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Mammography Image Quality Assurance
Using Deep Learning

Tobias Kretz , Klaus-Robert Müller , Tobias Schaeffter, and Clemens Elster

Abstract—Objective: According to the European Ref-
erence Organization for Quality Assured Breast Cancer
Screening and Diagnostic Services (EUREF) image quality
in mammography is assessed by recording and analyzing a
set of images of the CDMAM phantom. The EUREF proce-
dure applies an automated analysis combining image regis-
tration, signal detection and nonlinear fitting. We present a
proof of concept for an end-to-end deep learning framework
that assesses image quality on the basis of single images
as an alternative. Methods: Virtual mammography is used
to generate a database with known ground truth for train-
ing a regression convolutional neural net (CNN). Training
is carried out by continuously extending the training data
and applying transfer learning. Results: The trained net is
shown to correctly predict the image quality of simulated
and real images. Specifically, image quality predictions on
the basis of single images are of similar quality as those
obtained by applying the EUREF procedure with 16 images.
Our results suggest that the trained CNN generalizes well.
Conclusion: Mammography image quality assessment can
benefit from the proposed deep learning approach. Signifi-
cance: Deep learning avoids cumbersome pre-processing
and allows mammography image quality to be estimated
reliably using single images.

Index Terms—Deep learning, image regression, mam-
mography image quality assessment.

I. INTRODUCTION

MAMMOGRAPHY screening using x-ray radiation is an
important diagnostic tool and routinely applied for early

detection of breast cancer [1], [2]. Since cancerous tissue is
denser than healthy tissue, its x-ray attenuation is slightly higher,
which results in a contrast difference in the image acquired. The
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radiation contrast depends also on the x-ray energy spectrum and
the amount of scattered radiation [3]. The contrast difference is
visible in the recorded image as a signal. Increasing the radiation
dose increases the signal-to-noise ratio and thus the detectability
of signals in the recorded images.

While higher detectability implies improved diagnostic qual-
ity, an increase in the radiation dose can cause health risks [4].
The choice of radiation dose is thus crucial, since it should
guarantee sufficient diagnostic power while keeping the dose
exposure as small as possible. In order to ensure that the dose
level chosen is adequate, image quality assessment can be carried
out in a way suggested in a guideline of the European Reference
Organization for Quality Assured Breast Cancer Screening and
Diagnostic Services (EUREF) [5]. By following that guideline,
at least 16 images of the contrast-detail phantom for mammog-
raphy (CDMAM) [5] are acquired and subsequently analyzed.
In order to determine a device’s ability to resolve small details,
the CDMAM phantom consists of regular structures with pre-
scribed diameters and various thicknesses to emulate different
signal-to-noise ratio levels. For the analysis of the real images,
conventional signal detection methods are applied, followed by
a regression using a logistic function [5]. In order to apply these
methods, the position of the signals in the recorded image needs
to be known, which in turn requires the additional application
of pre-processing procedures.

The EUREF Guideline analysis results in a contrast-detail
curve [6] that characterizes the ability to detect small structures
of the phantom in dependence on their size. More precisely,
a contrast-detail curve consists of twelve points assigned to
images of the CDMAM phantom [7]. Each point consists of
a diameter and the minimum thickness needed such that a signal
evoked from a disc with that diameter and thickness will be
correctly identified by an automatic signal detection procedure
with high probability. The rationale for this procedure is that the
ability to visualize small structures and contrasts in a technical
phantom can be linked to the detection of microcalcifications in
clinical images [8], [9]. EUREF distributes a software program
called CDMAM Analyzer that inputs a stack of at least 16
CDMAM images and outputs the corresponding contrast-detail
curve; throughout the paper, this is referred to as the EUREF
Guideline procedure.

Over the past decade, deep learning has significantly
influenced the development of analysis methods in medical
imaging [10]–[12]. In contrast to traditional methods that
usually make use of a set of hand-crafted features, deep learning
can be implemented end-to-end, thus allowing representative
features to be learned during the training phase. This enables the
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algorithms to also find patterns in the data that are not accessible
for humans.

