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Modeling and Estimation of Temporal Episode
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Mikael Henriksson , Alba Martín-Yebra , Monika Butkuvienė, Jakob Gulddahl Rasmussen ,
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Abstract—Objective: The present study proposes a
model-based, statistical approach to characterizing
episode patterns in paroxysmal atrial fibrillation (AF).
Thanks to the rapid advancement of noninvasive monitor-
ing technology, the proposed approach should become
increasingly relevant in clinical practice. Methods: History-
dependent point process modeling is employed to
characterize AF episode patterns, using a novel alternating,
bivariate Hawkes self-exciting model. In addition, a
modified version of a recently proposed statistical
model to simulate AF progression throughout a lifetime is
considered, involving non-Markovian rhythm switching and
survival functions. For each model, the maximum likelihood
estimator is derived and used to find the model parameters
from observed data. Results: Using three databases with a
total of 59 long-term ECG recordings, the goodness-of-fit
analysis demonstrates that the proposed alternating,
bivariate Hawkes model fits SR-to-AF transitions in 40
recordings and AF-to-SR transitions in 51; the correspond-
ing numbers for the AF model with non-Markovian rhythm
switching are 40 and 11, respectively. Moreover, the results
indicate that the model parameters related to AF episode
clustering, i.e., aggregation of temporal AF episodes,
provide information complementary to the well-known
clinical parameter AF burden. Conclusion: Point process
modeling provides a detailed characterization of the
occurrence pattern of AF episodes that may improve the
understanding of arrhythmia progression.
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I. INTRODUCTION

A TRIAL fibrillation (AF) is a progressive disease often
initially manifested by intermittent episodes terminating

spontaneously. In paroxysmal AF, episode duration varies sub-
stantially, lasting from less than 30 s to 7 days. Considering
that AF is a heterogenous disease associated with significant
comorbidities in certain patients, but no demonstrable disease in
others [1], [2], it is not surprising that progression from paroxys-
mal AF to sustained forms of AF, i.e., persistent, long-standing,
and permanent, does not occur in all patients [3]. While little
is known today about the role of temporal episode patterns in
AF progression [4], long-term continuous monitoring is, most
likely, the tool to provide such knowledge.

The problem of how to characterize AF episode patterns re-
ceived certain attention around the turn of the millennium. At the
time, emphasis was put on univariate statistical analysis of either
the intervals between consecutive AF episodes (“interepisode
intervals”) [5]–[7], or the intervals between the onsets of consec-
utive AF episodes (“interdetection intervals”) [8]. While it was
speculated that information on episode patterns can be useful
to predict outcome [9], e.g., by relating the degree of episode
clustering to antiarrhythmic therapy [6], the clinical significance
was never investigated.

Most of the “millennial studies” were based on the series
of RR intervals produced by the AF detector in an implantable
device. This approach offered continuous operation for a year or
more with the potential to characterize AF progression, though
constrained by a limited storage capacity. Using a small data
set, initial results suggested that interepisode intervals could
be described by a homogenous Poisson model, implying that
interepisode intervals follow an exponential probability density
function (PDF) [5]. This PDF model was, however, later dis-
carded in favor of the Weibull PDF [6], [7] or the power law
PDF [8] as the latter two PDFs were found more adequate for
modeling of interepisode intervals.

“AF density” is one of the very few parameters proposed for
characterizing the aggregation of AF burden in patients sub-
ject to year-long monitoring using an implantable device [10];
AF burden is the percentage of time spent in AF during the
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monitored period. AF density is defined on the interval [0,1],
where a value close to 0 indicates that AF burden is evenly
distributed on a day-to-day basis throughout the monitored
period and a value close to 1 that AF burden is confined to
an interval much shorter than the monitored period. Recently,
AF density was modified to account for episode duration to
become suitable for characterization of day-long recordings on
an RR interval basis [11]: While the modified parameter could
distinguish different episode patterns, it was also found to be
strongly correlated with AF burden (r = −0.94).

The above-mentioned PDF-based approach to characterizing
AF interepisode or interdetection intervals rests on the assump-
tion that episodes are statistically independent—an assumption
that may be questioned since AF episodes tend to cluster [6].
Recently, a model-based approach to simulating AF progres-
sion during a lifetime was proposed, where AF episodes are
assumed to be history-dependent [12]. The main components
of that model are the rates of activation and recovery, defined
by survival functions, resulting in two series of points in time
together defining the onset and end of successive AF episodes
in a simulated patient. Following AF initiation, episodes are
brief to then become increasingly longer until AF progresses to
a sustained form. By exploring various combinations of model
parameter values, the authors expressed great expectations that
simulations could provide better understanding of the key mech-
anisms determining long-term progression of AF. In that study,
parameter estimation from observed data was not addressed,
one reason being that patient monitoring over a lifetime is
impractical.

