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Abstract—Objective: Real-time intramuscular elec-
tromyography (iEMG) decomposition, which is needed
in biofeedback studies and interfacing applications, is a
complex procedure that involves identifying the motor
neuron spike trains from a streaming iEMG recording.
Methods: We have previously proposed a sequential
decomposition algorithm based on a Hidden Markov
Model of EMG, which used Bayesian filter to estimate
unknown parameters of motor unit (MU) spike trains, as
well as their action potentials (MUAPs). Here, we present
a modification of this original model in order to achieve
a real-time performance of the algorithm as well as a
parallel computation implementation of the algorithm on
Graphics Processing Unit (GPU). Specifically, the Kalman
filter previously used to estimate the MUAPs, is replaced
by a least-mean-square filter. Additionally, we introduce a
number of heuristics that help to omit the most improbable
decomposition scenarios while searching for the best
solution. Then, a GPU-implementation of the proposed
algorithm is presented. Results: Simulated iEMG signals
containing up to 10 active MUs, as well as five experimental
fine-wire iEMG signals acquired from the tibialis anterior
muscle, were decomposed in real time. The accuracy
of decompositions depended on the level of muscle
activation, but in all cases exceeded 85%. Conclusion:
The proposed method and implementation provide an
accurate, real-time interface with spinal motor neurons.
Significance: The presented real time implementation of
the decomposition algorithm substantially broadens the
domain of its application.

Index Terms—Hidden markov models, bayes methods,
recursive estimation, deconvolution, electromyography de-
composition, parallel computation, real-time decomposi-
tion.
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I. INTRODUCTION

THE electromyogram (EMG) is the recording of electrical
activity of the muscle fibers, as generated during muscle

contractions. This activity results from the neural excitation
originating from the motor neurons (MN) in the spinal cord. The
procedure of identification of MN spike trains from an EMG is
termed EMG decomposition. Such information is important in
scientific studies of the motor system as well as in neurological
examinations. A real-time decomposition increases the range of
applicability of EMG processing, including biofeedback studies
and human-machine interfaces.

A majority of currently existing EMG decomposition algo-
rithms [1]–[6] are fundamentally off-line. On-line decompo-
sition was previously addressed in [7], where a multichannel
surface EMG signal was decomposed using a convolution kernel
compensation approach [8]. Moreover, a real-time clustering and
template matching algorithm for iEMG was presented in [9].
This algorithm was designed to estimate the cumulative dis-
charge rate of MNs but does not provide resolution of action
potentials superimposed in time. Similar challenges as in iEMG
decomposition are encountered in spike sorting algorithms for
extracellular recordings from cortical neurons [10]–[12] and
from peripheral nerves (electroneurogram) [13], [14].

Recently, we proposed a Bayesian filtering approach for
single-channel iEMG decomposition [15], as well as its version
adapted to a case of varying number of active MUs [16]. The
proposed algorithm achieves full sequential decomposition of
iEMG signals. Although the proposed method requires long
computation time, it can be accelerated due to its parallel struc-
ture. In this paper, we introduce modifications in the original
algorithm as well as its parallel implementation on GPU, which
permit to achieve real-time decomposition.

The approach presented in this work differs from its closest
analogue [7] by utilization of single-channel iEMG instead of
multichannel sEMG, which entails a fundamentally different
model of EMG signal. Compared to another method of iEMG
decomposition [9], which uses on-line clustering in order to clas-
sify MUAPs, the proposed approach resolves superpositions,
thus providing more accurate decomposition and potentially
scaling up to higher efforts at which MUAPs no longer occur
isolated from each other.
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In the sequel, we will briefly review the Hidden Markov Model
(HMM) of iEMG previously proposed in [15] (Section II). A
Bayesian filtering procedure estimating the parameters of MUs
will be presented in Section III. Further, we will introduce
methods to reduce the complexity of the original algorithm
(Section IV). Then we will present its parallel implementation
(Section V). Simulated and experimental iEMG signals used
to assess the proposed approach are described in Section VI.
Finally, results of experimental signal decomposition will be
shown and analyzed in Section VII.

II. HIDDEN MARKOV MODEL

A. Generation of the EMG Signal

The motor unit (MU) is the elementary entity of the human
neuromuscular system. A MU comprises a MN in the spinal
cord and the muscle fibers it innervates. The MNs receive inputs
from supraspinal levels of the motor system and from muscle
afferents. While active, a MN exhibits a firing activity in the
form of a train of action potentials (spikes) that reachs the
muscle fibers via the MN axon and causes their contraction.
Thus, muscle fibers belonging to the same MU are excited
almost simultaneously, producing a short variation of electric
potential in a nearby electrode, called motor unit action potential
(MUAP). Multiple MUs located in the vicinity of the electrode
simultaneously contribute to the overall signal, mixing their
MUAP trains in one channel. The inter-spike intervals (ISI) of
the trains exhibit a certain regularity and have a physiologically-
inherent minimal value, called refractory period.

B. Observation Model of HMM

Based on the EMG generation principles, we have proposed
a Hidden Markov Model (HMM) of EMG in [15], [16]. In the
following, we will provide a short overview of this model since
this description is needed to introduce the modifications made
for real-time implementation..

The observation equation of HMM was derived from the linear
model of EMG [17], [18]:

Y [n] =
∑

i∈Ω
ϕi(S[n])Hi[n] +W [n] (1)

� n is the discrete time index;
� i is the index of MU;
� Ω is the set of both active and inactive MUs’ indexes shown

in Table I;
� Y is the observed iEMG signal;
� S is the activation scenario, composed of two elements:
S[n] = (A[n], (Tj [n])j∈A[n]).A[n] is the set of indexes of
MUs that are active at time n. (Tj [n])j∈A[n] is a discrete
sequence that, for each active MU j, characterizes the time
passed since its previous spike;

� H is the MUAP waveform with finite length �IR;
� W is the independent identically distributed white noise

sequence with unknown variance v;
� ϕi(s) is, for each realization s = (a, (ti)i∈a), is a row

vector of size �IR with all components equal to zero; except,

if i ∈ a and ti < �IR, the component in position ti + 1 is
equal to 1.