Meanwhile, deep learning outperforms humans in the task of
image classification [13]. Several studies explore the increasing
impact of deep learning on medical imaging [14]–[16]. Deep
learning is especially well suited for use in Computer Aided
Detection and Diagnosis (CAD), which can be used to provide
a second opinion for doctors and physicians in clinical health
care [17], [18]. Convolutional neural nets [19] (CNNs) now
represent the state of the art in image classification [13], [20].
Because of their block structure, CNNs have far fewer parame-
ters than standard, fully connected feedforward nets of a similar
layer size [21], which makes it easier to train them.

One challenge in deep learning is to understand the behavior
of a trained net. To this end, several approaches for explainability
have recently been proposed in the context of classification [22].
In [23], a method is discussed which computes local gradients to
analyze the sensitivity of the prediction when changing the val-
ues of single pixels. Layerwise relevance propagation (LRP) [24]
produces a score for each pixel in the image that reflects its
relevance for the output of the neural net, and this approach has
proven in many instances to be a sensitive tool for understanding
the behavior of a neural net ([25]–[28]).

To the best of our knowledge, methods from deep learning
have not been applied so far in the context of mammography
image quality assessment. The goal of this paper is to explore
the potential of deep learning for image quality assessment in
mammography. To this end, virtual mammography has been
implemented to construct a database of images of the CDMAM
phantom with known ground truth [29]. A regression CNN
(cf. [30]–[34]) was trained to model the contrast-detail curves.
No cumbersome pre-processing such as image registration was
used. Subsequently, a gradient technique was applied to under-
stand the behavior of the trained CNN, and the trained CNN was
tested on independent test images of the CDMAM phantom.

The paper is structured as follows: Section II illustrates the
development of a data set for training and testing a deep neural
net for mammography image quality analysis, introduces the
employed CNN architecture and shows the methology used for
interpreting the CNN’s decision. A detailed comparison of the
deep learning approach with the EUREF Guideline reference
procedure based on simulated and real images of the CDMAM
phantom is then presented in Section III and discussed in
Section IV. Finally, some conclusions are drawn.

II. METHOD

This section provides some background of mammography
quality assurance, describes the generation of a labeled database
and its separation into training and independent test data, as
well as the chosen CNN architecture. Furthermore, the training
procedure based on transfer learning is detailed, along with
the explainability method used to visualize the behavior of the
trained neural net.

A. Background Mammography Quality Assurance

In following a European guideline [5], mammography image
quality is expressed in terms of the contrast-detail curve derived

Fig. 1. Image of the CDMAM phantom. The image comprises margin
(white), phantom (gray) and annotation/grid pixels (black). Circular struc-
tures with varying diameters and thicknesses are regularly arranged in
a grid structure.

by applying an automated procedure for high-resolution images
of the CDMAM phantom (ca. 3600 × 2300 pixels). An example
image of the CDMAM phantom is shown in Fig. 1. The real
image shows pixels belonging to a margin, the phantom itself,
as well as annotations and grid pixels on the phantom. The
phantom consists of circular structures arranged in a regular grid,
where the diameter and thickness of the structures vary across
the grid cells. Each grid cell consists of two discs: one located
in the center and the other located in one of the four corners.
The contrast-detail curve expresses the minimum thickness in
dependence on a given diameter of the discs that is needed to
correctly localize the corner containing the second disc with
high probability. A mammography device has passed the quality
assurance test if its contrast-detail curve falls below a prescribed
limit curve [5].

B. Data

We constructed a database that consists of simulated and real
images of the CDMAM phantom. Application of the EUREF
software program CDMAM Analyzer [5] was used to construct
contrast-detail curves for all images in the database. The cal-
culated contrast-detail curves were taken as ground truth. After
having determined the ground truth, all images were downsam-
pled for further processing by the CNN, cf. Fig. 2. Table I shows
the sizes of the final training and test sets.