The purpose of the present study is to explore a model-based
approach to characterizing AF episode patterns. A variation of
the bivariate Hawkes self-exciting point process model [13], [14]
is proposed for history-dependent modeling of the alternating
transition times from non-AF to AF and vice versa. In the model,
a transition increases the likelihood of observing additional tran-
sitions in the near future, thus allowing clustered transition pat-
terns to be modeled. The conditional intensity function, i.e., the
function specifying the mean number of transitions in an interval
conditional on the past, is defined by a relatively small number
of parameters and therefore suitable for statistical inference.
While the alternating, bivariate Hawkes model is novel, point
process modeling as such has been considered in biomedical
applications for modeling of neural spike activity [15], heartbeat
dynamics [16], [17], and physical activity [18]. In addition to
proposing a variation of the Hawkes model, the present study
provides a point process interpretation of the AF progression
model in [12] and proposes a minor modification that makes
the model well-suited for analyzing data observed during days
and weeks. In addition, the modification paves the way for
statistical inference, solved using the maximum likelihood (ML)
method.

The paper is organized as follows. Section II introduces the
alternating, bivariate Hawkes model together with the related
ML estimator. Section III describes the AF progression model
and the related ML estimator. Section IV describes the approach
taken to goodness-of-fit analysis for model validation and three
different long-term ECG databases. Section VI presents the
results from the goodness-of-fit analysis as well as results on the

relationship between certain model parameters, the modified AF
density, and AF burden.

II. POINT PROCESS MODELING

The temporal episode pattern in paroxysmal AF is modeled by
two point processes: one accounting for transitions from sinus
rhythm (SR) to AF occurring at times (“points”) t1,1, t1,2, . . .,
and another accounting for transitions from AF to SR occur-
ring at times t2,1, t2,2, . . .; the first index indicates the type of
transition and the second the transition number. For simplicity,
SR and AF are assumed to alternate, although, in practice, a
non-AF rhythm may very well replace SR. The onset of the first
AF episode and the end of the last AF episode are assumed to
be entirely contained in the observation interval [0, T ]. Thus, the
first transition is from SR-to-AF and the last from AF-to-SR.

A bivariate point process is associated with two counting
processes {N1(t), N2(t), t ≥ 0} describing the number of tran-
sitions that have occurred up to but not including t,

Nm(t) =

∞∑
k=1

1[tm,k<t], m = 1, 2, (1)

where Nm(0) = 0, 1[·] is the indicator function which equals
either 1 or 0 depending on whether the condition inside the
square brackets is true or not, and k the index of past points. A
bivariate point process is completely characterized by the two
conditional intensity functions λ1(t) and λ2(t), defined by [19]

λm(t) = lim
Δt→0

Pr(Nm(t+Δt)−Nm(t) = 1|Ht)

Δt
, (2)

where the numerator is the conditional probability of a tran-
sition occurring in the interval [t, t+Δt], and Ht is the his-
tory of the bivariate point process, i.e., the transition times
t1,1, t2,1, t1,2, . . . that have occurred up to but not including t.

The conditional intensity function λm(t) involves a set of
parameters that can be estimated using the ML method. The
parametric dependence is made explicit by collecting all the
model parameters in a vector θ and expanding the notation to
become λm(t;θ). For a bivariate process, the likelihood function
is given by [19]

L(θ; t) =
⎡
⎣ 2∏
m=1

Nm(T )∏
k=1

λm(tm,k;θ)

⎤
⎦

· exp
(
−

2∑
m=1

∫ T

0

λm(t;θ)dt

)
, (3)

where the vector t contains the observed transition times.
The ML estimator is given by [20]

θ̂ = argmax
θ

(lnL(θ; t)), (4)

where the log-likelihood function is given by

lnL(θ; t) =
2∑

m=1

Nm(T )∑
k=1

ln λm(tm,k;θ)

−
2∑

m=1

∫ T

0

λm(t;θ)dt. (5)
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It should be noted that the approach taken to point process
modeling does not explicitly account for AF episode duration,
thus differing from the approaches in [6], [7].

A. Bivariate Hawkes Model

In the present study, the bivariate Hawkes model with expo-
nential decays serves as the starting point for modeling episode
patterns. The counting processes N1(t) and N2(t) have condi-
tional intensity functions of the form [13]:

λm(t) = μm +

2∑
n=1

∑
{k:t>tn,k}

αm,ne
−βm,n(t−tn,k), (6)

where μm > 0, αm,n ≥ 0, βm,n ≥ 0 for m,n = 1, 2. The main
characteristic of the Hawkes model is that λ1(t) increases by
α1,1 immediately after a transition (“self-excitation”) and then
decreases exponentially, defined by the decay parameter β1,1, to
the base intensityμ1; the same characteristic applies to λ2(t) but
then defined by α2,2, β2,2, and μ2. Thus, the process can exhibit
a clustering behavior due to that the probability of additional
transitions increases immediately after a transition. In addition
to self-excitation, λ1(t) contains another term, defined by α1,2

and β1,2, which lets N2(t) influence N1(t) (“cross-excitation”);
λ2(t) is defined in the same way as λ1(t), but then by α2,1

and β2,1. In the following, the model parameters are compactly
represented by the vector θ,

θ = [μ1, μ2, α1,1, β1,1, α1,2, β1,2, α2,1, β2,1, α2,2, β2,2]. (7)

