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Abstract— Positron emission tomography (PET) is widely used 

for clinical diagnosis. As PET suffers from low resolution and high 
noise, numerous efforts try to incorporate anatomical priors into 
PET image reconstruction, especially with the development of 
hybrid PET/CT and PET/MRI systems. In this work, we proposed 
a novel 3D structural convolutional sparse coding (CSC) concept 
for penalized-likelihood PET image reconstruction, named 3D 
PET-CSC. The proposed 3D PET-CSC takes advantage of the 
convolutional operation and manages to incorporate anatomical 
priors without the need of registration or supervised training. As 
3D PET-CSC codes the whole 3D PET image, instead of patches, 
it alleviates the staircase artifacts commonly presented in 
traditional patch-based sparse coding methods. Moreover, we 
developed the residual-image and order-subset mechanisms to 
further reduce the computational cost and accelerate the 
convergence for the proposed 3D PET-CSC method. Experiments 
based on computer simulations and clinical datasets demonstrate 
the superiority of 3D PET-CSC compared with other reference 
methods. 
 

Index Terms—Positron emission tomography, convolutional 
sparse coding, 3D image reconstruction, anatomical prior, multi-
modality. 
 

I. INTRODUCTION 
S an irreplaceable tool of functional imaging, positron 
emission tomography (PET) is widely adopted in clinical 

diagnosis for oncology [1], neurology [2] and cardiology [3]. 
By collecting photons emitted from a specific tracer, PET 
manages to recover the physiology-based tracer distribution 
map in vivo [4]. Granted PET is proved sensitive in the 
molecular level, it is still inferior in recovering high-resolution 
details when compared with computed tomography (CT) and 
magnetic resonance imaging (MRI). Numerous efforts have 
been devoted to improving PET resolution and reducing the 
noise level through denoising/reconstruction approaches. For 
the past decades, most of the research focus on incorporating 
specific penalties or image priors into the iterative 
reconstruction framework to improve PET image quality, e.g. 

 
This work was supported in part by the U.S. National Institutes of Health 

under Grant R01AG052653. † indicates equal contributions. * indicates 
Corresponding Authors (li.quanzheng@mgh.harvard.edu, liuhf@zju.edu.cn). 

N. Xie is with State Key Laboratory of Modern Optical Instrumentation, 
College of Optical Science and Engineering, Zhejiang University, Hangzhou, 
China and Department of Radiology, Massachusetts General Hospital and 
Harvard Medical School, Boston, USA. 

total variation (TV) [5], patch-based edge-preserving 
regularization [6], nonlocal mean-based weight [7], and the 
kernel method [4].  

Accompanied with the rapid adoption of hybrid PET/CT and 
PET/MRI systems as well as the development of machine 
learning methodologies, PET image quality can be improved by 
the utilization of CT/MRI images, through convolutional neural 
network (CNN) [8]–[10] and  dictionary learning [11]–[18] 
approaches. For CNN methods, the applications are limited by 
two concerns: firstly, these methods heavily rely on the 
matching between PET and CT/MR images, making the time-
consuming registration indispensable; secondly, the CNN 
methods require enormous training data, which is not easy to 
obtain/process, especially for clinical applications. Dictionary 
learning methods do not need large number of training data, nor 
requiring the registration between PET and CT/MR images, 
making it suitable for scenarios where CNN methods cannot be 
deployed. However, traditional patch-based dictionary learning 
methods still have challenges. During the sparse coding phase, 
the images are separated into numerous independent patches as 
the input, which inevitably ignores the global correlation within 
the image [19]. Furthermore, during the image reconstruction 
step, numerous independent patches are aggregated into an 
image, which results in the staircase artifacts near the patch 
boundaries [20]. Finally, computational cost is another common 
concern when exploiting dictionary learning methods. 

Recently, with the demonstrated effectiveness of CNN 
methods [21]–[27] , more and more works start to combine the 
concepts from CNN with previously well-studied 
models/theories. Among them, convolutional sparse coding 
(CSC) [28]–[30] was recently proposed and provided a novel 
perspective on the original sparse coding theory. Compared 
with traditional dictionary learning and sparse coding methods, 
CSC decomposes the whole input signal as the convolution of 
n filters and its corresponding feature maps [19]. There is no 
need to partition the image into independent patches. As a 
result, the aggregation procedure is avoided, reducing the 
artifacts while also accelerating the computational speed. It has 
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been successfully applied to various image processing tasks, 
e.g. image super resolution [19], image fusion [31], 2D CT 
reconstruction [20] and MRI reconstruction [32][33]. 

In this work, we proposed a novel penalized-likelihood 
image reconstruction framework for PET using CSC. As 
clinical PET images are acquired and reconstructed in 3D 
mode, a 3D CSC framework was specifically developed, 
ensuring that the image structures across three dimensions can 
be jointly and efficiently recovered. Additionally, the 3D 
convolutional filters were pre-trained from the high-resolution 
3D MR image, allowing the anatomical priors being introduced 
into PET image reconstruction. Finally, inspired by [34], we 
adopted a cube-based coding procedure without Fourier 
transform when solving the sparse pursuit problem. An 
‘ordered-subset’ rule was developed to sparsely represent the 
residual image, instead of the original image, to further improve 
the computational efficiency. 