C. State Vectors and Transition Laws of HMM

In order to model the ISI statistics of a MU, we have used
the discrete Weibull distribution [15], which is defined by the
vector Θi[n] containing two parameters: a location parameter
t0i[n] and a shape parameter βi[n].

Thus, the state vectors of HMM are formulated as follows:
� S[n] = (A[n], (Ti[n])i∈A[n]) the activation scenario,
� H[n] = (Hi[n])i∈Ω the MUAP shapes,
� Θ[n] = (Θi[n])i∈Ω the inter-spike law parameters.

At first, for simplicity, we assume that Hi[n] and Θi[n]
are constant in time. Thus, their transition laws are as
follows:

Hi[n+ 1] = Hi[n] (2)

Θi[n+ 1] = Θi[n] (3)

In practice, Hi[n] and Θi[n] are not constant. An
adaptation to their steady changes will be introduced later in
Section III-D. The transition laws for S[n] = (A[n],
(Ti[n])i∈A[n]) are presented in the following two sub-
sections, respectively for the two components Ti[n] and
A[n].

1) Renewal Model: As shown in [15], the process
(Ti[n])n∈A[n] is Markovian. For each i ∈ A[n+ 1] ∩A[n],
given Θi[n], its transition distribution is:

Ti[n+ 1] =

{
0 w.p. r(Ti[n] + 1,Θi[n])

Ti[n] + 1 w.p. 1− r(Ti[n] + 1,Θi[n])
(4)

where r(·) is the hazard rate function of the Discrete Weibull
distribution [19].

Moreover, as we described previously in Section II-A, ISIs
have a lower bound termed refractory period tR. We choose
tR = 30ms, based on physiological findings [20]. Thus, we have:

r(t,Θi[n]) = 0, if t < tR (5)

2) Recruitment Model: Regulation of muscle contraction
force is achieved by concurrent modulation of MN firing fre-
quencies and recruitment of additional MUs. The recruitment
mechanism is modelled as the variation ofA[n], which contains
the indexes of all active MUs. Given S[n], it has the following
transition law:

A[n+ 1] =

⎧
⎪⎪⎨

⎪⎪⎩

A[n] \ i w.p. 1, if Ti[n] = tI

A[n] ∪ i w.p. λ

card(Ā[n])
, if i /∈ A[n]

A[n] w.p. 1− λ

(6)

where card(Ā[n]) denotes the number of inactive MUs. An i-th
active MU is considered to be derecruited when Ti[n] reaches
a predefined limit tI, usually chosen as 7tR. A random inactive
MU is considered recruited with predefined constant probability
λ and initialized with T [n] = 0. Thus, 1− λ is the probability
of no MUs being activated at the instant n.
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III. BAYES FILTER

A. Principles

The state vectors of HMMH[n],Θ[n] andS[n] are recursively
estimated by Bayes filter. In the following, the exponent |n means
“given the data Y n”. The posterior probability functions of the
state vectors are:

� The probability density function (PDF) of Θ[n] given
Sn, H and Y n. Clearly, H and Y n are not necessary for
the estimation of Θ[n]. Moreover, due to the assumption
of independence in MU activity (which is approximated
in reality [15]), this PDF is the product of the PDF of
Θi[n] given Sn. The expected value of Θi given Sn, noted
θ̂i,Sn , is approximated by a recursive maximum likelihood
(RML) estimation. Details and mathematical derivation of
this procedure can be found in [16].

� The PDF ofH[n] given Sn and Y n. With the marginaliza-
tion principle [21], this PDF is gaussian and is estimated by
a Kalman filter as described in Section III-B. The mean and
the variance of this PDF will be denoted Ĥ |n

Sn and PSn .
Furthermore, the Kalman filter provides the observation
prediction noted as Ŷ |n−1

Sn and its variance noted as vSn . To
simplify the calculation complexity, a least-mean-square
(LMS) filter is proposed to replace the Kalman filter in
Section III-B.

� The probability mass function (PMF) of Sn given Y n (see
part III-C).

B. Estimation of Impulse Responses

1) Kalman Filter: Given Sn, the Markov model for impulse
responses reduces, for all n ≥ 1:

{
H[n+ 1] = H[n]

Y [n] =
∑

i∈Ω ϕi(S[n])Hi[n] +W [n]
(7)

If H[1] is Gaussian, formula (7) is a standard linear Gaussian
model.H[n]|Sn, Y n is Gaussian with mean Ĥ |n

Sn and covariance

matrix PSn , Y [n]|Sn, Y n−1 is Gaussian with mean Ŷ |n−1
Sn and

variance vSn . These means and variances are estimated recur-
sively by the Kalman filter. With the initial prior Ĥ |0

S0 and PS0 ,
we have, for all n ≥ 1:

� Prediction of observation:

Ŷ
|n−1
Sn = ψ(S[n]) Ĥ

|n−1
Sn−1

vSn = ψ(S[n]) PSn−1 ψ(S[n])� + v (8)

� Estimation of state:

KSn = PSn−1 ψ(S[n])� v−1
Sn

Ĥ
|n
Sn = Ĥ

|n−1
Sn−1 +KSn (Y [n]− Ŷ

|n−1
Sn )

PSn = PSn−1 −KSn vSn K�
Sn (9)

where ψ(s) = [ϕ1(s), . . ., ϕcard(Ω)(s)], card(Ω) denotes the
number of MUs.

The variance v of the noise is unknown. A heuristic approach
is proposed to estimate it with the square of the estimation error

TABLE I
MAIN NOTATIONS

Y [n]− ψ(S[n]) Ĥ
|n
Sn .

V̂
|n
Sn =

(
1− 1

n

)
V̂

|n−1
Sn−1 +

1

n
(Y [n]− ψ(S[n]) Ĥ

|n
Sn)

2 (10)

And its global estimation is:

V̂ |n =
∑

Sn

V̂
|n
Sn Pr|n(Sn = sn) (11)

where V̂ |n replaces v in the formula (8).
2) Least Mean Square Filter: Due to the size of matrix

PSn , which is (card(Ω)× �IR)× (card(Ω)× �IR), the Kalman
filter requires a large computational power. Here, we propose
the least-mean-square filter (LMS) to replace the Kalman filter
to accelerate the estimation.

