIMENT, IN THE TWO FETAL SHEEP MODELS (* REFERS TO p < 0.05). CHR. STANDS FOR “CHRONICALLY”.

pH Lactate Base Deficit

T s NORMOXIC CHR. HYPOXIC NORMOXIC CHR. HYPOXIC NORMOXIC CHR. HYPOXIC

AC 1 2 0.0 0.6* 0.0 −0.6* −0.1 0.6*
DC 1 2 −0.1 −0.3 0.0 0.5 0.0 −0.2
AC 5 5 0.0 0.6* 0.0 −0.6* −0.1 0.6*
DC 5 5 −0.2 0.0 0.0 0.3 0.0 0.1
AC 9 9 0.1 0.5* −0.1 −0.5* 0.0 0.5*
DC 9 9 −0.3 0.0 0.1 0.3 −0.1 0.1
AC 40 1 −0.5* −0.1 0.3 −0.1 −0.5* −0.2
DC 40 1 0.0 0.4 0.0 −0.1 0.1 0.6*
DR 1 2 −0.5* 0.5* 0.1 −0.5 −0.3 0.5*
DR 5 5 −0.4 0.6* 0.0 −0.4 −0.2 0.7*
DR 5 1 −0.5* 0.6* 0.3 −0.4 −0.3 0.6*
DR 9 9 −0.4* 0.5 0.1 −0.2 −0.3 0.6*
DR 9 1 −0.5* 0.6* 0.3 −0.3 −0.3 0.6*
DR 40 1 −0.5* 0.4 0.4 0.0 −0.4* 0.4

E. Deceleration Reserve

The results of the previous sections highlighted that when
the time series can be reasonably generated by a stationary
stochastic Gaussian process, AC and DC are identical in abso-
lute value and, therefore, cannot provide different information
on the series. However, since the work of Bauer et al. [1], it
has been clear that differences in AC and DC bear a relevant
discriminative power. Dissimilarities in AC and DC values
arise when asymmetric increasing or decreasing trends appear
in the signal [9], a situation which is common in FHR during
labor. Also, capacities might differ from each other in presence
of non-stationarities and non-gaussianities.

Motivated by these considerations, we believed it was
relevant to introduce a new PRSA-based index, which we
termed Deceleration Reserve (DR), given by the difference
between DC and AC:

DR = DC+AC

(please recall that AC is a negative quantity on RR series).
Obviously, DR, as well as AC and DC, also depends on the
parameters L, T and s. DR reflects whether the average growth
in the time series is mainly constituted by growing (DR is
positive) or decaying trends (DR is negative).

III. EXPERIMENTS AND RESULTS

In this section, we tested the DR index on two datasets
containing fetal RR series (FRR) collected during labor. The
main rationale was that fetal stress during delivery is known
to produce changes in the fetal heart rate due to the presence
of contractions of the woman’s womb. These periodic contrac-
tions produce repeated decelerations and subsequent recoveries
of the fetal heart rate. Moreover, one of the major harmful
conditions for the fetus is the lack of oxygen (hypoxemia and
hypoxia) and metabolites that might persist over time during
the entire course of the labor resulting in acidemia. This severe
condition is usually associated with the presence of specific
patterns of FRR.

Here, the main goal was twofold. First, we determined
whether the DR index was correlated with common mea-
surements of fetal distress using an animal model. Second,
we compared the DR index with AC and DC in terms of
discrimination power between healthy and acidotic human
fetuses.