The main contributions of this paper include: (1) a novel 3D 
CSC algorithm was designed to jointly incorporate structures 
along three dimensions. (2) To the best of our knowledge, this 
is the first work applying CSC to PET image reconstruction. (3) 
To further improve the computational efficiency, an ‘ordered-
subset’ rule was adopted in the coding procedure and operated 
on the 3D residual image instead of the original image.  

II. METHOD 

A. PET Data Model 
For PET imaging, given the measured data 𝐲𝐲 ∈ ℝM×1, which 

denotes the sum of the collected photons in PET detectors, the 
reconstruction procedure can be modeled through the affine 
transform as 

𝒚𝒚� = 𝑮𝑮𝑮𝑮 + 𝒔𝒔 + 𝒓𝒓, (1) 
where 𝒚𝒚� denotes the expectation of y,  𝑮𝑮 ϵ ℝ𝑁𝑁  represents the 
image ought to be recovered,  𝑮𝑮 ∈ ℝ𝑀𝑀×𝑁𝑁 is the system matrix, 
s and r are terms of scatter and random events, respectively, M 
is the number of lines of response (LOR) and N is the number 
of voxels in x. Since y can be modeled by Poisson distribution, 
the likelihood function of y can be written as: 

𝑃𝑃(𝒚𝒚|𝑮𝑮) = ∏ 𝑒𝑒−𝑦𝑦�𝑞𝑞 𝑦𝑦�𝑞𝑞
𝑦𝑦𝑞𝑞

𝑦𝑦𝑞𝑞!
𝑀𝑀
𝑞𝑞=1 , (2) 

where q is the index of the detector pairs. The negative log-
likelihood can correspondingly be written as 

𝐿𝐿(𝒚𝒚|𝑮𝑮) = �𝑦𝑦�𝑞𝑞

𝑀𝑀

𝑞𝑞=1

− 𝑦𝑦𝑞𝑞 log�𝑦𝑦�𝑞𝑞� − log�𝑦𝑦𝑞𝑞!�. (3) 

B. 3D-CSC Model 
Zeiler et al. [28] proposed the CSC model in 2010. Unlike 

the traditional dictionary learning and the sparse coding 
methods, which partition the input image into independent 
patches, CSC operates and encodes the image by taking the 
whole input image into account. As a result, the consistency of 
different patches is exploited [19], and the staircase artifact 
inherited in the traditional patch-based sparse coding method 
can be alleviated. The typical 2D CSC model can be represented 
as: 

min
𝑧𝑧,𝑓𝑓

�𝐱𝐱 −�𝒇𝒇𝑖𝑖 ∗ 𝒛𝒛𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
𝐹𝐹

2

+ 𝜆𝜆�‖𝒛𝒛𝑖𝑖‖1

𝑛𝑛

𝑖𝑖=1

, (4) 

Here x denotes the 2D input image, {𝒇𝒇𝑖𝑖}𝑖𝑖=1,…,𝑛𝑛 denotes the set 
of 𝑠𝑠 × 𝑠𝑠  sized convolutional filter, {𝒛𝒛𝑖𝑖}𝑖𝑖=1,…,𝑛𝑛  is the set of 
feature maps with each 𝒛𝒛𝑖𝑖 the same size as x, and ∗ denotes the 
2D convolution operator. In this model, image can be sparsely 
encoded by {𝒇𝒇𝑖𝑖 ∗ 𝒛𝒛𝑖𝑖}𝑖𝑖=1,…,𝑛𝑛. 

With the wide application of 3D PET imaging, 2D CSC is 
not useful for PET reconstruction, as it cannot take advantage 
of information from the third dimension. In this work, we 
proposed a novel 3D CSC and implemented it for PET. The 
objective function is similar to the 2D CSC as 

min
𝒁𝒁,𝑭𝑭

�𝐗𝐗 −�𝑭𝑭𝑖𝑖 ⊗ 𝒁𝒁𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
𝐹𝐹

2

+ 𝜆𝜆�‖𝒁𝒁𝑖𝑖‖1

𝑛𝑛

𝑖𝑖=1

. (5) 

Here ⊗ denotes the 3D convolutional operator, {𝑭𝑭𝑖𝑖}𝑖𝑖=1,…,𝑛𝑛and 
{𝒛𝒛𝑖𝑖}𝑖𝑖=1,…,𝑛𝑛 are 3D convolutional kernels and feature maps 
respectively, as shown in Fig.1. In this work, we pre-trained the 
3D convolutional kernels {𝑭𝑭𝑖𝑖}𝑖𝑖=1,…,𝑛𝑛  from the 3D MRI data. 
During the PET image reconstruction process, the learnt kernels 
were used to sparsely represent the 3D PET image. Through the 
kernels learnt from high-resolution MR images, the resolution 
of reconstructed PET images will be improved and the noise 
will also be reduced. 

