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Abstract—Objective: We present a statistical model for
extracting physiologic characteristics from electrodermal
activity (EDA) data in observational settings. Methods: We
based our model on the integrate-and-fire physiology of
sweat gland bursts, which predicts inverse Gaussian (IG)
inter-pulse interval structure. At the core of our model-
based paradigm is a subject-specific amplitude threshold
selection process for EDA pulses based on the statistical
properties of four right-skewed models including the IG.
By performing a sensitivity analysis across thresholds and
fitting all four models, we selected for IG-like structure and
verified the pulse selection with a goodness-of-fit analysis,
maximizing capture of physiology at the time scale of EDA
responses. Results: We tested the model-based paradigm
on simulated EDA time series and data from two different
experimental cohorts recorded during different experimen-
tal conditions, using different equipment. In both the sim-
ulated and experimental data, our model-based method ro-
bustly recovered pulses that captured the IG-like structure
predicted by physiology, despite large differences in noise
level. In contrast, established EDA analysis tools, which
attempted to estimate neural activity from slower EDA re-
sponses, did not provide physiological validation and were
susceptible to noise. Conclusion: We present a compu-
tationally efficient, statistically rigorous, and physiology-
informed paradigm for pulse selection from EDA data that
is robust across individuals and experimental conditions,
yet adaptable to varying noise level. Significance: The
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robustness of the model-based paradigm and its physio-
logical basis provide empirical support for the use of EDA
as a clinical marker for sympathetic activity in conditions
such as pain, anxiety, depression, and sleep states.

Index Terms—Electrodermal activity, inverse Gaussian,
point processes, signal processing, statistics.

I. INTRODUCTION

SWEAT gland activity is a fundamental component of our
“fight or flight” response. Therefore, it is used as a way

to assess sympathetic nervous system activity [1]. Sympathetic
activation is induced by emotional and physiologic states such as
stress, anxiety, and pain. Electrodermal activity (EDA) measures
the electrical conductance of the skin as a proxy for the activity of
sweat glands [1]. As sweat glands are more active, due to phys-
iologic or emotional stimulation, the electrical conductance of
the skin increases since sweat conducts electricity [1]. The con-
tinuous measurement of EDA can be performed inexpensively
and non-invasively [1]. For this reason, it has been employed in
lie detector tests and as a neuromarketing tool. There is growing
interest in the development of real-time algorithms to accurately
characterize EDA to track changes in emotional and physiologic
states.

EDA consists of two simultaneous levels of activity. The
baseline or tonic component represents background or ambient
conditions and drifts gradually over minutes [1]. On top of that,
pulsatile sweat release events (pulses) make up what is known as
the phasic component of EDA, which has a timescale of a few
seconds and is thought to correspond to sympathetic nervous
system activity [1].

EDA has most commonly been studied in controlled exper-
iments, in which subjects are presented with known stimuli at
specific times in an environment with no distractions [2]–[6].
In these circumstances, the times of stimulus presentation act as
‘ground truth’ for sympathetic activation and EDA pulses. How-
ever, in many other circumstances, including clinical settings
and during longitudinal monitoring, there is no known ground
truth for EDA pulses. These are the circumstances under which
we would also expect high inter-subject variability, differences
due to different recording equipment, and changing situational
conditions, since the environment cannot be controlled. There-
fore, it is especially important to have a framework in place
that establishes the physiological validity of the results of EDA
analysis from individual EDA datasets.
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Existing EDA analysis tools such as Ledalab [2], [3] and
cvxEDA [4] assume that EDA obeys a convolution model:
neural point process events are convolved with activity in the
sweat gland. This is a challenging approach since neural activity
occurs on a time scale (milliseconds) much faster than EDA
pulses (seconds). Therefore, estimating neural activity is an
under-constrained optimization problem which to solve requires
making assumptions about the size and shape of pulsatile sweat
responses in EDA across all subjects, equipment, and conditions.
In addition, these existing tools have been validated primarily
in controlled experimental datasets. Therefore, existing EDA
analysis tools do not offer validation grounded in physiology
for EDA data when there is no known ground truth.