The derivation procedure from Kalman filter to the LMS filter
is justified in Appendix A. With the rough initial prior Ĥ |0

S0 , for
all n ≥ 1, we have the formula of the LMS filter:

ε[n] = Y [n]− ψ(S[n]) Ĥ
|n−1
Sn−1

mΔ,i[n] =

∑
j Δi[j]

card(Δi)

ṽ[n] = 1 +
1

n

∑

i

mΔ,i[n] ϕi(S[n])ϕi(S[n])
�

Ĥ
|n
i,Sn = Ĥ

|n−1
i,Sn−1 +

mΔ,i[n]ϕi(S[n])ε[n]

n ṽ[n]
(12)

where Δi[j] denotes the j-th inter-spike interval of the i-th MU;
card(Δi) is the number of inter-spike intervals of the i-th MU;
mΔ,i[n] is the expectation value of the inter-spike intervals of
the i-th MU at the time index n; and ṽ[n] represents the ratio of
the variance of innovation vSn to the variance of noise V̂ |n.
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Fig. 1. Misalignment of the Kalman filter algorithm and least-mean-
square filter algorithm.

The prediction of observation Ŷ |n−1
Sn is the same as the formula

(8) and the prediction of the variance of innovation vSn is:

vSn = ṽ[n] V̂ |n. (13)

The performances of the Kalman filter and the LMS filter
were compared as follows. A simulated signal with the activ-
ity of five MUs was generated by the HMM model with the
time varying impulse responses H[n]. Given the scenario Sn

and rough initial impulse responses Ĥ |0
S0 , the two filters were

used to identify H[n]. The measure of performance was the
normalized misalignment (in dB), defined as 20log10[‖H[n]−
Ĥ

|n
Sn‖2/‖H[n]‖2]. Fig. 1 shows the misalignment for the two

filters. These results indicate that LMS provides almost the same
estimates as the Kalman filter, and, thus, is preferred due to the
computational time gain.

C. Posterior Probability of Scenario

As proposed in our previous work [16], the posterior proba-
bility recursion was derived by means of an update-prediction
scheme. As follows from the Bayes’ theorem, for all possible
realizations sn of Sn, the update step is:

Pr|n(Sn = sn) ∝ Pr|n−1(Sn = sn) g(Y [n]− Ŷ
|n−1
sn , vsn)

(14)
where g(. , v) is a zero-mean and variance v Gaussian PDF.

The prediction step is:

Pr|n(Sn+1 = sn+1) = Pr|n(Sn = sn)

× Pr(A[n+ 1] = a[n+ 1]|S[n] = s[n])

×
∏

i∈A[n+1]

Pr(Ti[n+ 1] = ti[n+ 1]|Sn = sn) (15)

where Pr(A[n+ 1] = a[n+ 1]|S[n]) is the transition proba-
bility of the recruitment model presented in Section II-C2;
Pr(Ti[n+ 1] = ti[n+ 1]|Sn) depends on the renewal model
presented in Section II-C1.

For the i-th MU, the possible bifurcations of the sawtooth
sequence are tn+1

i = {tni , ti[n] + 1} and tn+1
i = {tni , 0} if tni >

tR. The sawtooth sequence is tn+1
i = {tni , ti[n] + 1} if tni ≤ tR.

Therefore, the total number of possible bifurcations from one
scenario varies from 1 to 2card(A[n+1]), where card(A[n+ 1])
denotes the number of elements in the A[n+ 1].

D. Tracking

To make the algorithm adaptive to non-stationary inter-spike
laws parameters Θ and impulse responses H , we introduce
a window length sequence �[n] [22] growing from 1 to the
maximum window length �∞ related to the desired adaptivity:

{
�[1] = 1

�[n+ 1] = (1− 1
�∞

) �[n] + 1
(16)

The formula of the estimated impulse response (12) becomes:

Ĥ
|n
i,Sn =

(
1− 1

�[n]

)
Ĥ

|n−1
i,Sn−1 +

mΔ,i[n]ϕi(S[n])ε[n]

�[n] ṽ[n]
(17)

And the formula of the estimated variance of noise (10) is
rewritten as:

V̂
|n
Sn =

(
1− 1

�[n]

)
V̂

|n−1
Sn−1 +

1

�[n]
(Y [n]− ψ(S[n]) Ĥ

|n
Sn)

2

(18)
The window length sequence was also used in the estimation

of inter-spike law parameters [16]. We do not repeat the formula
here.

E. Initialisation

At the beginning of the decomposition, we assume that there
are no active MUs. Therefore, the set of active MUs indexesA[1]
and the sawtooth sequence T [1] are empty. Initial rough esti-
mates of impulse responses Ĥ |0

S1 are manually or automatically
extracted using other techniques, e.g. proposed in [23]–[25]. An
initial estimation of the noise variance V̂ |0

s0 is made by using a
signal extract containing no spikes. The initial ISI distribution
law parameters of active MUs θ̂i,S0 are composed of t0 (typi-
cally 3tR ∼ 4tR) and β (typically 2 ∼ 4) according to the our
experience. Finally, npath initial S1 are weighted with the same
initial probability Pr|0(S1 = s1).

IV. PATH PRUNING

As it was previously shown in Section III-C, the number of
possible scenarios for Sn grows exponentially with time, due to
its bifurcation. Thus, an exhaustive search for the optimal sce-
nario is impossible. In this section we propose original methods
to discard unnecessary scenarios.

A. Limiting the Number of Kept Paths

A conventional measure to deal with the large number of
scenarios is to limit the number of kept paths. The npath most
probable scenarios are kept at every time index, where npath is
chosen as a trade-off between the computational complexity and
the sub-optimality of the solution.