A. DR computed on FRR series obtained from animal models

Data from an established pregnant sheep model of labor
were retrospectively analyzed. A recent comprehensive review
on the pregnant sheep model and its translational significance
for human physiology, in particular for studies of the au-
tonomic nervous system, can be found in [23]. The animal
cohort consisted of nine normoxic and five spontaneously
chronically hypoxic near-term pregnant sheep fetuses which
underwent intermittent umbilical cord occlusions mimicking
uterine contractions during labor. The animal and experi-
mental models were described elsewhere [20]. Briefly, sheep
fetuses were studied over a 6 hours period during which
a mechanical stimulation was applied to the umbilical cord
by using an inflatable silicon rubber cuff. After a baseline
period (approximately 1 hour) with no stimulations, umbilical
cord occlusions (UCOs) were delivered every 2.5 minutes and
lasted for 1 minute. Three levels of occlusion strength, from
partial to complete, were performed: mild (MILD, 60 minutes),
moderate (MODERATE, 60 minutes) and complete (SEVERE,
2 hours or until pH < 7.00 was reached). The stimulation
protocol ended with a recovery period. During the stimulation
protocol, fetal arterial blood samples were collected with
intervals of 20 minutes to quantify the values of pH, lactate
and base deficit (hereafter referred to as “biomarkers”).

Sheep fetuses were categorized as chronically hypoxic if
O2Sat < 55%, as measured before the beginning of the UCO
stimulation protocol. In this study, we refer to the two models
as “normoxic” and “chronically hypoxic”, respectively. As
per experimental protocol, both models showed a progressive
worsening acidemia of the hypoxic status until pH < 7.00 was
reached (Fig. 2).
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Fetal ECGs were collected by means of electrodes im-
planted into the left supra-scapular muscles, in the muscles
of the right shoulder and in the cartilage of the sternum, and
digitized at 1000 Hz. FRR series were automatically extracted
from the fetal ECG [24].

1) FRR series preprocessing: A preprocessing similar to
the one proposed in [19] was adopted for both datasets.
Briefly, FRR series were analyzed to determine whether they
were suitable for further analysis in terms of noise, by ex-
cluding those recordings with more than 10% gaps during
MODERATE and SEVERE phases. Two healthy fetuses were
excluded from the analysis because of the high amount of
missing beats. Furthermore, FRR intervals greater than 1500
ms (40 bpm) were labeled as artifacts and substituted with an
equivalent number of beats (calculated dividing the length of
each artifact by the median of the 20 nearby FRR samples).
These reconstructed samples were not used as anchor points in
the PRSA analysis; however, they contributed to the selection
of nearby anchor points.

2) Analyses performed: AC and DC were computed for
several pairs of T and s values (with a constant value of L =
50), which were suggested as relevant in previous works. In
particular, we considered:
• AC and DC with T = 1 and s = 2 [1];
• AC and DC with T = 5 and s = 5 [19];
• AC and DC with T = 9 and s = 9 [3];
• AC and DC with T = 40 and s = 1 [8] (acceleration and

deceleration phase-rectified slopes, as recently introduced
by Fanelli et al., measure the slope of the PRSA at the
anchor point position; we approximated their values using
s = 1 in (2)).

DR was estimated using the aforementioned parameters val-
ues, but we also varied the value of s to verify its impact. In
practice, DR was computed for: T = 1 with s = 2, T = 5
with s = 1 and s = 5, T = 9 with s = 1 and s = 9, and
T = 40 with s = 1.

Two statistical analyses were performed on the values
obtained. First, we computed the Spearman’s correlation co-
efficients between AC, DC, DR and biomarkers, during the
entire experiment, for each model separately. Second, we
determined the discriminatory power of AC, DC and DR
values in differentiating normoxic and chronically hypoxic
sheep, by computing the area-under-ROC curve (AUC). We
used a jackknife resampling scheme: in practice, each sheep
was kept out iteratively and the AUC was computed on the
remaining 11 ones. The values we reported are the mean and
standard deviation of the 12 AUC values obtained.