Such a validation framework can be developed from our pre-
vious work demonstrating how the physiology of sweat glands
manifests as statistical structure in observational EDA data. We
have previously shown that the inter-pulse interval distribution
in EDA data follows an inverse Gaussian distribution [7][8],
which agrees with a model of the rise of sweat through the gland
to the skin surface as an integrate-and-fire process [9][10]. This
process is similar to the mechanism that underlies other point
process events such as neuronal and cardiac action potentials,
earthquakes, geysers, and volcanoes [11][12]. We showed that
the temporal structure in EDA favors right-skewed heavy tailed
distributions, including the inverse Gaussian and even heavier
tailed distributions such as the lognormal, due to the presence
of sparse regions of EDA with low activity and long inter-pulse
intervals [7]. This result makes possible the use of low-order
models in EDA analyses and increases the signal-to-noise ratio.
Most importantly, it provides physiological insight at the time
scale of EDA responses to validate results of EDA analysis even
without an explicit ground truth.

Our previous analyses suggest that the relationship between
the properties of several right-skewed distributions can help
identify the presence of noise in any subject cohort [7]. While the
heavier-tailed inverse Gaussian and lognormal distributions are
indicators of desired statistical structure, the flexibility of the
gamma distribution in capturing the light tails likely to occur
with random noise in a subject cohort allows it to function as a
noise indicator [7]. By examining the patterns of goodness-of-
fit of four distributions (inverse Gaussian, lognormal, gamma,
exponential) across subjects in a cohort, we can gauge the level
of noise in the subject cohort and the set of pulses to extract. We
can also identify individual subjects who are clear outliers from
the rest of the cohort.

In this work, we define a robust method for analyzing EDA
data from any observational EDA subject cohort. The crux of
our model-based approach is to extract the important physio-
logical characteristics relevant to dynamic sympathetic activity
by focusing on the EDA pulses themselves, without making
additional assumptions necessary to make inferences at a much
faster time scale. We show that this method is successful in
capturing the underlying statistical structure in simulated data, as
well as in data from two subject cohorts collected from different
populations, under different experimental conditions, and using
different equipment. We also show that existing deconvolution-
based EDA tools cannot be validated against known physiology
in these same subject cohorts. Our method combines the steps of

extracting pulses and identifying the relevant statistical structure
into an iterative rather than sequential process. This is analogous
to what has been done in the case of ‘clusterless decoding’
for spike sorting and decoding in neural spiking data with
improved results [13]. In the case of EDA, this iterative process
is successful because the underlying model is consistent with
physiology.

This paper is organized as follows. In Data, we describe: 1)
how we generated literature-standard simulated EDA data; and
2) the two experimental subject cohorts used in this work. In
Methods, we outline: 1) how we used our insights about sweat
gland physiology to design and test a robust pulse selection
paradigm; and 2) how we applied existing EDA analysis tools
to two subject cohorts of observational EDA data. In Results,
we illustrate the use of this paradigm on simulated data and data
from two different subject cohorts. We compare our model-based
approach to existing EDA analysis tools in terms of agreement
with known physiology. Finally, in the Discussion and Con-
clusion, we summarize our model-based framework and the
implications. We have made the code open source, enabling
others to use this methodology and further refine the technique.
A preliminary version of this model-based methodology was
published in [14].

II. DATA

A. Simulated EDA Data

We generated simulated EDA based on the literature standard
used by the cvxEDA algorithm [4]. However, we modified
the placement of pulses by sampling inter-pulse intervals from
an inverse Gaussian distribution rather than random selection.
This agrees with our previous discovery based on sweat gland
physiology [7]. We also modified the noise level in the simulated
EDA data to represent varying degrees of sensor noise. Each
simulated EDA dataset was 1-hour in duration.

B. Experimental Data

For this study, we used EDA recordings from two experi-
ments. The first is EDA we previously collected from 12 healthy
volunteers between the ages of 22 and 34 while awake and at rest.
The study was approved by the Massachusetts Institute of Tech-
nology (MIT) Committee on the Use of Humans as Experimental
Subjects (approved 05/09/2018, protocol #1804343699A001).
Approximately one hour of EDA data was collected at 256 Hz
from electrodes connected to the second and fourth digits of each
subject’s non-dominant hand. Subjects were seated upright and
instructed to remain awake. They were allowed to read, meditate,
or watch something on a laptop or tablet, but not to write with the
instrumented hand. One subject’s data were not included in the
analysis because we learned after completing the experiment
that the subject occasionally experienced a Raynaud’s type
phenomenon, which would affect the quality of the EDA data.
Data from the remaining 11 subjects were analyzed.