B. Pruning Based on Activity Detection

An iEMG signal, especially during low-force contractions,
comprises short prominent action potentials separated by rela-
tively long segments of background noise. It is possible to avoid
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Fig. 2. Example of iEMG segmentation. Segments are detected using
a threshold and shifted in time to the left by �PD due to the use of future
samples. Bifurcations containing impulses are forbidden while Z[n] = 0.

performing the bifurcations ofSn during these inactive segments
in order to reduce the computational time.

We adopted a measure similar to the signal segmentation
presented in [23], [24]. Peaks in EMG that exceed a certain
predefined threshold, are considered as segments of signal con-
taining MUAPs. In our algorithm, we introduce Z[n] which
represents the output of a pre-detection function z(Y [n+ 1 :
n+ �PD]), where �PD denotes the length of pre-detection and is
typically set to �IR/2 where �IR is the length of MUAPs. If a
MUAP or a superposition is detected in the upcoming signal, the
pre-detection function returns “1” authorising Sn to bifurcate;
otherwise, it returns “0” and prevents Sn from bifurcating. An
example is provided in Fig. 2.

We also note that this approach introduces a delay of �IR/2
samples in the decomposition process. Generally, it can vary
between 2.5 and 5 ms, which can be considered as a negligible
delay in most applications.

An exact implementation of the function z(Y [n+ 1 : n+
�IR]) is beyond the scope of this paper. Here, we only note that
any convenient EMG segmentation method can be used. In our
implementation, an adaptive spike-detection threshold from [24]
was used.

C. Simultaneous Spikes Interdiction

The simultaneous occurrence of two or more spikes at exactly
the same time instant is highly improbable. As an example,
considering a sampling frequency of 10 kHz and ten active MUs
with mean ISIs of 100 ms, the probability of having spikes
occurring at a specific instant of time, given that one spike
already occurs at the same instant, is 1− (1− 1/1000)(1−
2/1000). . .(1− 9/1000) = 0.044.

Furthermore, we consider the negative impact of this heuristic
on the solution to be negligible compared to the gain in compu-
tational speed. The impact is illustrated in Fig. 3 where an exact
superposition (a) can be anyway resolved as its closest possible
version (b). Since the superposition shapes in both cases are
almost identical, especially for high sampling frequencies, the
effect of this heuristic on the MUAP estimates can be neglected.
The gain in computation speed is reached due to the fact that the
maximal number of possible bifurcation at step n reduces from
npath × 2card(A[n+1]) to npath × (card(A[n+ 1]) + 1).

Fig. 3. Two close cases of MUAP superposition: (a) - exact superpo-
sition of two spikes, a case considered rare and thus excluded from
the search; (b) - a close superposition case (Δt denotes the sampling
period).

V. PARALLELISM ANALYSIS

In the last ten years, we have entered the epoch of GPU com-
puting. The GPU computation is taking a relatively important
place in the field of high-performance computing and is applied
in a large number of applications in order to achieve superior
efficiency. In this section, we analyze the parallelism of the
iEMG signal decomposition model and then implement it into
the GPU parallel computation.

Based on the HMM model and Bayes filter established in
Sections II and III, the structure of iEMG signal decomposition
at the time index n, for all n ≥ 1, is:

1) Data transmission: the iEMG signal Y [n].
2) Calculation of posterior probabilities Pr|n(Sn = sn) of

scenarios with formula (14).
3) Sorting the posterior probabilities of scenarios and keep-

ing the npath most probable scenarios.
4) Update of the inter-spike law parameters (θ̂i,Sn)i∈ω with

the RML estimator (see Section III-A).
5) Update of the impulse responses (Ĥ |n

Sn)i∈ω and the vari-
ance of noise V̂ |n with formulas (12), (17), (18), and (11).

6) Activation and inactivation of MUs with respect to the
recruitment model in Section II-C2.

7) Bifurcation of the scenarios and calculation of the priori
probabilities Pr|n(Sn+1 = sn+1) of the scenarios with
formulas (15).

8) Prediction of the observed signal Ŷ |n
Sn+1 and of the vari-

ance of the innovation vSn+1 with formulas (8) and (13)
9) Data transmission: the state vector at time index n.

The estimation of the state vector can be roughly interpreted
as a loop-based pattern [26], whose performance in the parallel
computing structure varies in terms of the dependencies between
loop iterations and the work partition between the available
processors. However, this is never the case since the Bayes filter
is a recursive estimation and therefore it is impossible to remove
the dependencies between loop iterations. We must calculate
them in strictly sequential manner. Therefore, we need to analyze
the parallelism in each iteration.

In each iteration, the decomposition process can be separated
into a number of single tasks (kernel functions) executed in
parallel. In each task, the data can be processed in parallel.
In the following sections, we will analyze the structure of the
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decomposition algorithm to minimize communication between
processors and to maximize the use of on-chip resources.

A. Data Parallelism

Data parallelism is a form of parallelization based on data.
It focuses on the distribution of data in the different processors
that execute the same operation in parallel [26]:

� Paths (or scenarios) on parallel: Before the bifurcation
of sawtooth sequences T [n], there are npath paths, which
are mutually independent. After the bifurcation, all new
paths remain independent. So calculations in all paths
could be implemented in the parallel structure with less
communication between them.

� MUs on parallel: According to the hypothesis of the
Markov model, there is no dependency between any two
MUs. Therefore, in every path, the calculation of all MUs
can be executed simultaneously.

� Operation in parallel: In every single task, such as: the
estimation of inter-spike law parameters and impulse re-
sponses, several operations as sum of vector or matrix
multiplication can be calculated in parallel.

B. Task Parallelism

Task parallelism is another parallelization that contrasts data
parallelism [26]. Rather than simultaneously computing the
same function on several data elements in data parallelism,
task parallelism consists in performing two or more completely
different tasks in parallel. In the structure of iEMG signal
decomposition, the simultaneous execution of tasks is limited
by the dependences between them.

In each iteration, the data transfer takes place twice: data
transfer of observed signal Y [n] from host (CPU) to device
(GPU) (task 1) and data transfer of state vector from device
to host (task 9). The overlap of two types of memory copy and
the computation on GPU can be achieved. As a result, the time
for data transfer is covered by the execution time of other kernel
functions.