1) Simulated Images: An in-house tool for virtual mam-
mography [29] was used to simulate images of the CDMAM
phantom. The virtual mammography simulates a x-ray spectrum
according to the target material, the voltage and the exposure
time current product. A backward ray-casting procedure is ap-
plied to determine the path of the x-rays through the CDMAM
phantom, and Lambert’s law is used for the calculation of their
absorption until they reach the detector. The characteristic curve
of the detector is considered to be linear. In this way, a primary
image is calculated which is further degraded by blurring, scat-
tering and noise. Especially scattering and noise influence the
radiation contrast of signals in the simulated image.
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Fig. 2. Flowchart to illustrate the different data sets used to train and
test a neural net for image quality assessment for simulated and real
mammography images. Altogether, 17 different contrast-detail curves
(CDs) are available.

TABLE I
SIZES OF THE FINAL TRAINING SET OF AUGMENTED SIMULATED AND REAL
IMAGES AND THE FINAL TEST SET OF 4 PLUS 1 INDEPENDENT SIMULATION
SCENARIOS AND REAL IMAGES THAT WERE NOT USED FOR THE TRAINING.

FACTORS ILLUSTRATE THE MULTIPLICATION OF IMAGES
THROUGH DATA AUGMENTATION

TABLE II
SIMULATION PARAMETERS FOR THE 16 DIFFERENT SIMULATION SCENARIOS

USED TO TRAIN AND TEST A NEURAL NET TO ESTIMATE A
CONTRAST-DETAIL CURVE FROM A CDMAM PHANTOM IMAGE

Different SNRs were used in the virtual mammograms to
emulate devices of varying quality with an exposure between
100–120 mAs and a tube voltage between 23–31 kVp, cf.
Table II.

For each set of simulation parameters 200 images were sim-
ulated which differ in their random noise and in randomly
applied shifts of the phantom. These random shifts follow a
normal distribution with zero mean and standard deviation 1
px in x- and y-direction individually. We refer to these sets of
200 images simulated with one combination of tube voltage,

exposure and SNR as simulation scenarios. The scenarios differ
in the radiographic technique, and the corresponding simulation
parameters are listed in Table II.

2) Real Images: 48 images of the CDMAM phantom
recorded on a Siemens Mammomat Inspiration with a tube
voltage of 30 kVp and an exposure of 110 mAs were included
into the database. Fig. 1 shows one of the 48 real images.

3) Contrast-Detail Curves: Each image in the database is
labeled by assigning to it a contrast-detail curve. The EUREF
Guideline procedure is used to determine these contrast-detail
curves. The EUREF Guideline procedure has to be applied to a
group of images, and the uncertainty of the resulting contrast-
detail curve depends essentially on the number of images in
that group [29]. For the real images, all 48 images were used
to calculate one contrast-detail curve, which was then assigned
to all 48 images. For the simulated images, all 200 images
belonging to the same set of simulation parameters were used to
calculate a single contrast-detail curve, which was then assigned
to each of the 200 images. Altogether, 16 different settings of
parameters for simulating CDMAM images as listed in Table II
were considered, leading altogether to the 17 different contrast-
detail curves shown in Fig. 3a. In following [35], a log-log scale
is used to present contrast-detail curves.

4) Downsampling: To achieve a reasonable performance
when training the neural net, the dimensionality of the images
was highly reduced. Random downsampling has been chosen
for this purpose and all images were randomly downsampled
to a size of 250 × 250 pixels. One reason for the choice of
random downsampling is its simplicity in future applications
as it does not require further preprocessing steps needed when
using other dimension reduction methods such as, for example,
PCA-based methods [36] or shearlet transforms [37]. Another
possibility of reducing dimensionality is patch-wise sampling,
where the original image is split into smaller patches. However,
the contrast-detail curve summarizes local information from the
whole image which can be challenging when applying patch-
wise sampling, since each patch provides only a small portion
of the whole image. The size of 250 × 250 pixels for the down-
sampled images was chosen after comparing the performance of
training and prediction for several different larger and smaller
sizes. Fig. 4 shows examples of downsampled images.