C. Optimization 
The 3D-CSC serves as the regularization term in our 

proposed reconstruction model as 

min
𝑮𝑮,𝒁𝒁

 𝐿𝐿(𝒚𝒚|𝑮𝑮) + 𝛽𝛽(�△ 𝑮𝑮 −�𝑭𝑭𝑖𝑖 ⊗ 𝒁𝒁𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
𝐹𝐹

2

+ 𝜆𝜆�‖𝒁𝒁𝑖𝑖‖1

𝑛𝑛

𝑖𝑖=1

 (6) 

Here 𝐿𝐿(𝑮𝑮|𝒚𝒚)  is the negative log-likelihood defined in (3) 
which serves as the data fidelity term. The size of 3D 
convolutional filters 𝑭𝑭𝑖𝑖 is s × 𝑠𝑠 × 𝑠𝑠 , and the 3D feature map 
𝒁𝒁𝑖𝑖  has the same size with x. 𝛽𝛽 and 𝜆𝜆 are penalty parameters of 
the CSC and l1 norm regularization, respectively. It is worth 
noting that instead of coding image 𝑮𝑮,we code the residual 
image △ 𝑮𝑮 = 𝑮𝑮 − 𝑮𝑮�, where 𝑮𝑮� denotes the mean image of 𝑮𝑮 in 
the 𝑠𝑠 × 𝑠𝑠 × 𝑠𝑠 neighbored window, and the residual image △ 𝑮𝑮 

 
Fig. 1.  The 3D convolution. Here the 3rd dimension operates on the depth of 
the image X, rather than the different channels (e.g. RGB channels) in 
traditional convolution. 
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represents the sparse texture of x. Due to the replacement of △
𝑮𝑮, the convergence will be faster as demonstrated in our results 
shown later. To tackle the objective function (6), we divided it 
into 2 subproblems as 

𝒁𝒁𝑖𝑖𝑘𝑘+1 = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝒁𝒁𝑖𝑖

 ��

⎝

⎛△ 𝑮𝑮𝑘𝑘 −�𝑭𝑭𝑝𝑝 ⊗ 𝒁𝒁𝑝𝑝𝑘𝑘
𝑛𝑛

𝑝𝑝=1
𝑝𝑝≠𝑖𝑖 ⎠

⎞ − 𝑭𝑭𝑖𝑖

⊗ 𝒁𝒁𝑖𝑖��

𝐹𝐹

2

+ 𝜆𝜆‖𝒁𝒁𝑖𝑖‖1,∀ 𝑖𝑖. 

(7)  

𝑮𝑮𝑘𝑘+1 = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑮𝑮

 𝐿𝐿(𝒚𝒚|𝑮𝑮) + 𝛽𝛽 �𝑮𝑮 − 𝑮𝑮�𝑘𝑘 −�𝑭𝑭𝑖𝑖 ⊗ 𝒁𝒁𝑖𝑖𝑘𝑘+1
𝑛𝑛

𝑖𝑖=1

 (8) 

Here we define 𝑷𝑷𝑖𝑖𝑘𝑘 = �△ 𝑮𝑮𝑘𝑘 − ∑ 𝑭𝑭𝑗𝑗 ⊗ 𝒁𝒁𝑗𝑗𝑘𝑘𝑛𝑛
𝑝𝑝=1
𝑝𝑝≠𝑖𝑖

� as the residue 

part of △ 𝑮𝑮𝑘𝑘+1 . 
1) Z Subproblem: Cube-based Coding. 

Traditional methods often update 𝒁𝒁𝒊𝒊 by converting the input 
signal to the Fourier domain [29][35][36]. Mathematically, this 
group of methods require treating the input as a whole signal, 
which undoubtedly will have computational and storage 
burdens, especially for 3D data. Inspired by [17][37] , we 
proposed a 3D cube-based coding method to segment the 3D 
signal into groups of cubes and update them sequentially. 
Therefore, the signal will be divided into numerous subsets and 
can be coded in parallel. An essential contribution of [34][37] 
is that they provide a novel perspective which combines 
dictionary learning and the CSC. The signal can thus be broke 
down locally, making the coding procedure more 
straightforward.  

In this work, the 3D convolution can be unfolded as the 
matrix multiplication, i.e. 𝑮𝑮 = 𝑫𝑫𝑫𝑫. Here 𝑫𝑫 ∈ ℝ𝑁𝑁×𝑛𝑛𝑛𝑛3  is a band 
convolutional dictionary which is composed of the shifted 
elemental dictionary 𝑫𝑫𝑬𝑬 ∈ ℝ𝑛𝑛3×𝑛𝑛, while the rest of 𝑫𝑫 is filled 
with zero entries. Each column of 𝑫𝑫𝐸𝐸  is a vectorized 3D filter 
𝑭𝑭𝑖𝑖 ,∀𝑖𝑖 . Correspondently, 𝑫𝑫 ∈ ℝ𝑁𝑁𝑛𝑛  represents the vectorized n 
feature maps. Accordingly, the traditional 3D CSC model (5) 
can be rewritten as: 

min
𝑫𝑫,𝑫𝑫

‖𝑮𝑮 − 𝑫𝑫𝑫𝑫‖𝐹𝐹2 + 𝜆𝜆‖𝑫𝑫‖1. (9) 
Now the optimization is more straightforward than that in 

Fourier-based methods. However, the computation and 
memory cost are still tremendous, as 𝑫𝑫 is too large. For instance, 
if the size of 3D PET image is 100 × 100 × 100  with 256 
convolutional filters, the entry number of a single 𝑫𝑫  is 
correspondingly 256 million. Under this circumstance, rather 
than directly updating the giant vector 𝑫𝑫, we chose to update its 
fragment 𝜶𝜶𝑗𝑗 ∈ ℝ𝒏𝒏, which corresponds to a 𝑠𝑠 × 𝑠𝑠 × 𝑠𝑠 sized cube 
in x, i.e. 𝑪𝑪𝑗𝑗𝑮𝑮 =𝑫𝑫𝐸𝐸𝜶𝜶𝑗𝑗 , where 𝑪𝑪𝑗𝑗  represents the operator of 
extracting cube at position j. The whole process is shown in 
Fig.2 and optimization of (9) can be reformulated as 