Furthermore, some parallel computing architectures support
concurrent kernel execution [27], [28], where different small
kernels of the same application context can be executed at the
same time to ensure the full use of the GPU resources. According
to the structure of the Bayes filter presented in Section III-A, the
PDFs of Θ[n] andH[n] do not depend on each other. Therefore,
in every loop, the tasks related to the estimate of the inter-spike
law parameters θ̂i,Sn can be executed simultaneously with the

ones related to impulse responses Ĥ |n
Sn . Thus, tasks 4 and 5, as

well as tasks 7 and 8, can be calculated at the same time.

C. Task Analysis

Some of these decomposition tasks need to be analyzed in the
parallel environment: Task 3 is related to a classic parallel sorting
problem, analyzed in Section V-C1; Task 7 (bifurcation of saw-
tooth sequences), which changes the size of parallel structure,
also deserve more consideration, as shown in Section V-C2.

1) Parallel Sorting: After the bifurcation of sawtooth se-
quences, with respect to the transition distribution presented
in Sections II-C1 and II-C2, there are usually at most npath ×
2card(A[n+1]) paths. The size of parallel sorting problem varies
fromnpath tonpath × 2card(A[n+1]). With the interdiction of simul-
taneous spikes presented in Section IV-C, the maximum number
of bifurcations reduces to npath × (card(A[n+ 1]) + 1).

For small sequences, bitonic sorting is usually considered as
one of the fastest traditional parallel sorting algorithms [29],
[30]. The time complexity of bitonic sorting is O(n log22 n),
while in the parallel environment, it’s O(log22 n) [31].

The most important operation of the bitonic sorting is the
arrangement of a bitonic sequence, comprising an ascending
sequence and a descending one, into a sorted sequence. In task
3, the final objective is to keep the npath most probable scenarios.
Therefore, in the bitonic sequence, if the size of the ascending
one and the descending one are more than npath, we only keep
the npath biggest values in the two sequences to form the bitonic
sequence. This measure can remove parts of unnecessary sorting.

2) Indexes of Bifurcation: Path S[n] bifurcates in at most
A[n+ 1] + 1 different ways giving an overall number ofnpath ×
(A[n+ 1] + 1) of new paths. After the parallel sorting, we
only keep the npath most probable new paths at time index
n+ 1. To avoid the memory allocation and initialization of each
bifurcation originated from one path, indexing is used.

Here is an example for two active motor neurons, which gives
a two-dimensional vector T[n] and three possible bifurcations
(the used values are arbitrary):

if T[n] =

[
450

635

]
, T[n+ 1] ∈

{[
451

636

]
,

[
0

636

]
,

[
451

0

]}

(19)
Each i-th motor unit can either not fire at time n+ 1 (Ti[n+

1] = Ti[n] + 1) or fire if ready (Ti[n+ 1] = 0). Therefore, a
binary code can be associated to each configuration in T .

T[n+ 1] �→
[
1 0 1

1 1 0

]
; (20)

This code is unique for each bifurcation within a scenario.
Therefore, in task 7, we initialize the indexes instead of the

bifurcation. After sorting the bifurcations and keeping the npath

most probable paths at time indexn+ 1, according to the unique
index of every bifurcation kept, we initialize the new scenarios.

D. Parallel Structure

As presented in Section IV-B, Z[n] is the indication of the
bifurcation of Sn. If Z[n] = 0, Sn does not bifurcate, means
that t[n] = t[n− 1] + 1 and Ŷ |n−1

Sn = 0. Hence, we do not need

to bifurcate scenarios (task 7) and predict Ŷ |n−1
Sn (task 8) at

time index n− 1. At the next time index, sorting the posterior
probabilities of scenarios and keeping the npath most probable
scenarios (Task 3) are skipped, because after the bifurcation, the
number of scenarios does not change. Moreover, the update of
impulse responses (Task 5) is not needed.

With the parallelism analysis presented above, the parallel
structure is illustrated in Fig. 4.
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Fig. 4. Parallel structure of iEMG signal decomposition algorithm.

E. Performance Analysis

In this section, we analyse the performance of parallel al-
gorithm implementation. As a test signal, we use ten seconds
of simulated iEMG with 6 active MUs, generated at sampling
frequency of 5 kHz. This signal was decomposed by the pro-
posed algorithm using 256 paths. The parallel decomposition
algorithm was programmed in C++ CUDA language. The par-
allel computation was implemented in the software VISUAL
STUDIO 2013 and CUDA 8.0 on a laptop with Central Process-
ing Unit: Intel(R) Core(TM) i7-4700MQ CPU @ 2.40 GHz and
Memory Installed RAM 16.00 Go; Graphics Processing Unit:
Intel(R) HD Graphics 4600 and NVIDIA GeForce GTX 780 M.
And the performance analysis was provided by the software
Nsight Visual Studio Edition 5.2.

Due to the fact that the GPU that was used to produce the
experimental results presented below (NVIDIA Tesla K80) is
located in a remote data center, it was not possible for us to
collect the analysis profile information with Nsight elipse on
it. However, our implementation still demonstrates the required
parallelism characteristics when run on an older laptop NVIDIA
GeForce GTX 780 M.

An extract of the timeline provided by Nsight is shown
in Fig. 5. There are four streams in this figure. Stream 1 is

the default one, in which all kernel functions are completely
synchronous, while the other three streams were designed for
asynchronous operations. As presented in Fig. 4, Stream 1
contains three synchronous kernel functions: posterior proba-
bility calculation (Task 2), initialization of new scenarios (part
of Task 3, see Section V-C2), and activation-inactivation of
MUs (Task 6). Stream 2 is composed of bitonic sorting (part
of Task 3, see Section V-C1), update of Weibull parameters
(Task 4), bifurcation of scenarios and prior probability calcu-
lation (Task 7). Stream 3 is designed for device-to-host and
host-to-device memory copies (Tasks 1 and 9). Update of the
MUAP shapes and of the variance of noise (Task 5), prediction of
the observed signal and calculation of the variance of innovation
(Task 8) are located in Stream 4. As shown in Fig. 5, all the task
parallelisms proposed in Section V-B, including the overlap of
two types of memory copy and the computation on GPU, as well
as the concurrent execution of different tasks, are achieved.