5) Data Augmentation and Normalization: Simulated im-
ages of the CDMAM phantom used for training or testing
were augmented by adding artificial margins and subsequently
mirroring the images horizontally, vertically and horizontally &
vertically. The motivation for adding margins is that real images
are embedded in a constant background, acting as a margin. Six
different margin sizes varying between 0 and 93 pixels were
considered in the data set. The large margins are beyond typical
sizes in applications and chosen to demonstrate the robustness
of the approach.

For each image, the margin level was randomly set to a pixel
value between 2600 and 10000 (to be compared with pixel values
between 300 and 600 for the phantom area). A small random
perturbation of 2% of the pixel intensity was added to each
pixel of the margin. Fig. 4b shows an example of an augmented
image with added margin after subsequent downsampling. To all
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Fig. 3. Overview of the different ground truth contrast-detail curves.
(a) Simulated images (blue) and real images (green) are used to train
the neural net, cf. Table I. Independent simulated test data (red) are
used for testing the trained net. Another independent test set (orange)
is used to test the trained net’s ability to generalize. Corresponding
simulation parameters are listed in Table II. (b) Simplified visualization
of the contrast-detail curves, where simulated training and testing data
are summarized in a range (blue) while real images (green) and the
independent test set (orange) are shown as individual curves.

augmented images the contrast-detail curve of the corresponding
source image was assigned.

Image normalization is carried out by robustly estimating the
pixel intensity of the phantom background and subtracting that
value from the image. This is done automatically on a single
image basis which ensures that the approach can be applied
without any further knowledge about, e.g., a whole sample of
images or physical parameters of devices, etc.

6) Training Data: The set of 48 real images was randomly
split in two equally sized sets. One of them was used for training,
and one for testing. All images belonging to the eleven simula-
tion scenarios listed in Table II and shown as blue contrast-detail
curves in Fig. 3a were taken for training, while the images
belonging to the remaining simulation settings were used for
testing, see also Fig. 3a. The training data was chosen to span a
range of different quality levels with low and high exposure and
SNR values as indicated in Fig. 3b. Note that the contrast-detail
curve is shifted when a different combination of exposure and
SNR is selected.

Fig. 4. Images of 250 × 250 pixels sampled from a simulated image
of the CDMAM phantom with (b) and without (a) a margin of about 100
pixels (b).

In order to balance the weight of the simulated and real images
for training, the set of real images used for training was copied
many times such that the number of its images was equal to
the number of training images for each of the eleven different
scenarios of simulated images, cf. Table I.

7) Test Data: The trained net was evaluated on test images
by comparing the predicted contrast-detail curve for single
images with the ground truth. As test data simulated images
were used with parameter settings different from those used for
simulated training images, i.e. simulated test data are indepen-
dent from all training data (cf. Fig. 3a). Data for testing were
simulated with either different SNR values or different exposure,
or both. One additional test set was simulated with a significant
lower SNR and medium exposure such that it does not fall into
the range of the training data, see Fig. 3b. The remaining part of
the real images not used for training was used for testing. Note
that while each single real image has either been used for training
or testing, training and testing is not independent regarding the
real images in the sense that all of them were conducted by the
same device.

C. Neural Net & Transfer Learning

A regression CNN was set up with 6.3 × 107 learnable pa-
rameters and architecture listed in Table III. The Matlab Deep



KRETZ et al.: MAMMOGRAPHY IMAGE QUALITY ASSURANCE USING DEEP LEARNING 3321

TABLE III
ARCHITECTURE OF THE CNN FOR CONTRAST-DETAIL CURVE ESTIMATION

FROM CDMAM IMAGES

Fig. 5. Flowchart to illustrate the incremental learning strategy consid-
ering data extension. The training data was stepwise enlarged to include
margins and further augmentations as well as real images in a later step.

Learning Toolbox [38] was used to implement the model. The
mean squared loss was used as a cost function.