The second subject cohort consists of EDA recorded during a
study of propofol-induced unconsciousness from eleven healthy
volunteers while under propofol sedation [15]. The protocol was
approved by the Massachusetts General Hospital (MGH) Human
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Research Committee. For all subjects, approximately 3 hours
of data were recorded while using target-controlled infusion
protocol. The data collection is described in detail in [15]. The
infusion rate was increased and then decreased in a total of
ten stages of roughly equal lengths to achieve target propofol
concentrations of: 0 mg/kg/hr, 1, 2, 3, 4, 5, 3.75, 2.5, 1.25, 0.
The two subject cohorts were collected in different years by
different study teams and using different recording equipment
systems.

III. METHODS

A. The Model-Based Framework: Preprocessing and
Pulse Extraction

All analyses were performed using Matlab 2019a. Prepro-
cessing consisted of two major steps, 1) detecting and removing
artifacts and 2) isolating the phasic component. Both have been
described in previously in [7] and [14]. Because of the level of
high frequency noise seen in the recording equipment used for
the propofol data, those data were additionally low-pass filtered
with a cutoff of 3 Hz after artifact removal.

We used a measure of locally-adjusted peak amplitude called
prominence to account for the changing background filling level
of the sweat glands. To compute prominence for each peak, we
used the findpeaks algorithm in Matlab. This algorithm adjusts
the amplitude of each peak in the signal as the height above the
highest of neighboring “valleys” on either side. The valleys are
chosen based on the lowest point in the signal between the peak
and the next intersection with the signal of equal height on either
side.

B. Motivation for Physiology-Informed Pulse Selection

The goal of pulse selection from EDA data is to extract the
set of pulses as close as possible to the ground truth of true
EDA phasic activity without including sensor noise. Therefore,
relying on known properties of sweat gland physiology is key to
distinguishing between pulses and noise. We previously showed
that the bursting of sweat glands can be modeled as an integrate-
and-fire process, which manifests as temporal structure that
looks inverse Gaussian or like mixtures of inverse Gaussians
in the inter-pulse intervals [7][8]. One way to characterize this
is using tail behavior, which captures the heaviness of the tail
of a right-skewed distribution using the ultimate settling rate.
The ultimate settling rate is computed as the limit of the hazard
function as x tends to infinity [16]. Different right-skewed
distributions, such as the inverse Gaussian, lognormal, gamma,
and exponential, differ in their tail behavior properties [17]. A
slower settling rate indicates a heavier tail. Fitting a variety of
models allows us to sample a range of tail behaviors (both lighter
and heavier) which may represent mixtures of inverse Gaussians.
Our previous work showed that EDA data favors heavier tailed
models such as the lognormal and inverse Gaussian over lighter
tailed models such as the gamma and exponential, likely due
to the presence of regions of low phasic activity with long
inter-pulse intervals [7]. Using these insights, we proceeded with
the analysis in three phases for each subject cohort, detailed in

the following sections. Overall, our model-based approach aims
to define a novel way of assessing to what degree pulses extracted
from EDA data are consistent with known physiology.

C. Phase I: Individual Subject Trends

We screened a range of prominence thresholds from 0.001 to
0.02 in increments of 0.001 and 0.02 to 0.08 in increments of
0.005 for each subject in the cohort. These limits were chosen to
span from the smallest detectable deflection to the largest pulses
in EDA data. At each prominence threshold, a set of pulses was
extracted, from which four inter-pulse interval models were fit
(the inverse Gaussian, lognormal, gamma, and exponential) by
maximum likelihood [18]. For each, the Kolmogorov-Smirnov
(KS) distance was computed as a measure of goodness-of-fit.
The KS distance measures the maximum distance between the
theoretical and empirical inter-pulse intervals after they have
been rescaled using the time-rescaling theorem [19]. A smaller
KS distance indicates a better fit. We also computed a 95%
significance cutoff for the KS distance based on the number
of pulses extracted [20]. A KS distance greater than this cutoff
indicates that the data differ significantly from the model. This
process resulted in four model KS-distances and one significance
cut-off at each prominence threshold for each subject.