As shown in Fig. 5, different tasks contain different numbers
of kernel functions. Task 3 is composed of six kernel functions:
three for bitonic sorting (one chosen in function of sorting prob-
lem complexity), one for scenario selection, and two for scenario
initialization (one for S[n] and Θ[n], one for H[n]). Task 7
contains two kernel functions: one for the calculation of the
hazard rate r (see function (4)) and the other for the calculation
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Fig. 5. Extract from the performance analysis timeline provided by Nsight profiler.

TABLE II
WORKLOAD OF DIFFERENT TASKS IN GPU

of the prior probability of the new bifurcated scenario. The rest
of the tasks contain only one kernel function each.

The workloads of different tasks in GPU are shown in Table II.
A workload is influenced by the complexity of the task and the
number of calls. Update of Weibull parameters (Task 4) takes
the largest workload in all tasks. It is called in every iteration,
disregarding the pre-detection value Z[n]. Other tasks, such as
selection of paths (Task 3) and so on, are simplified in the case
of Z[n] = 0. Moreover, as presented in Section III-A, Task 4 is
based on the Weibull parameters estimation method presented
in [16], which shows a relatively high complexity compared to
other tasks.

Since Task 4 takes the highest workload in the decomposition,
we have studied its profile, including the instruction statistic,
issue efficiency and achieved occupancy. Its grid dimension and
block dimension are respectively {8, 1, 1} and {192, 1, 1}. Ev-
ery block is allocated 4608 byte shared memories and 9216 byte
registers. In the instruction statistic, all stream multiprocessors
are active during 93.5% duration of the kernel launch. All stream
multiprocessors reach the uniform value of instructions per warp
and launch the same number of warps.

However, this kernel function shows low achieved occupancy
(9.25%) and low percentage of eligible warp issue efficiency
(6.83%), which means that it is difficult to hide latency between
dependent instructions. Such low profile indexes are determined
by the Weibull parameters estimation method [16]. In this
method, the formula of estimation changes with respect to the
different cases T [n] and T [n− 1]. Thus, several if-else state-
ments used in the kernel function make the workload between
and across blocks unbalanced, causing the issue stall. In order
to address this issue and further accelerate the decomposition,
the mathematical model of algorithm should be accordingly
adapted, which can be one of the perspectives.

The execution time for this 10-s signal is 25.85 s on NVIDIA
GeForce GTX 780 M card (computational power 3.0), which
cannot reach the real-time decomposition. Execution time on
Nvidia Tesla K80 GPU card (computational power 3.7) for the
same signal is 6.34 s.

VI. EXPERIMENTAL AND SIMULATION PROTOCOLS

A. Signals

Three groups of simulated signals were generated by the
described Markov model with respectively 6, 8 and 10 active
MUs. There were 10 signals in each group. The sampling
frequency was set to 5 kHz and the duration was 20 s. MUAP
shapes extracted from the experimental iEMG signals were used
to make the simulated signals more realistic. For the statistic
parameters of ISI, the refractory period was chosen to be 30 ms;
the location parameter t0 ranged from 60 ms to 90 ms; and the
concentration parameter β ranged from 2 to 6. The SNR (Signal
to Noise Ratio) was set to 10 dB.

Five experimental signals were acquired from the tibialis
anterior (TA) muscle of a 26 years-old healthy man. The sub-
ject performed five trials of an isometric force by tracking a
trapezoidal profile with target force set to 20% or 30% of the
maximal voluntary contraction (MVC). The duration of each
trail was 24 s. The wire electrodes used for these recordings
were made of Teflon coated stainless steel (50 um diameter; A-M
Systems, Carlsborg, WA, USA) and inserted into the muscle with
25 G needles. The signals were amplified, band-pass filtered
between 100 Hz and 4.4 kHz and sampled at a frequency of
10 kHz (OTBioelettronica MEBA amplifier). Then they were
subsequently down-sampled to 5 kHz.

Parallel computation algorithm was applied to decode the sim-
ulated and the experimental signals. The activation probability λ

and the maximum time tI were respectively set to 0.03 and 7tR;
The window length corresponding to the adaptivity was 1.4 s.
The number of selected paths was set to 128, 256, 384, and 512.

B. Indexes of Performance and Task Complexity

Results of automatic decomposition were evaluated in terms
of similarity between the reference spike trains and those ob-
tained by the algorithm. In the case of experimental signals,
the reference was a manual decomposition provided off-line by
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TABLE III
DECOMPOSITION PERFORMANCE OF SIMULATED SIGNALS: “NB MUS” IS THE MAXIMAL NUMBER OF MUS CONCURRENTLY ACTIVE IN THE SIGNAL; “NB
SUP-SPIKES” REPRESENTS THE NUMBER OF SPIKES INVOLVED IN SUPERPOSITIONS; “NB SPIKES” DENOTES THE OVERALL NUMBER OF SPIKES IN THE

SIGNAL; “SUP.” IS THE PERCENTAGE OF SUPERPOSITION; “NB PATHS” IS THE NUMBER OF PATHS USED IN THE ALGORITHM; “SENS.’ DENOTES THE GLOBAL
SENSITIVITY; “PRED.” IS THE GLOBAL PREDICTIVITY

TABLE IV
EXECUTION TIME AND ACCELERATION FACTOR OF SIMULATED SIGNALS

TABLE V
DECOMPOSITION PERFORMANCE FOR EXPERIMENTAL SIGNALS. THE MEANING OF INDEXES ARE THE SAME AS TABLE III

an expert operator using the publicly available decomposition
software EMGLAB [32]. In case of simulated signals, the exact
spike trains were known from the simulation procedure

In order to characterise the complexity of the decomposition
task, we used the superposition percentage as in our previous
work [16]:

Sup =
NbSUP

NbSPIKES

(21)

where NbSPIKES is the number of spikes in the reference spike train
and NbSUP is the number of spikes which action potentials are
superposed with others. We considered a MUAP superimposed
if there was at least one other MUAP within a margin of 3 ms
(less than half of the average MUAP duration) around it.