Given the fact that in both animal models the standard
deviation of the FRR signals increased during the protocol
phases (Fig. 3a), and that such variation was correlated with
the biomarkers (Fig. 3b), the changes in the power of the
signal would have directly affected the values of AC and DC
(PRSA is proportional to the standard deviation of the signal,
see sec. II-A). Therefore, in order to detect changes in FRR
not simply due to power variations, AC, DC and DR values
were corrected for the power of the signal. In practice, we
derived a linear model for each AC, DC and DR with standard
deviation as the explanatory variable. The linear regression

(with zero intercept) was obtained with the Theil-Sen method,
which was shown to be robust to outliers and when there is
heteroscedasticity [25], that in our case might arise due to the
changes between phases in the experimental protocol (Fig. 3a).
Once the model was estimated, the residuals between the data
and model were used to determine the correlation and AUC
aforementioned. In this way, the linear dependency between
the power of the signal and AC, DC and DR was removed.

3) Results: AC, DC and DR varied across protocol phase in
both animal models, as shown in Table I. A marked difference
of DR during SEVERE with respect to BASELINE was
evident, within the same animal model and across models.
Of note, the normoxic and chronically hypoxic sheep fetuses
had opposite average growing trends (DR for the normoxic
fetuses was higher, than that of the chronically hypoxic ones).

Despite such marked changes across protocol phases, only
few AC and DC values had a statistically significant correlation
with the biomarkers (Table II), while most DR values had. In
addition, correlations were highly variable.

Fig. 4 reports average and standard deviation of the AUC
values for each of the fourteen parameters. DR displayed either
comparable or higher discriminative power with respect AC
and DC in each protocol phase. In particular, DR resulted
with the highest AUC during SEVERE (T = 5 and s = 1
ranked first). Interestingly, AC, DC and DR with T = 40 and
s = 1 were perfectly differentiating chronically hypoxic from
normoxic fetuses during BASELINE.

B. CTU-UHB Intrapartum Cardiotocography Database

The CTU-UHB Intrapartum Cardiotocography Database
from Physionet [21], [26] was used to test the DR index on hu-
man FHR data. It contains carefully selected cardiotocography
recordings (CTG) of 552 fetuses (singleton, uncomplicated
pregnancies, with no congenital defects and week of gestation
≥ 37) resampled at 4 Hz (for further details, please refer to
[21]). Umbilical artery pH was also available for each fetus
at birth. Forty-four fetuses had an umbilical artery pH value
≤ 7.05 and, in this study, were considered as acidotic.

1) CTG data preprocessing: Missing-beats were recon-
structed using linear interpolation. A surrogated FRR series
(in ms) was then derived by inverting and rescaling FHR CTG
values. For each recording, we also estimated the FRR baseline
using the Mantel et al.’s algorithm [27] and determined the
decelerations according to [28].

For further analysis, only FRR series collected during 1 hour
before the onset of delivery stage II, with less than 30% of
missing beats, were considered. Overall, FRR data fulfilling
these criteria were available for 24 acidotic and 441 healthy
fetuses.

2) Analyses performed: AC, DC and DR were computed,
with the same parameter values described in sec. III-A2 on
the FRR signal, for each of the 465 recordings. As for the
sheep data, interpolated samples were not allowed to be anchor
points.

In this dataset, we determined the discriminatory power of
DR in detecting fetal acidemia, defined by pH≤ 7.05 at birth,
only after correcting for the standard deviation of the signal
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Fig. 4. Average and standard deviation of AUC values in discriminating normoxic and hypoxic sheep fetuses after power correction.

(given the proportional relation between the two quantities).
However, during labor, FHR power is largely driven by decel-
erations, which differed in number, duration and amplitude in
the data we considered (while in the animal model, given the
strict experimental protocol, they were approximately homoge-
neous across the population). In particular, FHR decelerations
were significantly different (Wilcoxon rank sum test; p <
0.05) between healthy and acidotic fetuses, when quantified in
term of Deceleration Area (DA), a quantity recently found to
be predictive of fetal acidemia [29]. Therefore, to remove the
exogenous effect induced by differences in decelerations (and
consequently power), instead of correcting for the standard
deviation, we corrected for DA. The procedure we followed
is the same described in sec. III-A2, in which the residuals of
the linear regression between the variable and DA were further
considered.