The CNN was trained in combination with an incremental
learning strategy. In a first step the neural net was trained using
only simulated training data that were not obtained through a
data augmentation technique; all these simulated images are
without margin. Furthermore, this step was initialized by first
learning the net without the second fully connected layer, and
finalized by transfer learning the second layer with dropout
rate 0.2. In the next step, the training set was augmented with
images containing small margins, while later, images with larger
margins were included. In the final step then, the real images
specified for training were also included into the training set. For
each step of incremental learning, stochastic gradient descent
with momentum was applied with an initial learning rate of
lr = 10−3, and a batch size of 128 images for 150 epochs. For
every 30th epoch, the learning rate was dropped by 0.1. The
incremental learning strategy is illustrated in Fig. 5.

D. Explainability

In order to determine which regions in the image are relevant
for the trained net, we perturbed an input image and recorded
the influence of the perturbation on the predicted contrast-detail
curve. More precisely, for each of the points of the contrast-detail
curve, the sensitivity of the trained net’s prediction to a single
pixel image perturbation was calculated. The combined sensitiv-
ity of the predicted contrast-detail curve was then determined by
taking the root-mean-square sensitivity for the whole contrast-
detail curve and all pixels, resulting in a gradient sensitivity
image.

III. RESULTS

In this section, we provide a detailed comparison of the deep
learning approach with the EUREF Guideline procedure based
on simulated and real images of the CDMAM phantom. Recall
that all simulated images used for testing were not used for
training, and that the ground truth of the test images, i.e. their
contrast-detail curves, are also different from the ground truths
in the training data, cf. Fig. 3.

A. Prediction of Contrast-Detail Curves Using Test Data

Fig. 6a shows the predicted contrast-detail curves of the
trained neural net for all simulated images in the test set.
The ground truth of these test data differs from the ground
truth of all training data, cf. Fig. 3, and is displayed as lines.
Error bars indicate standard errors. The predictions, given as
dots, follow the same intrinsic structure present in their ground
truth, but also show some variability. The EUREF Guideline
procedure requires at least 16 images of the CDMAM phantom.
Fig. 6b shows in comparison averages of 16 single predictions
of contrast-detail curves made by the trained neural net. Rela-
tive root mean squared errors averaged over all points and all
contrast-detail curves in the test sets are 10% for the simulated
images, and 5% for the real images.

Fig. 7a and Fig. 7b illustrate examples of predictions of
contrast-detail curves made on the basis of single simulated
images of the test data that all have the same ground truth.
The Figures show the predicted threshold gold thickness values
versus the corresponding gold thickness values obtained by
the EUREF Guideline contrast-detail curve. The prediction of
the CNN varies for all individual images and is distributed
around the ground truth, which is indicated by the black line.
Cases where the simulated test images contained a margin are
distinguished. The results show that predictions of a similar
quality are obtained regardless of whether the images contain
an additional margin or not. It can be concluded that the net has
successfully learned to cope with the situation of images having
different portions of margin.

Fig. 8 shows analogous results for the real images in the test
data, together with their common ground truth. A fairly good
agreement can be observed. Recall that while the real images in
the test set did not belong to the training data, the training data
included (different) real images belonging to the same ground
truth.
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Fig. 6. Ground truth (line) and predictions (dots) of the trained neural
net for the simulated test images (a) on the basis of single images
and (b) averages of 16 single predictions from (a). Error bars display
standard errors.

Ideally, for a fixed diameter the value of the contrast-detail
curves for the different scenarios (i.e. the different image qual-
ities) should be separated from each other. Fig. 9a illustrates
the variability for a single diameter of the predictions made on
the simulated test data, and Fig. 9b shows the variability for
averages of 16 single predictions. While neighboring quality
levels cannot be reliably distinguished from predictions made
by the trained net on the basis of a single image, the estimation
accuracy is large enough to distinguish between larger differ-
ences in the quality of a mammography device. For averages
of 16 predicted contrast-detail curves, even neighboring quality
levels can reliably be distinguished. We refer to Section III-D
for a detailed assessment of the variability of the predicted
contrast-detail curves in comparison with the uncertainty of the
ground truth.