In order to quantitatively evaluate the decomposition results,
we used global sensitivity and global positive predictivity values,
defined as following. A MUAP was considered correctly identi-
fied (true positive) if the reference train contained a spike from
the same MU within a margin of 1 ms around it. Consequently,
the global sensitivity was defined as the overall number of
correctly identified MUAPs from all MUs, divided by the overall
number of spikes in the reference decomposition. Global pos-
itive predictivity was the number of correctly identified spikes

divided by the overall number of spikes in the decomposition
under evaluation.

An individual analysis of each MUAP train was also per-
formed, using the “classification phase” indexes proposed
in [33]. These indexes included sensitivity, specificity and accu-
racy, as defined in [33].

VII. RESULTS

All results presented in this section were obtained using
decomposition programmed in C++ CUDA language, were
performed on a Nvidia Tesla K80 GPU card with CUDA 10.0
and GCC 4.9.3 using double-precision floating-point format.

A. Simulated Signals

As shown in Table III, three groups of simulated signals with
6, 8 and 10 MUs were decomposed. We note that the mean
values of global sensitivity and predictivity (Table III) decreased
for signals with greater number of active MUs. This is due to
the increase of decomposition task complexity, quantified by
the superposition percentage. Moreover, the standard deviations
of the performance indexes showed proportionality to the task
complexity. We also observe that greater numbers of pathsnpath
mitigate this effect.
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Fig. 6. Comparison of automatic (crosses, “x”) and reference (points, “.”) decompositions (upper panel) and the experimental signal from TA, 30%
MVC (lower panel).

Fig. 7. An extract of the experimental signal decomposition shown in Fig. 6; circles “◦” and crosses “x” represent respectively the spikes from the
reference and automatic decompositions.

Fig. 8. Eight MUAP shapes (manually-extracted dictionary) for the
signal presented in Fig. 6, and a comparison between the 2nd one and
the 3rd one.

The execution time becomes larger with the increasing num-
ber of paths and active MUs. The signals with 10 MUs, 8 MUs,
and 6 MUs are decomposed in real time, with respectively 256
paths, 384 and 384 paths. More complex decompositions cannot
be accomplished in real time using the computational resources
used in this study. However, they still can be accomplished in a
relatively short time and with high accuracy. Thus, the number of
paths npath, as a parameter determined by the user, defines both

the decomposition accuracy and speed. Its value establishes a
trade-off between the computational complexity (which converts
into decomposition time) and the sub-optimality of the solution.

Table IV shows the execution time of simulated signals de-
composition in CPU and GPU, as well as their acceleration
factor. The decomposition algorithm in CPU was programmed
in C++ and performed on the 12-core Intel Xeon (Haswell)
E5-2680v3 processor with GCC 4.9.3. As shown in table, the
acceleration factors, defined as the ratio of execution time
between CPU and GPU, increase from 4.85 to 12.21 with
increasing number of MUs and paths, indicating that the parallel
decomposition algorithm leads to greater accelerations for more
complex decompositions. Furthermore, we point out that the
parallel decomposition in this paper is more than 100 times faster
than the one proposed in our previous study [16].

B. Experimental Signals

Five experimental signals (three recorded at 20% MVC, two
recorded at 30% MVC) were automatically decomposed. As
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Fig. 9. Firing rates for the iEMG from TA set (see Fig. 6): the dash line (empirical) represents the firing rates estimated using reference
decomposition; continuous line (estimated) represents the firing rates calculated via parameters of discrete Weibull distribution estimated as
described in [15], [16].

TABLE VI
MAXIMUM DELAY OF EXPERIMENTAL SIGNALS DECOMPOSITION: THE

SIGNAL INDEX CORRESPONDS TO THE SIGNALS PRESENTED IN TABLE V

shown in Table V, for these signals, the number of MUs ranged
from five to eight and the percentage of superposition ranged
from 18.10% to 28.96%. Both the global sensitivity and pre-
dictivity of the three signals recorded at 20% MVC were above
90%, while the global sensitivity and predictivity of the other two
signals were above 85%. The decomposition accuracy did not
vary significantly in function of number of paths. In Table V, we
also notice that all the experimental signals can be decomposed
automatically in real time using 256, 384 or 512 paths.

Let us denote the time delay between passing a new EMG
sample to the decomposition program and receiving the cor-
responding decomposition result at its output as decomposition
latency. Its value can change during decomposition as a function
of the signal complexity. Table VI shows the maximal decompo-
sition latencies for experimental signals. Their values are smaller
than acceptable delay in many applications of man-machine
interfacing, e.g. delays up to 250 ms are usually considered
acceptable for prosthetic control [34].

Detailed results of the decomposition are illustrated and an-
alyzed in the following for the signal with 8 MUs, the most
representative and complex one. These results were obtained
from decomposition with 384 paths.

Fig. 6 provides global view of the decomposition results. In
the upper panel, the decomposed spike timings (crosses) of each
MU are correlated with the reference (points); in the lower panel,
the corresponding iEMG signal is shown. A detailed view of the
decomposition results is given in Fig. 7, containing two seconds
of extracted signal. The algorithm performed generally well,
successfully processing several complex superpositions. Due to

TABLE VII
DECOMPOSITION PERFORMANCE FOR AN EXPERIMENTAL SIGNAL DETECTED

FROM THE TA WITH 8 MUS: FOR EACH MU, “SENS.” DENOTES THE
SENSITIVITY; “PRED.” IS THE PREDICTIVITY; “ACC.’

REPRESENTS THE ACCURACY

the high complexity of the signal, there were a few mistakes in
the classification. As an example, we note two misclassification
cases occurred at 14.4 s and 14.55 s (see upper panel of Fig. 7).