On this dataset, ROC analysis was performed for each index
separately, similarly to what described in sec. III-A2. Then,
features were ranked based on their average AUC.

3) Results: Similarly to what observed in the animal mod-
els (SEVERE in tab. I), the at-birth non-acidotic population
had a higher DR for several T and s values (but statistical
difference was observed only for T = 1 and s = 2, Wilcoxon
rank sum test, p < 0.05). Fig. 5 depicts the average values
of AUC for the fourteen DA-corrected indexes in descending
order. Most of the values of DR ranked in the first positions,
even if only DR with T = 1 and s = 2 displayed an AUC
value higher than 0.6. DR with T = 5, which proved effective
in the animal model, ranked second and third, respectively.
Interestingly, most of AC and DC ranked in the last positions
after their corresponding DR, highlighting DR (their differ-
ence) had a better discriminative power.

IV. DISCUSSION

As we mathematically showed in section II-C, AC and
DC were identical in absolute value for series generated by
a stationary stochastic Gaussian process, and DR vanished.
The situation was similar to what has been found on fetal
RR series, when the heart rate of the fetus was measured

in stationary conditions (for example during monitoring in
clinical environment, far from labor) [3], [5]. Then, AC and
DC values were found to be almost identical and, therefore,
performed similarly in terms of risk stratification of the fetus.

When non-stationary signals were present, for example dur-
ing labor, the PRSA series was affected by the low-frequency
components of the UCOs. Consequently, DR was expected to
differ from zero. The results we obtained on the animal models
suggested that this was indeed true. During BASELINE, the
values of AC and DC were similar in most of the cases for
the normoxic model (Table I) while, during SEVERE, they
significantly differed. Moreover, the correlation between DR
and biomarkers was statistically significant for a larger set
of parameters values, with respect to AC and DC, even after
correcting for the power of the signal.

On the CTU-UHB data, DR proved to be the most discrim-
inant parameter of acidosis at birth, and thus hypoxia during
labor, and was superior to the AC and DC considered. In
addition, DR with T = 1 and s = 2, T = 5 and s either
1 or 5, ranked first in the animal model too, and may deserve
further investigations. However, it is possible that the small
number of acidemic fetuses at birth in the CTU-UHB dataset
might have limited our inference.

To the best of our knowledge, all previous works on AC
and DC did not correct for the signal’s power. However,
our findings in (8), and their exemplification in section II-C,
remarks that there is a direct linear dependence of the values
of AC and DC with the standard deviation of the signal.
The power of the signal thus acts as a confounding factor
and without any correction, it was not possible to understand
whether the differences found were due to true alterations of
AC, DC and DR or simply to dissimilarities in the standard
deviation. For this reason we corrected the values of AC,
DC and DR with respect to the standard deviation of the
FRR series, in the animal model data, and with respect to
deceleration area in CTG data. DA is directly linked with
the standard deviation of the FRR series, but it is a stronger
predictor of acidemia at birth [29]. In our data, at-birth acidotic
fetuses had a larger median DA (at-birth non-acidotic: 100.2
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beats vs at-birth acidotic: 193.5 beats, p = 0.005). Correcting
for the standard deviation of the signal would have been
equivalent, but we preferred DA as the number of decelerations
is different in each signal (and not constant as in the animal
model experimental protocol). Both with sheep and human
fetuses data, we believe that we selected the methodological
configuration that was less likely to produce false positive
differences in AC, DC or DR between the different populations
considered.