B. Alternating, Bivariate Hawkes Model

Unfortunately, the bivariate Hawkes model does not impose
alternating transitions, i.e., a transition from SR to AF is not
necessarily followed by a transition from AF to SR to ensure that
t1,1 < t2,1 < t1,2 < t2,2 < · · · . Although the model parameters
can be estimated and given an interpretation in physiological
terms [18], the bivariate Hawkes model is not meaningful to
use for simulating episode patterns as illustrated by Fig. 1(a).
However, this disadvantage can be eliminated by multiplying
each of the conditional intensity functions in (6) with a binary
“occurrence” function, ensuring that AF occurs after SR,

o1(t) =

{
1, N1(t) = N2(t− d2),

0, otherwise,
(8)

and SR occurs after AF,

o2(t) =

{
1, N2(t) �= N1(t− d1),

0, otherwise;
(9)

see Fig. 2 for an illustration of o1(t) and o2(t). The parametersd1
and d2 define the minimum duration of AF and SR, respectively.
It should be noted that the choice of d1 and d2 has implications
on the number of episodes contained in the data set: small values
of d1 and d2 typically imply more episodes than do large values.

The conditional intensity functions producing an alternating,
bivariate point process are given by

λ̃m(t) = λm(t)om(t), m = 1, 2. (10)

Fig. 1. (a) Simulated realization of the bivariate Hawkes point process,
defined in (6), using θ = [0.1, 0.5, 1, 2.6, 1, 2.6, 3, 5, 1, 5] · 10−3. (b) Real-
ization of the alternating, bivariate Hawkes point process, using θ in (a),
and related intensity functions (c) λ1(t) and (d) λ2(t). The marks “o” and
“x” indicate SR-to-AF and AF-to-SR transitions, respectively. In (b)–(d),
the minimum durations d1 and d2 are set to 0.

Fig. 2. Illustration of the alternating, bivariate Hawkes model. The tran-
sition times (“o,” SR-to-AF; “×,” AF-to-SR), the counting processes N1(t)
and N2(t) (solid and dashed line, respectively), and the occurrence
functions o1(t) and o2(t) are displayed from top to bottom. The minimum
duration of AF and SR (shaded) are denoted d1 and d2, respectively.

Thus, the structure of λ̃m(t) is identical to the bivariate Hawkes
process in (6), except that a transition from SR to AF must,
once a certain time d1 has elapsed, be followed by a transi-
tion from AF to SR, and so on. Fig. 1(b)–(d) illustrate the
alternating, bivariate Hawkes model and related conditional
intensity functions. Clustered and non-clustered episode pat-
terns are illustrated in Fig. 3, where the clustered pattern in
Fig. 3(a) is produced using smaller values of the β-parameters
than in Fig. 3(b), i.e., β1,1 = β1,2 = 2.5 · 10−3, β2,1 = β2,2 =
5 · 10−3 vs. β1,1 = β1,2 = β2,1 = β2,2 = 8 · 10−3.

The log-likelihood function of the bivariate Hawkes model
has been derived in [21], however, owing to the introduction
of the occurrence functions o1(t) and o2(t), the log-likelihood
function of the alternating, bivariate Hawkes model has a struc-
ture that differs substantially from the one in [21], given by (see
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Fig. 3. Simulated (a) clustered and (b) non-clustered episode patterns
using the alternating, bivariate Hawkes model using θ = [0.1, 0.5, 2, 2.5,
2, 2.5, 1, 5, 2, 5] · 10−3 and [0.1, 0.5, 2, 8, 2, 8, 1, 8, 2, 8] · 10−3, respec-
tively. For reasons of clarity, λ1(t) is displayed rather than λ̃1(t). The
minimum durations d1 and d2 are set to 0.

Appendix A)

lnLa
m(θ; t) = −

∑
{k:t2,k+2−m<T }

(
μm(τm̃,k − dm̃)

+

2∑
n=1

Cm,n(k)

βm,n

(
e−βm,ndm̃ − e−βm,nτm̃,k

)

− ln

(
μm +

2∑
n=1

Cm,n(k)e
−βm,nτm̃,k

))
,

(11)

where m̃ = 2 for m = 1 and, conversely, m̃ = 1 for m = 2.
Furthermore, τ1,k = t2,k − t1,k is the duration of the k:th AF
episode, and τ2,k = t1,k+1 − t2,k is the duration of the k:th SR
“episode”. The function Cm,n(k) is defined by

Cm,n(k) = αm,n

k∑
l=1

e−βm,n(tm̃,k−tn,l), (12)

except for m = n = 2 when

C2,2(k) = α2,2

k−1∑
l=1

e−β2,2(t1,k−t2,l). (13)

The maximization of the log-likelihood function in (11) is per-
formed using particle swarm optimization.

The base intensities μ1 and μ2 reflect the mean rates of SR-
to-AF and AF-to-SR transitions, respectively, in the absence of
self- and cross-excitation. The base intensity ratio

μ =
μ1

μ2
(14)

provides information on the dominating rhythm: μ > 1 indi-
cates dominance of AF (Fig. 4(a)) and μ < 1 dominance of SR
(Fig. 4(b)). Holding fixedμ and the other model parameter values

Fig. 4. (a) Episode pattern dominated by AF, simulated using the alter-
nating, bivariate Hawkes model using θ = [0.03, 0.001, 1 · 10−6, 0.008,
0.008, 0.008, 0.04, 0.07, 1 · 10−6, 0.07]. (b) Episode pattern dominated
by SR, generated using θ in (a) but with μ1 decreased to 0.0001.
(c) Episode pattern dominated by SR, generated using θ in (b) but with
β1,1 and β1,2 increased from 0.008 to 0.3, leading to less clustering.
The minimum durations d1 and d2 are set to 0.

used to generate the pattern in Fig. 4(b), the effect of increasing
β1,1 and β1,2, leading to less clustering, is illustrated in Fig. 4(c).
Moreover, for a fixed AF burden, it may be noted that a few
long AF episodes occurring closely in time are characterized by
a μ > 1, whereas many short, evenly distributed AF episodes
are characterized by a μ < 1. Since the transition times form a
series of alternating episode onsets and ends, the cross-excitation
parameters α1,2 and α2,1 are usually much larger than the
self-excitation parameters α1,1 and α2,2.