D. Phase II: Subject cohort As a Whole

We plotted the median KS-distance and significance cut-off
per prominence threshold across subjects for the entire cohort.
The goal of Phase II was to understand the effects of data
collection settings, such as equipment used and experimental
condition studied, on the EDA recordings from the subject cohort
overall. We were specifically interested in the role of each of the
four models to identify four specific trends which relate to the
tail behavior of the four models:

1) The inverse Gaussian and/or lognormal models reach a
“sweet spot” of being the best fitting distributions for
some region of prominence thresholds. These models
generally do not fit well at the lowest thresholds due to
the presence of noise. The size of this “sweet spot” can
vary from subject to subject but indicates that the pulse
extraction is preserving the desired statistical structure
without too much noise. This is the ideal region from
which to select the optimal prominence threshold.

2) The exponential model is generally the worst fitting
model for the majority of thresholds, since it does not
capture the physiology of sweat glands. However, with
increasing threshold, the number of pulses decreases and
therefore the significance cutoff becomes more generous.
If the KS distance of the exponential model is above
the significance cutoff at lower thresholds, the point at
which it crosses under the significance cutoff marks the
threshold at which there are now too few pulses to draw
any conclusions. If the exponential model is under the
significance cutoff even at lower thresholds (yet it is still
the worst fitting model), this rule cannot be used to assess
whether the number of pulses is sufficient.
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Fig. 1. A schematic of the methods, starting from raw EDA data to
verifying the goodness-of-fit of the chosen prominence threshold. In the
center, the tail behavior properties of the 4 models are summarized.

3) The gamma model can be used to identify noise. The
gamma model generally fits best in the presence of strong
noise, usually at lower thresholds. This is because the
presence of noise generally makes inter-pulse intervals
short, which favors light-tailed inter-pulse interval distri-
butions. The gamma is the model with the most flexibility
in the tail and is the only one of the four models able
to capture these very light tails. However, as noise is
removed with increasing threshold, the KS-distance of
the gamma model increases and “crosses” the lognormal
and/or inverse Gaussian, as they fit the data better. We
hereby refer to this trend (fitting well at lower thresholds
and then slowly “rising out” with increasing threshold) as
the “gamma signature”.

4) The gamma signature may be shifted left or right in
a subject cohort, indicating the presence of lower or
higher levels of noise overall, usually due to recording
equipment or experimental conditions. For example, the
gamma model may start with a relatively poor fit at lower
thresholds, then improve to being the best model before
slowly rising out. This is simply the gamma signature
shifted to the right, which indicates that the subject cohort
has higher levels of noise. The “sweet spot” for optimal
thresholds will also be at higher thresholds for the subjects
in the cohort.

We illustrate the methods with an analysis of a single subject
for three different thresholds and the four candidate models
( Fig. 2). At the lowest threshold (Fig. 2(a), there are many
short inter-pulse intervals due to the presence of noise in pulse
selection, and therefore the inter-pulse interval distribution has
almost no tail. The gamma model is best at accommodating this
property. At moderate thresholds with less noise (Fig. 2(b)),
the inverse Gaussian and lognormal are the best fit models
since the inter-pulse interval distribution has a heavier tail. And
finally, at the highest threshold (Fig. 2(c)), pulse extraction

clearly excludes several pulses, and there are too few pulses
to accurately characterize the inter-pulse interval distribution.
The significance cutoffs are very generous, making all of the
models appear to fit well. For each subject cohort, once each of
these 4 trends had been identified, we proceeded to Phase III.

E. Phase III: Optimal Threshold Selection Per Subject

The KS-distances and significance cut-offs across prominence
thresholds computed in Phase I were plotted per subject. The
trends were then compared to the overall cohort-level trends
observed in Phase II. For a given subject, if all models behaved
similarly across prominence thresholds to the overall cohort in
terms of goodness-of-fit with respect to the significance cutoff,
the optimal prominence threshold was chosen from the “sweet
spot” identified in Phase II, in which the inverse Gaussian and
lognormal models are the best fitting.