Algorithm 1:   3D convolutional sparse coding for PET 
reconstruction 
Input: Sinogram y, system matrix G, pre-trained elemental 
dictionary 𝑫𝑫𝐸𝐸 , penalty parameters 𝛽𝛽 and 𝜆𝜆. 
1:  Initialization: For k=0, 𝑮𝑮0 = FBP(𝒚𝒚), 𝜶𝜶𝑗𝑗0 =

𝑎𝑎𝑎𝑎𝑎𝑎min
𝜶𝜶𝑗𝑗

 �1
𝑛𝑛
𝑪𝑪𝑗𝑗 △ 𝑮𝑮0 − 𝑫𝑫𝐸𝐸𝜶𝜶𝑗𝑗�

𝐹𝐹

2
+ 𝜆𝜆�𝜶𝜶𝑗𝑗�1,∀ 𝑗𝑗 

2:  For k=1:Maxit  do 
3:      For iter=1: Subit  do 
4:          E-step: Compute Ψ(𝑮𝑮;𝑮𝑮𝑘𝑘) by using (15) 
5:          M-step: Solving the quadratic function (16) by 

using (17), update 𝑮𝑮𝑘𝑘+1. 
6:      end 
7:      Compute s-cube neighbored mean image 𝑮𝑮�𝑘𝑘+1 , 

update △ 𝑮𝑮𝑘𝑘+1 = 𝑮𝑮𝑘𝑘+1 − 𝑮𝑮�𝑘𝑘+1 
8:      For 𝑗𝑗 ∈ S𝑙𝑙 ,∀𝑙𝑙  do 
9:          Compute the residual 𝑹𝑹𝑖𝑖𝑘𝑘+1 = 𝑪𝑪𝑗𝑗 △ 𝑮𝑮𝑘𝑘+1 − 

∑ 𝑫𝑫𝐸𝐸𝜶𝜶𝑗𝑗𝑘𝑘𝑁𝑁
𝑝𝑝=1
𝑝𝑝≠𝑗𝑗

. 

10:        Sparse pursuit for (12): 𝜶𝜶𝑗𝑗𝑘𝑘+1 = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝜶𝜶𝑗𝑗

 �𝑹𝑹𝑖𝑖𝑘𝑘+1 −

𝑫𝑫𝐸𝐸𝜶𝜶𝑗𝑗�𝐹𝐹
2 + 𝜆𝜆�𝜶𝜶𝑗𝑗�1 

11:    end 
12: end 
13: Output: Reconstructed image 𝑮𝑮 = 𝑮𝑮𝑘𝑘 

 

 

Fig. 2.  The matrix multiplication form of 3D convolutional sparse coding, under the ordered-subset rule. In each batch of coding, we only update the 𝜶𝜶𝑗𝑗 where 
𝑗𝑗 ∈ S𝑙𝑙 ,∀𝑙𝑙, which correspond to non-overlapped image cube 𝑪𝑪𝑗𝑗𝑮𝑮 in 3D image 𝑮𝑮. 
  

= x

𝑪𝑪𝑗𝑗𝑮𝑮 ∈ ℝ 𝑛𝑛
3 𝑫𝑫𝐸𝐸 ∈ ℝ 𝑛𝑛

3×𝑛𝑛 𝜶𝜶𝑗𝑗 ∈ ℝ 𝑛𝑛

𝑫𝑫 ∈ ℝ 𝑁𝑁𝑛𝑛

Subset 
S 𝑙𝑙
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𝑚𝑚𝑖𝑖𝑚𝑚
𝑫𝑫𝐸𝐸,𝜶𝜶

�𝑮𝑮 −�𝑫𝑫𝐸𝐸𝜶𝜶𝑗𝑗

𝑁𝑁

𝑗𝑗=1

�

𝐹𝐹

2

+ 𝜆𝜆��𝜶𝜶𝑗𝑗�1 
.

𝑁𝑁

𝑗𝑗=1

 (10) 

Here we pre-trained the elemental dictionary 𝑫𝑫𝐸𝐸  from the 3D 
MRI data, as shown in Fig.3. Furthermore, for the purpose of 
further improving the computational efficiency, here we 
adopted an ‘ordered-subset’ rule to update 𝜶𝜶𝑗𝑗  in (10). We 
divided the voxel indexes into 𝑠𝑠3 subsets, 

S𝑙𝑙 = {𝑙𝑙, 𝑙𝑙 + 𝑠𝑠3, 𝑙𝑙 + 2 𝑠𝑠3, … ,𝑁𝑁 + 𝑙𝑙 −  𝑠𝑠3}, 𝑙𝑙
= 1,2, … , 𝑠𝑠3. (11) 

Similar to the ordered-subset (OS) mechanism for PET image 
reconstruction [38], the optimization of 𝜶𝜶𝑗𝑗 , 𝑗𝑗 = 1,2, . . . ,𝑁𝑁 has 
been successfully simplified to updating non-overlapping 𝜶𝜶𝑗𝑗 
where 𝑗𝑗 ∈ S𝑙𝑙 ,∀𝑙𝑙 . Moreover, it also opens up a parallel 
computational way, as from 3D perspective, cubes in the same 
S𝑙𝑙 will not overlap with each other and thus not influence with 
each other. The detailed coding procedure is illustrated in Fig.2. 
Hence for our Z subproblem, (7) can be finally transformed to: 