III. THE AF PROGRESSION MODEL [12]

In its original formulation, the AF progression model was
defined by non-Markovian rhythm switching and two rates,
activation and recovery, which together determine the transi-
tion times. Interestingly, as shown below, this model can be
interpreted as a point process related to the alternating Hawkes
process. The two rates, denoted λ

p
1(t) and λ

p
2(t), can be viewed

as conditional intensity functions.
Only the parameters accounting for AF-induced remodeling

are considered as they are relevant for modeling patterns in
day- to week-long recordings. Hence, “lifetime” parameters
accounting for genetic disposition and age- and disease-related
remodeling are omitted. Rather than using parameter values
found in the literature or based on empiricism as was done
in [12], the parameters are here estimated from observed data.

A. Interpretation of the Progression Model as a
Point Process

The conditional intensity function λ
p
1(t) is defined by four

positive-valued parameters: the base intensity μmin, the maxi-
mum intensity μmax, the exponential rate βAF with which λ

p
1(t)

increases to μmax in AF, and the exponential rate βSR with which
λ
p
1(t) decreases to μmin in SR. During the k:th episode of either



HENRIKSSON et al.: MODELING AND ESTIMATION OF TEMPORAL EPISODE PATTERNS IN PAROXYSMAL ATRIAL FIBRILLATION 323

AF or SR, λ
p
1(t) is formulated as

λ
p
1(t) =

{
μmax + αAF,ke

−βAF(t−t1,k), t1,k ≤ t < t2,k,

μmin + αSR,ke
−βSR(t−t2,k), t2,k ≤ t < t1,k+1,

(15)

where

αAF,k = λ
p
1(t1,k)− μmax, (16)

αSR,k = λ
p
1(t2,k)− μmin, (17)

for k ≥ 1 which guarantees continuity of λ
p
1(t). The intensity

function λ
p
1(t) is initialized with μmin. It is noted that λ

p
1(t)

increases in AF since αAF,k is negative, whereas it decreases in
SR since αSR,k is positive. As before, the conditional intensity
function accounting for transitions is given by

λ̃
p
1(t) = λ

p
1(t)o1(t). (18)

In [12], λ
p
2(t) was assumed to approach 0 in AF to mimic

long-term progression from paroxysmal to persistent AF. Since
this behavior has no relevance for modeling episode patterns,
λ̃
p
2(t) is described by a simple Poisson-like model,

λ̃
p
2(t) = μp

2o2(t). (19)

A similar model was previously considered in [5], but then for
the purpose of characterizing interepisode intervals.

Collecting the model parameters in the vector θp,

θp = [μmin, μmax, βAF, βSR, μ
p
2], (20)

the log-likelihood function can be written as (see Appendix B)

lnL1(θ
p; t) = −

∑
{k:t2,k+1<T }

(μmin(τ2,k − d2)

+
αSR,k

βSR

(
e−βSRd2 − e−βSRτ2,k

) − ln
(
μmin + αSR,ke

−βSRτ2,k
))

.

(21)

The function αSR,k can be computed recursively, using

αSR,k = (μmax − μmin)(1− e−βAFτ1,k)

+ e−βAFτ1,k−βSRτ2,k−1αSR,k−1, (22)

initialized by

αSR,0 = 0. (23)

In contrast to λ̃1(t) and λ̃2(t), λ̃
p
1(t) and λ̃

p
2(t) are decoupled

from each other, and, consequently, ML estimation of θp is
decoupled from that of μp

2. The estimator of μp
2 is given by

μ̂p
2 =

N2(T )∫ T

0

o2(t)dt

. (24)

Simulated clustered and non-clustered AF episode patterns
are illustrated in Fig. 5, where clustered patterns are associated
with a smaller value of βSR.

Fig. 5. (a) Clustered and (b) non-clustered episode patterns simulated
using the AF progression model [12], using θp = [0.1, 1, 0.25, 0.5, 0.5] ·
10−3 and [0.1, 1, 0.25, 2, 0.5] · 10−3, respectively. For reasons of clarity,
λ
p
1(t) is displayed rather than λ̃

p
1(t). The minimum durations d1 and d2

are set to 0.

B. Relation Between Hawkes Model and AF
Progression Model

This subsection highlights similarities and differences be-
tween the alternating, bivariate Hawkes model and the AF
progression model, with emphasis put on λ1(t) and λ

p
1(t) as

these functions are history-dependent, while λ
p
2(t) is not. To

capture the full progression of λ1(t) and λ
p
1(t), the occurrence

function o1(t) is ignored.
The base intensities μ1 and μmin define the lower bounds of

λ1(t) and λ
p
1(t), respectively, being approached in SR.