The coefficient of determination R2 has been calculated for
all cases in the test set in order to further assess the quality of the
predicted contrast-detail curves. Fig. 10a and Fig. 10b display
the distributions of these coefficients, the vast majority of which
are near 1. For the test cases based on simulated data, the median
R2 of the 4800 cases equals 0.9859, while for the 24 test cases
based on the real data, a value of 0.9955 was obtained.

Fig. 7. Predicted threshold gold thickness (prediction) vs. the thresh-
old gold thickness values obtained from the EUREF Guideline contrast-
detail curve (ground truth) for one set of simulated images of the test
data for (a): no margin and (b): with additional margin.

Fig. 8. Predicted threshold gold thickness (prediction) vs. the thresh-
old gold thickness values obtained from the EUREF Guideline contrast-
detail curve (ground truth) for the set of real images in the test data.

B. Generalization

In order to assess the trained net’s ability to generalize, an
additional scenario was tested for which the contrast-detail curve
differs significantly from all cases in the training set, cf. the case
on the right in Fig. 2 and the corresponding lower contrast-detail
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Fig. 9. Variation of predictions on the simulated test set for diam-
eter 0.13 mm. (a) Single prediction of the contrast-detail curve and
(b) averages of 16 single predictions of the trained net. The four different
simulation scenarios represent the four different image qualities of the
simulated test images, cf. Fig. 6.

curve in Fig. 3. Fig. 11 shows the prediction of the trained net
obtained from single images for this additional test case. The
predictions are fairly accurate, suggesting that the trained net is
able to generalize well.

C. Explainability

The trained net has learned to successfully predict contrast-
detail curves from images with and without margins. In fact,
the gradient sensitivity images (not shown) demonstrate that
pixels belonging to the margins are irrelevant for the result of
the trained net. The gradient sensitivity images also appear to
indicate that those pixels are important which contain cells with
pairs of diameters and thickness that are part of the contrast-
detail curve.

D. Uncertainty

The variability of predictions made by the trained net was
compared with that of the EUREF Guideline procedure for the
48 real images which are all of the same quality. By repeatedly
drawing random subsets of 16 images from this set and by
applying the EUREF Guideline procedure, the variability of
this procedure (when using 16 images) was determined. Fig. 12
shows the corresponding results, which are compared with the
results of the trained net based on single images. The results

Fig. 10. Coefficients of determination R2 for predictions of the trained
net on the test set consisting of (a): 4800 simulated images and (b): 24
real images.

Fig. 11. Ground truth (red) and predictions by the trained net based
on single images (blue). Error bars display standard errors.

demonstrate that the variability of predictions of the trained net
for single images is similar to that of the EUREF Guideline pro-
cedure using 16 images. For the smallest diameter, the variability
of the neural net prediction is even less than that of the EUREF
Guideline procedure. The mean contrast-detail curves of both
approaches agree well.

Recall that the EUREF Guideline procedure was used to
define the ground truth by applying it to a large number of
images, namely 200 images for the virtual mammograms and
48 real mammograms. However, since we observe a significant
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Fig. 12. Contrast-detail curves as obtained by repeated applications
of the EUREF Guideline procedure for 16 randomly drawn images from
the set of 48 real images (red) with common ground truth, and single
predictions of the trained net of the 24 real test images. Error bars
indicate standard errors.

Fig. 13. (a) Uncertainty of the four test ground truth curves, which
has been determined on the basis of all 200 simulated images of each
scenario. Error bars indicate standard errors. (b) Uncertainty of the
different ground truth curves at a diameter of 0.13 mm, cf. Fig. 9.

variability for the results of the EUREF Guideline when using
16 images, the ground truth based on 48 (real images) or 200
(simulated images) will also contain an uncertainty. An estimate
of that uncertainty can be obtained by scaling the standard
deviation σ(ρ) at each diameter ρ of the contrast-detail curve
obtained by the EUREF Guideline procedure when repeatedly
applying it to randomly drawn subsets of size 16 images; i.e.,
σ was multiplied by (16/48)1/2 for the real images and by