For the classification phase, the individual (per MU) perfor-
mance indexes are shown in Table VII. Fig. 8 illustrates the
MUAP waveforms of eight MUs. The last one is the comparison
of MUAP waveforms between the 2nd one and the 3rd one.
According to Fig. 8, we analyze the performance indexes in
Table VII. The reason for the lower sensitivity of the 2nd and
3rd MU is that they have the smaller amplitudes of MUAPs,
compared to the other ones. Generally, this can lead to their
complete masking in the superpositions. Moreover, their MUAP
waveforms are similar. Thus, decomposition algorithm mistakes
occasionally between them, as shown in Fig. 6 (two cases
occurred around 18 s, upper panel). With respect to these two
MUs, the other MUs are well classified. Globally, the algorithm
succeeded in tracking and decomposing the MUs.

The algorithm recursively estimates the parameters of the
inter-spike intervals distribution, used to calculate the firing
rates. Fig. 9 shows the corresponding firing rates. Empirical ones
were estimated as the inverse of the moving average of subse-
quent inter-spike intervals in the reference decomposition. The
estimated ones were calculated with the estimated parameters t0
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and β. The algorithm successfully tracked the changes in firing
rates.

VIII. CONCLUSION AND PERSPECTIVES

In our previous works [15], [16], a sequential decomposition
algorithm based on a HMM of the EMG, that used Bayesian
filtering to estimate the unknown parameters of discharge series
of motor units was proposed. This algorithm successfully de-
composes experimental iEMG signals, however, it requires long
computation time.

In this paper we presented a real-time implementation for
the previous algorithm, including the replacement of time-
consuming Kalman filter by a more computationally efficient
LMS filter, three heuristics to reduce the complexity and cal-
culation load, and the implementation of parallel computation.
Validations on simulated and experimental signals demonstrated
successful performance of the algorithm. The real-time al-
gorithm performance matched that of its offline implementa-
tion [16]. Obtained results show that the proposed approach is
able of decomposing larger numbers of MUs than its closes
analogue [7] (8 MUs instead of 5 for experimental signals
in real-time), while providing equal or higher accuracy. This
number matches that of another close method [9], however, we
note that the last does not provide resolution of superimposed
waveforms.

Limitations in the algorithm performance are due to large
differences in amplitudes between MUAPs (masking of small
action potentials) and similarity in MUAP waveforms (switching
between similar MUs). These are common problems in EMG
decomposition [35], not specific to the developed algorithm or
to its online implementation. A multichannel version of the pre-
sented algorithm, which may resolve this problem, is a current
topic of our work. Another limitation is the number of MUs that
can be simultaneously tracked by the algorithm in the real-time
operation (up to 10 MUs), which restricts the approach to low
contraction efforts. This limit may be overcome in the future by
a better hardware or further modifications of the mathematical
model that reduce the calculation complexity.

APPENDIX A
FROM KALMAN FILTER TO THE LEAST-MEAN-SQUARE FILTER

Kalman filter, originally used for MUAPs estimation [15],
[16], can be replaced by an LMS filter under specific assump-
tions. Let’s consider the state covariance matrix from (9):

PSn = PSn−1 −KSn vSn K�
Sn

= PSn−1 − PSn−1 ψ(S[n])� v−1
Sn vSn

× (PSn−1 ψ(S[n])� v−1
Sn)�

= PSn−1 − PSn−1 ψ(S[n])� v−1
Sn ψ(S[n])PSn−1 (22)

Applying the Woodbury matrix identity:

[A+BCD]−1 = A−1 −A−1B[DA−1B + C−1]−1DA−1

(23)

to (22), we obtain:

P−1
Sn = P−1

Sn−1 + ψ(S[n])� (vSn − ψ(S[n]) PSn−1 ψ(S[n])�)

× ψ(S[n]) (24)

This can be simplified using expression (8) for the variance of
innovation:

P−1
Sn = P−1

Sn−1 + ψ(S[n])� v−1 ψ(S[n]) (25)

where v is the variance of measurement noise V̂ |n estimated
using (10) and (11). Finally, we have:

PSn =
V̂ |n

n
R−1

Sn

RSn =
1

n

n∑

k=1

ψ(S[k])�ψ(S[n]) (26)

whereRSn can be approximated by a matrix made of card(Ω)×
card(Ω) blocks Ri,j,Sn with dimension O(�IR × �IR):

Ri,i,Sn =

⎡

⎢⎢⎣

ξi,Sn · · · 0

...
. . .

...

0 · · · ξi,Sn

⎤

⎥⎥⎦ (27)

Ri,j,Sn =

⎡

⎢⎢⎣

ξi,Snξj,Sn · · · ξi,Snξj,Sn

...
. . .

...

ξi,Snξj,Sn · · · ξi,Snξj,Sn

⎤

⎥⎥⎦ (28)

where ξi,Sn is the firing rate of i-th motor unit, which is the
inverse of its inter-spike interval (ISI) expected value. We can no-
tice that ∀i, j ∈ Ω, ξi,Snξj,Sn � ξi,Sn and ξi,Snξj,Sn � ξj,Sn .
Therefore, if i �= j, Ri,j,Sn can be approximated by a zero-
matrix, RSn can be approximated by a diagonal matrix.

Having the approximation of PSn , we can derive directly the
LMS filter from the Kalman filter (9). With a rough initial prior
Ĥ

|0
S0 , for all n ≥ 1, we have:

ε[n] = Y [n]− ψ(S[n]) Ĥ
|n−1
Sn−1

mΔ,i[n] =

∑
j Δi[j]

card(Δi)

ṽ[n] = 1 +
1

n

∑

i

mΔ,i[n] ϕi(S[n])ϕi(S[n])
�

Ĥ
|n
i,Sn = Ĥ

|n−1
i,Sn−1 +

mΔ,i[n]ϕi(S[n])ε[n]

n ṽ[n]
(29)

where Δi[j] denotes the j-th ISI of the i-th motor unit; card(Δi)
is the number of the ISIs for the i-th motor unit; mΔ,i[n] is
the expected ISI for i-th motor unit at time index n; and ṽ[n]
represents the ratio of the variance of innovation vSn to the
variance of noise V̂ |n. And the prediction of the variance of
innovation vSn is:

vSn = ṽ[n] V̂ |n. (30)

In order to make this filter adaptive to the changes in MUAPs
forms, time index n can be replaced by a forgetting factor l[n].
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