In the Hawkes model, the evolution of λ1(t) is completely
determined by the two types of transitions, always decreasing
to μ1 regardless of whether the patient is in AF or SR. Immedi-
ately following a brief AF episode, a jump will occur in λ1(t)
not only due to the AF-to-SR transition, defined by α1,2, but
also the preceding SR-to-AF transition, defined by α1,1. Thus, a
brief AF episode increases the likelihood of additional brief AF
episodes. For small values ofα1,1 or large values of β1,1, there is
no direct relationship between AF episode duration and λ1(t);
instead, λ1(t) is related to the intervals between consecutive
transitions to SR, i.e., similar to the “interdetection intervals”
subject to analysis in [8].

On the other hand, in the AF progression model, no imme-
diate jump in intensity occurs after a transition, but instead the
intensity increases in AF and decreases in SR, with λ

p
1(t) being

a time-continuous function. Thus, contrary to λ1(t), λ
p
1(t) will

be larger following a longer AF episode. Unlike λ1(t) which is
not upper bounded, λ

p
1(t) is upper bounded by μmax. If βAF,

describing the increase in λ
p
1(t) during AF, is large enough,

λ
p
1(t)will equalμmax following every AF episode. This behavior

resembles that of the Hawkes model, apart from that λ1(t) also
depends on past transitions, contributing significantly when β1,1

and β1,2 are small enough.
In SR, both λ1(t) and λ

p
1(t) decrease to their respective base

intensity, given by (β1,1, β1,2) and βSR, respectively. While the
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Fig. 6. (a) Clustered AF episodes in patient #28 of LTAFDB. The
conditional intensity functions (b) λ1(t) and (c) λ

p
1(t) are computed using

the ML estimates of the respective model parameters.

overall behavior is similar in the two models, every past jump in
intensity decreases separately in the Hawkes model, while βSR

describes the overall decay rate of the AF progression model.
In both models, the decay parameters may be related to episode
clustering since a slow decay increases the likelihood that an
episode is followed by additional episodes.

Using patient data, Fig. 6 illustrates the main difference
between the conditional intensity functions of the two models,
namely that λ1(t) approaches μ1 after a SR-to-AF transition,
whereas λ

p
1(t) approaches the upper bound μmax.

IV. GOODNESS-OF-FIT ANALYSIS

The goodness-of-fit analysis explores how well the transition
times of the AF episode pattern are modeled, accomplished by
computing the integrated conditional intensity function for θ̂,

Λm,k =

∫ tm,k

tm,k−1

λm(t; θ̂)dt, m = 1, 2. (25)

Invoking the time-scaling theorem, the integral in (25) trans-
forms the pattern into a realization of a unit rate Poisson pro-
cess [22]. To further facilitate model checking, another transfor-
mation, defined by zm,k = 1− exp(−Λm,k), is used to produce
independent, identically distributed uniform random variables
in the interval (0,1]. The Kolmogorov–Smirnov (KS) plot is
considered for model checking, displaying the cumulative dis-
tribution function (CDF) of Λm,k versus the uniform CDF. The
goodness-of-fit is judged by the distance from the diagonal line
with which these two types of quantiles lie; a perfect model fit
is obtained when all points appear on the diagonal. The fit is
quantified by the largest distance (“KS distance”) between the
CDF ofΛm,k and the uniform CDF; this measure has previously
been used to assess, e.g., the validity of point process models
for heart rate variability analysis [16].

A point process model is deemed to fit the data when the
maximum deviation between the two CDFs is within a 95%
confidence interval.

V. MATERIALS

The Physionet Long-Term AF Database (LTAFDB) consists
of 84 24-h two-lead ambulatory ECG recordings acquired in
patients with paroxysmal or persistent AF [23]. The beat-based

TABLE I
MODEL PARAMETERS SUBJECT TO ESTIMATION

annotation was automated, whereas the arrhythmia-based anno-
tation resulted from manual review of the output of a commercial
system for ECG analysis.

The MIT–BIH Atrial Fibrillation Database (AFDB) consists
of 25 10-h, two-lead ambulatory ECG recordings from patients
with AF, mostly paroxysmal [24]. The database was manually
annotated with respect to type of beat, type of arrhythmia and
episode transition times.

In addition, a database was acquired from patients with parox-
ysmal AF at the State University of St. Petersburg, Russia.
The study was approved by the local ethical review board. The
resulting database, named SPAFDB, consists of 37 three-lead
ambulatory ECG recordings lasting from 1 to 7 days, amounting
to a total of 160 days. Preliminary annotation of AF episodes
in SPAFDB was performed using wavelet-based QRS detec-
tion [25], followed by AF detection based on fuzzy logic, in-
volving information on ventricular rhythm, atrial rhythm, f wave
morphology, and noise level [26]. Thereafter, manual review was
performed to finalize the annotation process, with the aim to find
undetected episodes, to discard falsely detected episodes, and,
not the least, to establish the location of the episode transition
times. The review was accomplished by an expert on AF analy-
sis, consulting other experts in doubtful cases.