V. LIMITATIONS

The study bears some limitations which need to be ack-
wnoledged. First, in the animal model, the limited sample
size could have influenced our results. We partly mitigated
the issue by using a jackknife resampling scheme. Second,
the RR series used in the animal model were derived from
ECGs, while the CTG dataset was composed of FHR series.
Previous studies [24] evidenced how RR series are more
effective for the early detection of worsening acidemia, so
the use of RR series also for human data should have been
preferred (but were not available). Third, the values of T
and s we considered were originally proposed either for the
analysis of RR series (like [1], [19] and [3]), or for FHR
series resampled at a fixed rate [8]. It was not the goal of
the paper to select the best combination of T and s, so we
did not investigated the effects of the different sampling rates
on the parameter values. Fourth, in our analysis of the CTG
data, we only considered the last hour of labor stage I to
reduce the effects of signal loss and feto-maternal heart rate
confusion [30] (common during stage II) on the estimates.
A larger dataset would have been necessary for the selection
of a significant number of recordings of sufficient quality, as
done by Georgieva et al. [31], that studied the use of PRSA
on the last 30 minutes of stage II labor. Finally, DR should
be tested in other populations, also using multivariate models,
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Fig. 5. AUC values (average and standard deviation) in discriminating fetuses,
who at birth displayed a pH value ≤ 7.05, in the CTU-UHB Dataset.

which proved to be superior with respect to univariate-based
classifiers [14], [15]. We plan to do so in the future.

VI. CONCLUSIONS

In this work, we presented a theoretical investigation of the
PRSA series’ properties by deriving a closed-form formula
valid for series generated by stationary stochastic Gaussian
process. The main finding was that the values of AC and DC
are identical for these signals (in absolute value). The result
motivated the introduction of a new index, i.e., Deceleration
Reserve, which emphasizes asymmetric growing and decaying
HR trends and non-stationarity, such as those arising during
uterine contractions. For this reason the metric is, by design,
very interesting in the context of FHR analysis.

DR was tested first on two animal models of labor. During
severe occlusions of the umbilical cord, DR was different be-
tween normoxic and chronically hypoxic fetuses and achieved
high discriminatory power. In particular, after correcting for
the power of the signal, DR was lower for the chronically
hypoxic fetuses.

On CTG data coming from the CTU-UHB dataset, DR
displayed a moderate discriminatory power between non-
acidemic and acidemic fetuses at birth, suggesting that the au-
tonomic regulation might be different under prolonged stress.
Of note, DR performed better than AC and DC in this context,
after correcting for the power of the signal.

To conclude, the study may open interesting scenarios for
interpreting PRSA-based results and improving FHR monitor-
ing and its related outcomes.

APPENDIX A
NUMBER OF ANCHOR POINTS

For a stationary stochastic Gaussian process, on average,
half of the samples of any series are anchor points for DC,
while the other half are anchor points for AC. In fact, using
the terminology of section II-B, the stochastic scalar variable
gᵀx is normally distributed with zero mean and covariance
matrix gᵀΣxg, implying that the probability of a point to be
an anchor for DC is

P (gᵀx > 0) =
1

2

(
1− erf

(
− 0√

2gᵀΣxg

))
=

1

2
.

APPENDIX B
EFFECT OF TIME REVERSAL

Given two stationary zero-mean stationary stochastic Gaus-
sian processes X and Y , where Y is the time-reversed version
of X , the acceleration-dictated PRSA series of Y is the time-
reversed version of the deceleration-dictated PRSA series of
X . Thus, -AC for Y is identical to DC for X . In fact, using
the terminology of section II-B, the covariance matrix of Y is
Σy = BΣxBᵀ, where B is an anti-diagonal identity matrix.
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Then, considering that B is an orthogonal matrix, the PRSA
series of Y is

PRSAY
g [i] =

2

(2π)L

∫
gᵀy>0

(eᵀ
i y)e−

1
2yᵀΣ−1

y ydy

=
2

(2π)L

∫
gᵀBx>0

(eᵀ
i Bx)e−

1
2xᵀΣ−1

x xdx

=
2

(2π)L

∫
(−gᵀ)x>0

(eᵀ
2L−i+1x)e

− 1
2xᵀΣ−1

x xdx

= PRSAX
−g[2L− i+ 1].
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