𝜶𝜶𝑗𝑗𝑘𝑘+1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚
𝜶𝜶𝑗𝑗

 �𝑹𝑹𝑖𝑖𝑘𝑘 − 𝑫𝑫𝐸𝐸𝜶𝜶𝑗𝑗�𝐹𝐹
2 + 𝜆𝜆�𝜶𝜶𝑗𝑗�1, 

 𝑗𝑗 ∈ S𝑙𝑙 ,∀𝑙𝑙. 
(12) 

Here the residual 𝑹𝑹𝑖𝑖𝑘𝑘 = 𝑪𝑪𝑗𝑗 △ 𝑮𝑮𝑘𝑘 − ∑ 𝑫𝑫𝐸𝐸𝜶𝜶𝑗𝑗𝑘𝑘𝑁𝑁
𝑝𝑝=1
𝑝𝑝≠𝑗𝑗

 serves as the 

input of this subproblem. In this sense, the update of the feature 
maps 𝒁𝒁𝑖𝑖 ,∀ 𝑖𝑖 has become sparse coding of 𝜶𝜶𝑗𝑗, where 𝑗𝑗 ∈ S𝑙𝑙 ,∀𝑙𝑙. 
Also, for the initialization, we define the pursuit problem as 
follows, 

𝜶𝜶𝑗𝑗0 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚
𝜶𝜶𝑗𝑗

 �
1
𝑚𝑚
𝑪𝑪𝑗𝑗 △ 𝑮𝑮0 − 𝑫𝑫𝐸𝐸𝜶𝜶𝑗𝑗�

𝐹𝐹

2

+ 𝜆𝜆�𝜶𝜶𝑗𝑗�1,  

𝑗𝑗 ∈ S𝑙𝑙 ,∀𝑙𝑙.  
(13) 

In this work, we used the least angle regression (LARS) 
algorithm [39] for the sparse pursuit problem in (12) and (13). 
2)  X Subproblem  

Based on (1)(3) and (12), subproblem (8) can be rewritten as,  

𝑮𝑮𝑘𝑘+1 =  𝑎𝑎𝑎𝑎𝑎𝑎min
𝑮𝑮
�𝑦𝑦�𝑞𝑞

𝑀𝑀

𝑞𝑞

− 𝑦𝑦𝑞𝑞 log�𝑦𝑦�𝑞𝑞� +         

𝛽𝛽 �𝑮𝑮 − 𝑮𝑮�𝑘𝑘 −�𝑫𝑫𝐸𝐸𝜶𝜶𝑗𝑗𝑘𝑘+1
𝑁𝑁

𝑗𝑗=1

�

𝐹𝐹

2

   

(14) 

where the constant term log (𝑦𝑦𝑞𝑞!) is left out. Here we used the 
expectation maximization (EM) [40] to solve this problem. 

E-step. We introduce c�qj =
gqjxj

k

∑ gqjxj
kN

j +rq+sq
yq as the expectation 

of the photons emitted from j-th voxel and also collected by q-
th detector pair. Therefore, the voxel-wised optimization 
becomes 

𝑮𝑮𝑘𝑘+1 = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑥𝑥
Ψ(𝑮𝑮;𝑮𝑮𝑘𝑘) 

= a𝑎𝑎𝑎𝑎min
𝑥𝑥
�� gqjxj − c�qj log�gqjxj�

𝑀𝑀

𝑞𝑞

𝑁𝑁

𝑗𝑗

 

+ 𝛽𝛽�(xj − �̅�𝑥𝑗𝑗𝑘𝑘 − ��𝑫𝑫𝐸𝐸𝜶𝜶𝑗𝑗𝑘𝑘+1
𝑁𝑁

𝑗𝑗=1

�

𝑗𝑗

)2.
𝑁𝑁

𝑗𝑗

 

(15) 

M-step. Here we got a quadratic function by zeroing the 
following derivative: 

𝜕𝜕Ψ(𝑮𝑮;𝑮𝑮𝑘𝑘)
𝜕𝜕xj

= 0   ⇔   𝐴𝐴𝑗𝑗𝑥𝑥𝑗𝑗 + 𝐵𝐵𝑗𝑗 + 𝐶𝐶𝑗𝑗
1
𝑥𝑥𝑗𝑗

= 0 (16) 

And the solution is: 

𝑥𝑥𝑗𝑗𝑘𝑘+1 =
−𝐵𝐵𝑗𝑗 + �𝐵𝐵𝑗𝑗2 − 4𝐴𝐴𝑗𝑗𝐶𝐶𝑗𝑗

2𝐴𝐴𝑗𝑗
,          𝐴𝐴𝑗𝑗 = 2𝛽𝛽 

𝐵𝐵𝑗𝑗 = � gqj

𝑀𝑀

𝑞𝑞

− 𝛽𝛽�̅�𝑥𝑗𝑗𝑘𝑘 − 𝛽𝛽 ��𝑫𝑫𝐸𝐸𝜶𝜶𝑗𝑗𝑘𝑘+1
𝑁𝑁

𝑗𝑗=1

�

𝑗𝑗

,    

𝐶𝐶𝑗𝑗 = −�
gqjxjk

∑ gqjxjkN
j + rq + sq

yq.  
M

q

    

(17) 
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(b) 
 

(c) 

 

(d) 
 

(e) 
 

 
 
 

(f) 
Fig. 3.  The training for 3D convolutional filters. First row: brain MRI image 
slices from 3 orthogonal angles. Second row: Unfolded version for 24th filter 
cubes in 3 different cube size (d) 4 × 4 × 4 (e) 7 × 7 × 7 (f) 10 × 10 × 10. 