VI. RESULTS

The parameters d1 and d2 need to be set before ML estimation
can be performed. Though d1 may be set according to clinical
guidelines (30 s) [27], the recent interest in brief, subclinical
AF episodes [28], [29], providing an important reason why the
present study was pursued, motivates the use of a small value of
d1 and, therefore, it is set to 3 s. Since d2 has not received much
clinical attention, it is set identical to d1.

Assuming that β1,1 = β1,2 = β1 and β2,1 = β2,2 = β2, eight
parameters have to be estimated in the alternating, bivariate
Hawkes model. Table I lists the parameters subject to estimation
in each of the two models.Maximum likelihood estimation is
performed in ECG recordings with at least 10 episodes, i.e.,
20 transitions. The transitions times are given by the database
annotations. Table II provides a brief description of the analyzed
databases.
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Fig. 7. Accuracy of model parameter estimates as a function of the number of observed episodes for (a) the alternating, bivariate Hawkes model
and (b) the AF progression model. The box indicates the mean and the 25/75th percentiles, and the whiskers indicate ±2.7 times the standard
deviation. The dotted horizontal line indicates the true parameter value (given in the diagram title).

TABLE II
DESCRIPTION OF ANALYZED DATABASES. THE MEDIAN #AF EPISODES PER
RECORDING IS DENOTED Em AND THE MEDIAN, MINIMUM, AND MAXIMUM

EPISODE DURATION Dm, D0, AND D1, RESPECTIVELY. THE #RECORDINGS
WITH AT LEAST 10 AF EPISODES IS DENOTED NR

A. Accuracy of ML Estimates

Using the models in Secs. II and III to simulate point pro-
cesses, Fig. 7 presents the estimation performance as a function
of the number of observed episodes for one set of parameter
values. The results suggest that the ML estimates of both the
alternating, bivariate Hawkes model and the AF progression
model converge to the true values as the number of episodes
increases, suggesting, in turn, estimator consistency. The results
also suggest estimator unbiasedness since the true values lie
approximately in the center of the boxes irrespective of the
number of episodes. Several other sets of parameter values were
also tested, yielding similar results.

B. Goodness-of-Fit Analysis Using LTAFDB/AFDB

Table III presents the results from the goodness-of-fit analysis.
The alternating, bivariate Hawkes model {λ̃1(t), λ̃2(t)} and
the AF progression model λ̃

p
1(t) are associated with about the

same KS distance, denoted dKS, on all databases, whereas λ̃
p
2(t)

TABLE III
THE KOLMOGOROV–SMIRNOV (KS) DISTANCE COMPUTED AS THE MEAN
(STD) dKS OF EACH OF THE THREE DATABASES. THE #RECORDINGS Nr

FOR WHICH THE MODEL FITS THE DATA IS LISTED. Nr SHOULD BE RELATED
TO NR GIVEN IN TABLE II, I.E., 30/6/23 FOR
LTAFDB/AFDB/SPAFDB, RESPECTIVELY

is associated with a considerably larger distance. Using the
Wilcoxon signed-rank test, dKS of λ̃

p
2(t) is significantly larger

when compared to λ̃2(t).
Furthermore, Table III presents the number of recordings for

which the model fits the data. The models λ̃1(t), λ̃2(t), and
λ̃
p
1(t) fit the data in most recordings of the databases, while

λ̃
p
2(t) does not. In quantitative terms, λ̃1(t) and λ̃2(t) fit the

data in 40 and 51 recordings, respectively, out of the total of
59 recordings, whereas the corresponding numbers for the AF
progression model are 40 and 11.

To shed further light on the significance of the number of
episodes in the estimation, LTAFDB and AFDB are merged
and divided into two groups of recordings, those with <25
episodes and those with more. Fig. 8 shows that the mean dKS

was considerably lower for recordings with at least 25 episodes
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Fig. 8. Mean dKS as a function of the number of AF episodes in differ-
ent recordings. Intra-group differences were evaluated using Wilcoxon’s
signed-rank test (*p < 0.005).

than those with less than 25 episodes. It is noted that the mean
dKS was affected by the rather small number of episodes in many
recordings (more than 50% of the recordings have less than 15
episodes).

C. Relationship Between AF Burden and
Model Parameters

A desirable property of a model parameter is to convey infor-
mation complementary to AF burden. As noted in Introduction,
the modified AF density, denoted A, was found to be strongly
correlated with AF burden [11]. Here, using SPAFDB, a few
model parameters of particular interest are analyzed with the
aim to determine whether they are also strongly correlated with
AF burden.

Fig. 9 presents scatter plots for AF burden andμ, the clustering
parametersβ1 andβSR, andA. Bothβ1 andβSR are weakly corre-
lated with AF burden (r = 0.29 and 0.27, respectively), whereas
μ is somewhat more correlated (r = 0.49). The parameter A is
strongly and negatively correlated to AF burden (r = −0.73) on
SPAFDB, i.e., a result similar to that obtained using AFDB and
LTAFDB (r = −0.94) [11].