(16/200)1/2 for the simulated images. Fig. 13a shows the re-
sulting expected variation of the ground truth. By comparing
this variability with the variability observed for the trained net
(cf. Fig. 6), the variability of the latter is somewhat larger, yet
Fig. 13a suggests that relevant uncertainty is still present in the
ground truth. Note that Fig. 13a and b visualize the variability of
the ground truth as determined by all 200 simulated images of the
corresponding simulation scenario. Hence, they are smaller than
the results displayed in Fig. 9a and b, which show the variation
of predictions from single and 16 images, respectively. Fig. 12
demonstrates that our approach yields the same variability for
the single image predictions as the EUREF Guideline procedure
for 16 images.

Fig. 13a also reveals that the uncertainty in the ground truth
increases with increasing threshold gold thickness. Fig. 7a and b
show that an increasing spread between predictions of the neural
net and ground truth also with increasing gold thickness. This
increasing spread may be due to increased prediction errors, or
increased ground truth errors, or both.

E. Downsampling

The high downsampling rate destroys the regular structure of
the CDMAM phantom in the original image to some extent and
a human observer would probably no longer be able to assess
image quality. Our results demonstrate that a neural net can still
assess image quality reliably from these highly downsampled
images.

In order to further explore the impact of downsampling,
we considered another case of simulated test images with a
ground truth not used for training the net. In that case, however,
the CDMAM phantom was altered by randomly changing the
location of the second disc in each cell. Application of the trained
net to a set of such (downsampled) simulated images led to
predictions similar as those obtained by the original phantom.
In another experiment we applied the trained net to simulated
images in which the pixels were randomly permuted. In that case
the trained net failed to make reasonable predictions.

IV. DISCUSSION

Our results demonstrate that a trained CNN can be used
to successfully analyze images of the CDMAM phantom in
mammography image quality assurance. The accuracy of es-
timates of image quality made by the CNN from single images
is similar to, or even better than that obtained by the current
EUREF Guideline procedure using 16 images. The trained net
was successfully applied to real images and generalized well to
a scenario far from all scenarios used for training the net. These
findings underline the potential reliability of deep learning for
mammography quality assurance.

The CNN was trained on randomly downsampled images and
was able to accurately predict the contrast-detail curves from
images that were randomly downsampled. The downsampled
images are probably not suitable for correct image quality as-
sessment by a human observer, as many of the small structures
got lost. While the good performance of the neural net on
downsampled images is of some interest on its own, it can also



KRETZ et al.: MAMMOGRAPHY IMAGE QUALITY ASSURANCE USING DEEP LEARNING 3325

be relevant for the attempt to design simpler phantoms in the
future. Image quality assessment refers to assessing a device’s
ability to resolve small structures rather than actually detecting
those structures. Although the regular structure of the CDMAM
image may no longer be visible in the downsampled images, the
relevant information of image quality can still be retrieved by
a trained neural net. Predictions of the trained net to simulated
images obtained by randomly position the second gold discs
in the cells were of similar quality, while randomly permuted
pixels caused a failure of the prediction of contrast-detail curves
by the neural net. This indicates that although downsampling
leads to a loss of information, the structure is still relevant in
the images and the trained net uses some structural informa-
tion for the estimation of contrast-detail curves. Note that the
trained net performs a regression rather than a detection task.
It appears that the successful regression is achieved through
a separation into detectable and non-detectable discs. In fact,
the gradient sensitivity images suggest that those parts of the
image which belong to cells having pairs of diameter and
thickness belonging to the contrast-detail curve are particularly
relevant. Training of the net would then amount to a detection
of this region in an image, a task significantly simpler than
that of detecting single cells. This interpretation would explain
why the highly downsampled images are still sufficient for
reliably estimating image quality assessment. Future research
may further this conjecture, e.g. through randomly permut-
ing the cells of the phantom or other means of distorting its
underlying structure.