 

(a) 
 

(b) 
 

(c) 

 

(d) 
 

(e) 
 

(f) 
Fig. 4.  The 3D simulated PET phantom. First row: 3 orthogonal slices of the 
3D phantom. Here the black regions are the simulated tumor in this study. 
Second row: region maps for slice(a). (d) Gray matter (e) White matter (f) 
Attenuation map. 
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The overall procedure of the proposed method is presented in 
Algorithm 1. For the initialization, we adopted the FBP 
reconstruction as 𝑮𝑮0. 

D. Implementation 
Our experiments were all conducted on Matlab R2013a in 

Linux system. The CPU model is Intel(R) Xeon(R) E5-4640, 
2.40 GHZ.  
1) Filters Training 

The 3D filter training is an essential part in our proposed 
method. We used a 3D 112 × 112 × 105  sized brain MRI 
image to train the 3D convolutional filters, as shown in the first 
row of Fig.3. In addition, in order to demonstrate that our 
proposed method does not need registrations between PET and 

MR images, the MRI and PET data are from different patients 
of the BrainWeb database [41]. 

The size of the convolutional filters also plays a key role in 
this work. As shown in Fig. 3, each filter can be translated into 
an elemental 3D structural feature. According to the figure, the 
larger cube size s we chose, the more complex structure each 
3D filter contained. Theoretically, larger convolutional cube 
provides larger receptive field, which contains more 
information. However, larger filter cubes also result in heavier 
computational cost, which is proportional to 𝑠𝑠3 given the same 
filter number. As a tradeoff, we finally set the cube size s=4. As 
for the number of filters, we found that as long as the 
constructed filter group is over-completed, or the filter number 

     

     

 

     

     

 

   3   

     

(a)                                   (b)                                  (c)                                    (d)                                    (e) 
Fig. 5. Three orthogonal slices for high counted simulation data under 3 × 108 photon counts. (a) Ground truth (b) EM (c) Gaussian filtering (d) 3D Dictionary 
Learning (e) 3D PET-CSC 
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is larger than 𝑠𝑠3 in other words, it is sufficient for 3D-CSC. In 
this case, we trained 256 filters, each with the size 4 × 4 × 4. 
2) Penalty Parameters 

The penalty parameters 𝛽𝛽  and 𝜆𝜆  are ought to be manually 
tuned. Here we have to admit that it is not practical to provide 
universal values for these two parameters, as their magnitudes 
should be varied according to different settings. In general, the 
magnitude of 𝛽𝛽 heavily depends on the choice of the system 
matrix G and the magnitude of 𝜆𝜆 is influenced by the filter size 
and the range of image values. Nevertheless, there are still some 
empirical rules to follow. For 𝜆𝜆, we introduced feature sparsity 
(i.e. the portion of non-zero entries in feature map) as the index 
for tuning. In our case, the sparsity is better to be tuned to be 

near 1.5 × 10−3 , while 𝜆𝜆  is set to around 6.0. As for 𝛽𝛽 , the 
magnitude ranges from 1 × 10−9  to 1 × 10−8  for our system 
matrix G. In this study we adjusted 𝛽𝛽  for PET data under 
different counts. For instances we set 𝛽𝛽 = 1 × 10−8  for 
6 × 107  counted data and 𝛽𝛽 = 4 × 10−9  for 3 × 108  counted 
data. 

III. EXPERIMENTS 
In this part we conducted the experiments on both simulated 

data and clinical patient datasets. Also, three reference 
algorithms are included in this section for comparison. 

     

     

 

     

     

 

     

     

 (a)                                    (b)                                  (c)                                    (d)                                  (e) 
Fig. 6. Three orthogonal slices for high counted simulation data under 6 × 107 photon counts. (a) Ground truth (b) EM (c) Gaussian filtering (d) 3D Dictionary 
Learning (e) 3D PET-CSC 
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A. Experimental Setup 
1) Simulation data 

In this simulation study, we adopted a 3D brain phantom 
from the BrainWeb database [41]. The image size is 
125 × 125 × 105  and the voxel size is 2.086 × 2.086 ×
2.031mm3. As we can see in Fig.4, the brain phantom includes 
the vessel region, gray matter region and white matter region. 
12 tumors were inserted for quantification purposes. The 
geometry used in the simulation is based on the Siemens mCT 
scanner [42]. The tracer uptake is based on 18F-FDG. We 
generated the datasets of 6 × 107 and 3 × 108 photon counts to 
represent the low-count and high-count PET scenarios. 
2) Clinical Data  

In order to validate the proposed method for clinical 
scenarios, we employed 18F-FDG clinical brain and abdominal 
datasets in this study. All the data were acquired by the 5-ring 
GE Discovery MI PET/CT scanner. In the brain imaging study, 
the data of 30 min acquisition (30 min after FDG injection) was 
used. We down-sampled the 30-min dataset to 1/20 of its 
original count to generate ten low-count realizations. The ten 
realizations were reconstructed to quantify the noise 
performance. Moreover, we inserted a simulated tumor with 
diameter of 14 mm at the boundary of the white and gray matter 
for bias quantitative purposes. The reconstructed image size is 
128 × 128 × 89 and the voxel size is 2 × 2 × 2.8 mm3 . For 
the abdominal dataset, we adopted a single frame scanned with 
duration of 180s. As demonstrated in Fig.9, we inserted 4 
simulated tumors into the lung and liver regions. The tumors 
are of various uptakes and their diameters are 16.8mm, 15mm, 
12mm and 9.6mm. The reconstructed image size is 128 ×
128 × 89 and the voxel size is 3 × 3 × 2.8 mm3. 