VII. DISCUSSION

Somewhat surprisingly, the recent clinical interest in long-
term continuous monitoring [30], motivated by the need to assess
risk of thrombus formation and ischemic stroke as well as to
better understand disease progression, has not been paralleled
by the development of methods which go beyond the analysis
of AF burden. The present study attempts to address this lack
by introducing a model-based, statistical approach to character-
izing the dynamics of episode patterns, notably the degree of
episode clustering, rate of transitions, and statistical coupling
(cross-excitation) between SR-to-AF and AF-to-SR transitions.
An advantage of this approach is the availability of methods for
optimal parameter estimation, which for the considered models
turned out to be analytically tractable, cf. the ML estimator in
(11). Moreover, in contrast to a heuristic design approach, the
statistical goodness-of-fit analysis provides information on how
well the model fits the observed data. Yet another advantage
is the possibility to simulate episode patterns—a feature which

Fig. 9. Scatter plots of AF burden and (a) μ, (b) β1, (c) βSR, and
(d) A [11]. The sample Pearson crosscorrelation coefficient r is given
in each plot. Values deviating from the mean by more than five times the
standard deviation are excluded.

may, as pointed out in [12], serve as a testbed for experiments
whose purpose is to investigate the relationship between the
likelihood of episode initiation/termination and episode pattern
appearance.

Studies investigating risk factors associated with AF have
focused on whether AF is present or absent, sometimes together
with information on AF burden [31]. The significance of AF
burden as a predictor of patients at risk of ischemic stroke
has been established in several studies [32]–[34]. A similar
observation applies to minimal AF episode duration—a measure
that may be related to increased risk of thrombus formation [34].
None of these measures say anything about whether episodes
are clustered or distributed evenly during the monitored period,
despite the fact that such information can be relevant for risk
assessment of thrombus formation and ischemic stroke, as well
as for better understanding arrhythmia progression. Since nonin-
vasive, continuous monitoring has evolved to such a degree that
a 14-day period or longer can be covered [35], the prerequisites
for episode pattern analysis are becoming increasingly more
favorable.

The results presented in Table III were obtained usingd1 = 3 s
and thus subclinical AF episodes were included in the analysis.
A comparison of the results in Table III to those obtained using
a larger d1 would be highly misleading as a larger d1 means
less episodes for analysis. Therefore, d1 and d2 should be set
based on clinical considerations rather than on the results from
goodness-of-fit analysis.

The insight made in the course of this work is that the AF
progression model [12], originally developed for simulation
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purposes only, can be interpreted as a point process, thus im-
plying that a meaningful comparison of models can be made in
terms of goodness-of-fit analysis. The results in Table III show
that modeling of SR-to-AF transitions, defined by λ1(t) and
λ
p
1(t), are associated with approximately the same KS distance,

suggesting that the different approaches to modeling episode
clustering are quite similar. In contrast to λ2(t), modeling of
AF-to-SR transitions by λ

p
2(t) is considerably poorer. This result

is in agreement with those presented in [6], [7] where the
exponential distribution, originally proposed in [5], was found
inadequate to model interepisode intervals.

The present approach requires the observation of a certain
minimum number of AF episodes to obtain reasonably re-
liable parameter estimates. While the likelihood of observ-
ing more episodes increases as the length of the observation
interval increases, the episode pattern may change its char-
acteristics to such an extent that estimation is warranted in
a segmented observation interval, using, e.g., a week-long
segment length. In the present study, segmentation was not
deemed necessary as the length of the recordings did not ex-
ceed one week. However, considering that month-long record-
ings can be acquired today using photoplethysmography-based
smart wristbands [36]–[38], a segmentation strategy is probably
necessary.

The model parameters are estimated from an observation
interval defined by the onset of the first AF episode and the end of
the last AF episode, not by the onset/end of the recording. This
definition of observation interval may seem restrictive, how-
ever, the rationale is to avoid analyzing an episode in progress
when the recording begins and/or an episode not terminated
when the recording ends, i.e., episodes whose durations are
unknown.

Contrary to the observation in [7] and later echoed in relation
to the AF progression model [12], claiming that long episodes
are immediately followed by a number of short episodes, visual
inspection of the databases analyzed in the present study showed
the reverse, namely that a long episode immediately preceded
by a number of short episodes are much more frequent. This
observation is particularly interesting since the alternating, bi-
variate Hawkes model better accounts for such a behavior as it
is self-exciting (manifested by a larger than usual α1,1 and a
smaller than usual β1).

The alternating, bivariate Hawkes model can be used to im-
prove the simulator recently proposed for generation of multi-
lead ECGs in paroxysmal AF [39]. The simulator accounts for
different characteristics such as switching between sinus rhythm
and AF, repetition rate of f waves, varying P wave morphology,
presence of atrial premature beats, and various types of noise.
Instead of using the simple two-state, continuous-time Markov
chain for rhythm switching, the proposed model can be used to
simulate more realistic paroxysmal AF patterns. The three-state,
continuous-time Markov chain used to model sinus rhythm,
atrial flutter, and AF [40] may as well be replaced, but then
probably by a trivariate Hawkes model.