Another way of interpreting the surprisingly good perfor-
mance of the trained net on highly downsampled images is
that a regression task is considered, and that the original image
contains highly redundant information for that. This aspect may
be interesting also in other applications where machine learning
is applied for regression on images, and where sparse sampling
procedures are desired.

The EUREF Guideline procedure requires that images be
segmented and phantoms aligned prior to applying its signal
detection procedure. These pre-processing steps are not merely
cumbersome but also introduce sources of uncertainty for the
final result. The CNN, on the other hand, was trained on the basis
of the (downsampled) raw data, and the net successfully learned
to “pre-process,” i.e., it automatically accounts for misalignment
or the presence of margins.

Incremental learning can be applied by refining the net ar-
chitecture [39], [40] as well as by changing the data [41]. The
aim of incremental learning is to balance the already learned
knowledge with a correct prediction of completely new data.
While restarting the learning phase with randomly chosen net
parameters will completely delete the net’s knowledge, which
is referred to as “catastrophic forgetting” in [42], [43], transfer
learning utilizes the parameters learned thus far. One of our
findings while training the CNN was that transfer learning was
very helpful, specifically by a step-wise inclusion of simulated
images containing margins of growing size. Training the net with
all data from the scratch led to significantly worse results. This
work provides primarily a proof of concept for the application
of deep learning for mammography image quality assessment.

Future research could address remaining limitations in the pre-
sented approach. For example, only few real images were used
for training and testing. Furthermore, all real images belonged to
the same ground truth, i.e. are images of the CDMAM phantom
conducted by the same device. Since some of them were used
for training, testing the trained net on the remaining real images
did not allow for assessing the generalization on real images.
Nevertheless, the encouraging results demonstrate that neural
nets can be trained to accurately predict contrast-detail curves.
To implement this in a quality assurance protocol, more real
images should be conducted covering a large range of acquisition
parameters and techniques, which is beyond the scope of this
work.

A human based quality assessment is mainly focused on the
detectability of small structures in an image of the CDMAM
phantom. However, the applied downsampling appears to de-
stroy much of this information. Future research may explore
the impact of downsampling in more detail, e.g. by comparing
results for different rates of downsampling or even attempting
to learn the net on the original images.

Another interesting issue lies in the fact that the downsampled
images are sufficient for a neural net to predict image quality,
and that the trained net fails, for example, when applied to
(downsampled) images with randomly rearranged images. It
seems that random downsampling in some sense maintains the
regular structure of the CDMAM phantom. Clarification of this
issue may also be helpful in the design of cheaper technical
phantoms.

To the best of our knowledge, deep learning has not yet been
applied for image quality estimation in mammography quality
assurance so far. For these reasons, we compared the proposed
approach only with the current standard method provided by the
EUREF Guideline procedure. However, alternative approaches
from deep learning, and in particular other net architectures or
transfer learning procedures, could be explored.

V. CONCLUSION

In mammography quality assurance, a contrast-detail curve is
determined that quantifies a system’s ability to visualize small
structures. Contrast-detail curves are derived from multiple im-
ages of the CDMAM phantom. Following the European Refer-
ence Organization for Quality Assured Breast Cancer Screening
and Diagnostic Services (EUREF), images of the CDMAM
phantom are analyzed by an automated procedure that combines
image registration, signal detection and nonlinear fitting.

We introduced a convolutional neural net to predict a contrast-
detail curve from a single image of the CDMAM phantom.
Virtual mammography was used to build a large image data set
enriched with real images of the CDMAM phantom.

The trained CNN successfully predicted contrast-detail
curves from single simulated and single real images of the
CDMAM phantom. Furthermore, the trained CNN successfully
learned to ignore the margins in the images, thus allowing images
to be analyzed without cumbersome pre-processing.

The results show that the trained net can estimate contrast-
detail curves from single images at least as precisely as when
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applying the current EUREF Guideline procedure with 16 im-
ages.

These findings demonstrate the potential advantages of deep
learning for mammography quality assurance. We conclude
that mammography quality assurance can benefit from current
techniques in deep learning.
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