3) Quantitative Evaluation 
Contrast recovery coefficient (CRC) and standard deviation 

(STD) were used as the quantitative metrics. The CRC is 
defined as: 

CRC =
1
𝑅𝑅
�

(𝑎𝑎�𝑟𝑟𝑏𝑏�𝑟𝑟
− 1)

(𝑎𝑎
𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡

𝑏𝑏𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡 − 1)

𝑅𝑅

𝑟𝑟=1

.  (18) 

Here 𝑅𝑅 = 10 is the number of realizations we used, for both 
simulation data and real data. 𝑎𝑎�𝑟𝑟 = (1 𝐾𝐾𝑎𝑎⁄ )∑ 𝑎𝑎𝑟𝑟,𝑘𝑘

𝐾𝐾𝑎𝑎
𝑘𝑘=1  is the 

average uptake for 𝐾𝐾𝑎𝑎 selected regions of interest (ROI) in r-th 
realization. For the simulation experiment, we respectively 
picked the ROIs in gray matter (𝐾𝐾𝑎𝑎 = 10) and tumor regions 
(𝐾𝐾𝑎𝑎 = 12 ). Similarly, 𝑏𝑏�𝑟𝑟 = (1 𝐾𝐾𝑏𝑏⁄ )∑ 𝑏𝑏𝑟𝑟,𝑘𝑘

𝐾𝐾𝑏𝑏
𝑘𝑘=1  is the average 

value for 𝐾𝐾𝑏𝑏  background regions (white matter) in rth 
realization. Here we picked 𝐾𝐾𝑏𝑏 = 30 background regions for 
simulation data. Correspondently, the 𝑎𝑎𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡  and 𝑏𝑏𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡  are the 
ROI and background value in ground truth. 

As for the STD, we computed it from the background as  

STD =
1
𝐾𝐾𝑏𝑏

�
� 1
𝑅𝑅 − 1∑ (𝑏𝑏𝑟𝑟,𝑘𝑘 − 𝑏𝑏�𝑘𝑘)2𝑅𝑅

𝑟𝑟=1

𝑏𝑏�𝑘𝑘

𝐾𝐾𝑏𝑏

𝑘𝑘=1

, (19) 

where 𝑏𝑏�𝑘𝑘 = (1 𝑅𝑅⁄ )∑ 𝑏𝑏𝑟𝑟,𝑘𝑘
𝑅𝑅
𝑟𝑟=1  denotes the mean value of k th 

background regions over R realizations [43]. 
Given the fact that there is no ground truth for the real patient 

study, we alternatively adopted the contrast recovery (CR𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟) 
for tumor regions, 

CR𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟 =
1
𝑅𝑅
�𝑎𝑎�𝑟𝑟 𝑎𝑎𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡⁄
𝑅𝑅

𝑟𝑟=1

. (20) 

Similar with (18), 𝑅𝑅  is the number of realizations we 
reconstructed. Here we have 𝑅𝑅 = 10 for the real brain study 
and 𝑅𝑅 = 1 for the real body study. 𝑎𝑎�𝑟𝑟 = (1 𝐾𝐾𝑎𝑎⁄ )∑ 𝑎𝑎𝑟𝑟,𝑘𝑘

𝐾𝐾𝑎𝑎
𝑘𝑘=1  is 

the average uptake for 𝐾𝐾𝑎𝑎 selected regions of interest (ROI) in 
r-th realization. Here we have 𝐾𝐾𝑎𝑎 = 1 for the real brain study 
and 𝐾𝐾𝑎𝑎 = 4 for the real body study.  In addition, we employed 
the uptake ratio (UR𝑔𝑔𝑟𝑟𝑎𝑎𝑦𝑦) for gray matter regions in real brain 
data: 

UR𝑔𝑔𝑟𝑟𝑎𝑎𝑦𝑦 =
1
𝑅𝑅
�𝑎𝑎�𝑟𝑟 𝑏𝑏�𝑟𝑟 .⁄
𝑅𝑅

𝑟𝑟=1

 (21) 

Here we respectively picked the ROIs in gray matter (𝐾𝐾𝑎𝑎 = 10) 
and 𝐾𝐾𝑏𝑏 = 10 background regions for this calculation. Besides, 
for the single-realization abdominal dataset, we picked a 
background region in liver and computed its voxel-wised STD. 