If the models did not behave similarly to the cohort-level
trends identified in Phase II, the subject was considered a poten-
tial outlier. In some cases, the same trends were seen, but shifted
to the right (or left), which was an indication of higher (or lower)
levels of noise in that subject’s data compared to the rest of the
cohort in general. In those cases, the optimal threshold for that
subject is likely to be much higher (or lower) than for the rest of
the cohort. Finally, after selecting the optimal threshold for each
subject, we made a full KS plot with 95% confidence bounds
to verify that our pulse extraction and choice of threshold did
indeed capture the statistical structure as intended. If the KS
plot of a model follows the 45-degree diagonal and stays fully
within the confidence bounds, then that model fits the data well.
We computed the AIC and KS-distance for all models for each
subject as well as the tail settling rate [16].

F. Testing the Model-Based Framework on
Simulated Data

We performed 50 test runs on simulated EDA data. We
used 10 distinct combinations of inverse Gaussian distribution
parameters and noise levels. For the inverse Gaussian models,
the range of µ was between 15 and 30 while the range of λ

was between 5 and 15. Three distinct noise levels were used,
with standard deviations of 0.005, 0.01, and 0.03. Thirty of
the runs were at the middle noise level, and the remaining 20
runs were split evenly between the lowest and highest noise
levels. The different inverse Gaussian models were included
to test whether the model-based framework is robust across
physiological and environment-dependent variation. The differ-
ent noise levels were included to test whether the model-based
framework is robust against varying levels of sensor noise. For
each of the 10 distinct combinations, we ran 5 test runs. Since
these were simulated data, no cohort-level analyses were done.
The final prominence threshold was chosen for each test run
according to the same principles discussed for the behavior of
each of the four models (inverse Gaussian, lognormal, gamma,
exponential). For each test run, we recorded the true number of
EDA pulses, the final prominence threshold selected within the
model-based framework, the number of pulses extracted by the
model-based framework, the number of pulses matched in time
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Fig. 2. For a single subject’s data (S6), the threshold for pulse selection was gradually increased. At each of three representative thresholds, (a)
0.002 (low), (b) 0.004 (moderate), and (c) 0.02 (high), the pulses extracted, shape of the inter-pulse interval distribution, and the goodness-of-fit of
the 4 distributions are shown.

between the true and extracted pulses, recall (proportion of true
EDA pulses extracted by the model-based framework), precision
(proportion of pulses extracted by the model-based framework
which were true pulses), and maximum likelihood estimates
of inverse Gaussian model parameters with 99% confidence
intervals [18].

G. Comparison to Existing EDA Analysis Tools

We extracted pulses from the awake and at rest cohort using
an existing EDA analysis pipeline from the Leda Lab [2][3].
This algorithm is based on a deconvolution approach, in which

EDA is assumed to be the result of the convolution of a neural
input signal with a single impulse response function for each
subject, which represents that subject’s sweat gland response
to a single neural impulse. By recommendation of the authors,
we used a continuous deconvolution analysis with the default
parameters provided, which includes a peak threshold of 0.001
for all data. For each subject, after pulse extraction, we made
a KS plot with 95% confidence bounds to assess whether the
extracted pulses recovered statistical structure representative of
known physiology.

We performed a qualitative comparison with the cvxEDA
algorithm for both subject cohorts, since this algorithm does not
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TABLE I
AIC RESULTS FOR THE AWAKE AND AT REST COHORT.

The best model for each subject is indicated in bold.
Thresh = threshold, Num. pulses = number of pulses, IG = inverse Gaussian, LogN =

lognormal, Exp = exponential.

TABLE II
KS-DISTANCE RESULTS FOR THE AWAKE AND AT REST COHORT.

The best model for each subject is indicated in bold. Asterisks indicate that the model
was under the significance cutoff.
Num. pulses = number of pulses, Sig. cutoff = significance cutoff, IG = inverse
Gaussian, LogN = lognormal, Exp = exponential.

provide guidance for pulse extraction from the phasic component
[4]. This algorithm also follows a deconvolution approach to
compute the inferred neural input from the phasic component.
We used all default parameter values provided.