The principal points of the present study are to introduce
a model-based foundation to episode pattern characterization

and to perform goodness-of-fit analysis. This analysis shows
that λ1(t), λ2(t) and λ

p
1(t) are appropriate, although none of

the models pretend to replicate behavior of underlying physi-
ology. The correlation analysis in Section VI-C shows that the
clustering parameters β1 and βSR are only weakly correlated
with AF burden and, therefore, may provide complementary
information. However, correlation analysis cannot say anything
about the clinical significance of a certain parameter, thus neces-
sitating a study which investigates the significance of the model
parameters for the purpose of, e.g., predicting risk of stroke;
unfortunately, none of the three databases of this study lends
itself to such a study. Indeed, clinical evaluation of methods
for episode pattern characterization has turned out to be a
major challenge as neither the millennial studies [6]–[8] nor the
study introducing AF density [41] investigated the relationship
between pattern characteristics and patient outcome, although
all were published in clinical journals. Considering the rapid
development of monitoring technology, there are good reasons to
develop methods for pattern characterization, exploring various
principles, which are readily useful in future studies on patient
outcome.

One idea to explore in a future study would be to investigate
the extent by which an episode pattern reflects the degree of
atrial electrical and structural remodeling. This idea draws on
the observation that the course of pathophysiological processes
underlying AF is commonly perceived to involve the develop-
ment of structural abnormalities through inflammation-mediated
replacement of atrial myocytes with fibrotic tissue, thinning of
atrial walls, and atrial enlargement. Atrial structural remodeling
is associated with changes in the clinical characteristics of AF,
often manifested as episodes of increasing duration which are
less likely to resolve spontaneously, ultimately deteriorating to
a sustained form of AF.

Any method requires a certain minimum number of episodes
to produce reliable results. By setting this number to 10, i.e.,
20 transitions, a trade-off was made between the risk of model
overfitting and the wish to include as many recordings as pos-
sible. In a future clinical study, this choice may very well be
the subject of further investigation. The small data set is another
limitation of the present study, however, the effort required to
annotate week-long recordings should not be overlooked since
annotation has to be performed also in recordings with too few
episodes.

VIII. CONCLUSION

A model-based, statistical framework is proposed to charac-
terize the pattern of SR-to-AF and AF-to-SR transitions, using
an alternating, bivariate Hawkes model. Using ML parameter
estimation techniques, the goodness-of-fit analysis demonstrates
that the proposed model fits the data in the vast majority of
recordings, implying that a wide range of episode patterns can
be modeled. The proposed model offers a better overall fit to the
data than the AF progression model thanks to better modeling
of AF-to-SR transitions. The clinical significance of the model
parameters remains to be investigated.
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APPENDIX

A. Derivation of ML Estimator for the Alternating,
Bivariate Hawkes Model

The starting point for deriving the estimator is the cumulative
distribution function (CDF) P (t1,k+1), which for λ1(t) in (6) is
given by

P (t1,k+1) = 1− Pr(t1,k+1 > t)

= 1− exp

[
−
∫ t

t2,k+d2

λ1(t
′)dt′

]
. (26)

The integration interval accounts for the minimum duration of
an SR episode, i.e., d2, which allows the use of λ1(t) instead
of λ̃1(t). Insertion of λ1(t) into (26) yields

P (t1,k+1) = 1− exp

[
−
∫ t

t2,k+d2

(
μ1 + C1,1(k)e

−β1,1(t
′−t2,k)

+ C1,2(k)e
−β1,2(t

′−t2,k)
)
dt′
]

= 1− exp

[
− μ1(τ2,k − d2)− C1,1(k)

β1,1

(
e−β1,1d2

−e−β1,1τ2,k
)− C1,2(k)

β1,2

(
e−β1,2d2 − e−β1,2τ2,k

) ]
,

(27)

where the functions C1,1(k) and C1,2(k) are defined in (12).
The corresponding PDF p(t1,k+1) is obtained by differentiat-
ing P (t1,k+1) with respect to t1,k+1, yielding

p(t1,k+1) =
(
μ1 + C1,1(k)e

−β1,1τ2,k + C1,2(k)e
−β1,2τ2,k

)
· exp

[
− μ1(τ2,k − d2)− C1,1(k)

β1,1

(
e−β1,1d2

−e−β1,1τ2,k
)− C1,2(k)

β1,2

(
e−β1,2d2 − e−β1,2τ2,k

) ]
.

(28)

Applying the natural logarithm to p(t1,k+1) and accounting for
all τ2,k yield the log-likelihood function in (11).

The PDF of t2,k is obtained in a similar manner, with μ1,
β1,1, β1,2, C1,1(k), and C1,2(k) replaced by the corresponding
parameters and functions that define λ2(t).

B. Derivation of ML Estimator for the AF
Progression Model

For the AF progression model, the CDF P p(t1,k+1) is ex-
pressed in terms of λ

p
1(t),

P p(t1,k+1) = 1− Pr(t1,k+1 > t)

= 1− exp

[
−
∫ t

t2,k+d2

λ
p
1(t

′)dt′
]

= 1− exp

[
−
∫ t

t2,k+d2

(
μmin + αSR,ke

−βSR(t
′−t2,k)

)
dt′
]

= 1− exp

[
− μmin(τ2,k − d2)

−αSR,k

βSR

(
e−βSRd2 − e−βSRτ2,k

)]
. (29)

The corresponding PDF pp(t1,k+1) is

pp(t1,k+1) =
(
μmin + αSR,ke

−βSRτ2,k
)

· exp
[
−μmin(τ2,k − d2)− αSR,k

βSR

(
e−βSRd2 − e−βSRτ2,k

)]
,

(30)

which after applying the natural logarithm and accounting for
all values of τ2,k yield the log-likelihood function in (21).
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