B. Results 
1) Simulation study 

Fig.5 shows the slices of high-count (3 × 108 photon counts) 
PET reconstruction from three orthogonal views. In this figure, 
we compared our proposed method with EM, EM plus Gaussian 
filtering, and 3D dictionary learning method. Here we set 10 
iterations with 7 subsets for all algorithms. According to the 
figure, the proposed 3D CSC method shows superiority 
regarding edge preserving and denoising performance 
compared with other methods. More importantly, it 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7.  CRC-STD curves for the reconstructions of high counted simulation 
data under 3 × 108 and 6 × 107 photon counts. (a) Tumor region for  3 × 108 
counts data (b) Gray matter region for  3 × 108 counts data (c) Tumor region 
for 6 × 107counts data (d) Gray matter region for 6 × 107 counts data 
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successfully removes the staircase artifacts as shown in 3D 
dictionary learning method. Fig.7(a)(b) shows the CRC-STD 
curves for the 3 × 108 photon counts PET data. We can see the 
proposed method has lower STD and higher CRC on both 
tumor and gray matter ROIs. Fig.6 presents the slices of low-
count (6 × 107 photon counts) PET reconstruction from three 
orthogonal views. Fig.7(c)(d) present the CRC-STD curves for 
the PET data in 6 × 107  photon counts. For the low-count 

scenario, our proposed method still shows superior 
performance over other reference algorithms. 
2) Clinical Data  

Fig.8 shows the slices of real brain data from three 
orthogonal views. According to the figure, our proposed 
method manages to recover more structures, such as tumor edge 
and cortex details, when compared with the dictionary learning 
method in the same noise level. As we can see from Fig.10, 3D 
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(a)                                         (b)                                         (c)                                         (d)                                        (e) 
Fig. 8. Three orthogonal slices for real brain reconstruction. (a) High count data reconstructed by EM (b) EM (c) Gaussian filtering (d) 3D Dictionary Learning 
(e) 3D PET-CSC 
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PET-CSC is able to generate images with higher contrast on 
both tumor and gray matter regions, while reducing the image 
noise. Fig. 9 shows the reconstruction for the abdominal dataset. 
Our method can recover more structures and lower image noise 
when compared with other methods. This can be further 
demonstrated by the CR𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟-STD curves shown in Fig.11. 
3) Comparison with Traditional Sparse Coding 

In Fig.12, we further explored our method regarding the 
convergence. As we mentioned in equation (6) of section 2.3, 
instead of coding the original 3D image x during the image 
reconstruction, we coded the residual image △ 𝑮𝑮 = 𝑮𝑮 − 𝑮𝑮� to 
further accelerate the convergence. In Fig.12(b), we compared 
the convergence speed of our 3D CSC with that of the 
traditional dictionary learning and sparse coding methods. In 
addition, we have also tested the convergent performance of our 

method when coding the original 3D image x. According to the 
figure, our method can substantially improve the convergent 
speed. Moreover, the introduction of residual image △ 𝑮𝑮 
further improves the convergent performance. Besides, it can 
be seen that after the first iteration, the PSNR is already high. 
As demonstrated the sub-graph in Fig.12 (b), this can be 
credited to the introduction of the ordered-subsets coding 
mechanism in equation (12).  

IV. DISCUSSION 
During the experiment set-up, we trained our 3D CSC filters 

from a 3D MRI image to utilize the high-resolution structure 
information. For our experiments, we chose the MRI images 
from another patient to demonstrate that our proposed method 

 
 

    

    

    
(a)                                                       (b)                                               (c)                                                     (d)      

Fig. 9. Three orthogonal slices for real body reconstruction (a) EM (b) Gaussian filtering (c) 3D Dictionary Learning (d) 3D PET-CSC 

 
(a) 

 
(b) 

Fig. 10.  CR𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑎𝑎-STD and UR𝑔𝑔𝑟𝑟𝑎𝑎𝑦𝑦-STD curves for the reconstructions of real 
brain data. (a) Tumor region (b) Gray matter region 

  
Fig. 11.  The uni-realization CR𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑎𝑎-STD curves for real patient’s body data. 
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does not need the matching between PET and MR images. The 
main advantages of our work are threefold. The first advantage 
is that, unlike CNN methods, our 3D PET-CSC need no pre-
training and no matching between PET and MR images. 
Secondly, 3D PET-CSC fully utilizes the information within the 
whole image, so that it can alleviate the staircase artifacts from 
the aggregation of patches. The third advantages is relevant to 
the convergence and computational efficiency. As shown in 
Fig.12, the proposed 3D CSC converges much faster than 
traditional sparse coding due to the mechanisms of “ordered-
subsets” and “coding residual images”. For our experiments, 
the average time cost of each iteration for our method is 23.6s, 
while for traditional sparse coding it is 574.3s.  

In this work, we only employ the MR image during the filter 
learning phase and it is possible to include high-count PET data 
also in the training phase. This will be one of our future work. 
In addition, for our proposed framework, there are two 
parameters, 𝛽𝛽 and 𝜆𝜆, to adjust. In this work, we only choose an 
empirical rule to adjust those parameters. More elegant 
parameter adjusting protocols are needed and worth exploring.  

V. CONCLUSION 
We have proposed a novel 3D CSC regularization into 3D 

PET image reconstruction. The 3D structure CSC method was 
developed and incorporated into the PET reconstruction model 
for the first time. We have also applied a framework for coding 
3D residual image with an ordered-subset mechanism. Based 
on the simulation and clinical studies, we can see that the 
proposed 3D PET-CSC presents an efficient and robust 
approach to incorporate the anatomical prior into PET 
reconstruction without the need for registration and large 
number of datasets. Compared with traditional dictionary 
learning and sparse coding methods, the proposed method 
manages to alleviate the staircase artifact and recover the image 
with superior quality. 
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