IV. RESULTS

A. Simulated EDA Data

The results of each of the 50 runs of simulated EDA data are
detailed in Table S-I, while the summary, including by noise
level and overall is included in Table S-II. The overall results
showed an average threshold of [0.033, 0.047], an average recall
of [0.940, 0.962], and average precision of [0.981+ 0.006]. This
means that across runs, 94% of true pulses were recovered and
98% of recovered pulses were true pulses. However, looking at
the breakdown by noise level, it is clear that the final threshold
adjusted to the noise level to maintain precision and recall. The
average threshold at the highest noise level was significantly
higher than at either lower noise level. In terms of the estimates
of the inverse Gaussian model parameters, the 99% confidence
intervals captured the true value of µ in 96% of runs and the true
value of λ in 74% of runs.

B. Awake and at Rest Subject Cohort Phases I and II

The overall goodness-of-fit curves for the four models for
the awake and at rest cohort (Fig. 3) show four trends previ-
ously mentioned. The lognormal becomes the best-fitting model
around a threshold of 0.004, whereas the inverse Gaussian
crosses the gamma around a threshold of 0.008. After this point,
the lognormal and inverse Gaussians remain the best fitting mod-
els. The exponential starts out as and remains the worst-fitting
model throughout, except for a very small region near a threshold
of 0.017. In a small number of cases, the exponential can appear
to perform better than the gamma even though it is a subclass
of the gamma. This is likely due to the fact that maximizing
the likelihood does not necessarily minimize the KS distance,
as reflected by the occasional disagreement between AIC and
KS distance, as discussed in [7]. The exponential crosses under
the significance cutoff around a threshold of 0.01. The gamma
distribution starts as the best-fitting model and crosses both the
lognormal and inverse Gaussian. The gamma signature does not
appear shifted to the right. Based on all four of these results, it
seems that for the majority of subjects in this cohort, the optimal
prominence threshold should be in the range of 0.004 to 0.01.

C. Awake and at Rest Subject Cohort Phase III

Subject S6 shows similar goodness-of-fit curves to the overall
awake and at rest cohort (Fig. 4(b)). The gamma starts as the
best-fitting model and then crosses the lognormal and inverse
Gaussian models. The exponential is always the worst-fitting
model and crosses below the significance cut-off around a promi-
nence threshold of 0.02. The gamma signature is not shifted to
the right. We chose an optimal prominence threshold of 0.004. At
that threshold, the pulses selected include all larger pulses as well
as some smaller pulses in regions of sparse activity (Fig. 4(c)).
The final KS-plot (Fig. 4(d)) shows that the lognormal and
inverse Gaussian models remain close to the 45-degree line
and within 95% confidence bounds throughout, but neither the
exponential nor the gamma model does.

Across the 11 subjects in the awake and at rest cohort, the final
prominence thresholds ranged between 0.0025 and 0.027. Nine
of these 11 subjects had optimal thresholds between 0.004 and
0.01, as suggested from the full cohort analysis in Phase I. The
total number of pulses in the one-hour time window ranged be-
tween 97 and 324, including the distantly spaced smaller pulses
(Table I). The KS-distance and AIC results largely agreed with
each other across subjects. At the respective optimal prominence
thresholds for each subject, the lognormal or inverse Gaussian
was the best fitting model for all 11 subjects according to KS-
distance and 10 out of the 11 subjects according to AIC (Tables I
and II). The exponential was the worst of the four models tested
for 10 of the 11 subjects according to AIC and KS-distance.
Specifically, with respect to KS-distance, the inverse Gaussian
and lognormal models were within the significance cutoff for all
subjects, the gamma for 8, but the exponential was only within
the cutoff for 3 out of 11 subjects. These results suggest that our
method was able to extract pulses while preserving the desired
statistical structure.
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Fig. 3. Overall goodness-of-fit curves for all 4 distributions (left y-axis) and number of pulses extracted (right y-axis) across the awake and at rest
cohort, dashed vertical lines indicate, from left to right, (1) where the lognormal crosses under the gamma, (2) where the inverse Gaussian crosses
under the gamma, and (3) where the exponential crosses under the significance cutoff.

Fig. 4. Results for Subject S5 from the awake and at rest cohort, showing noticeable differences from the trends of the cohort as a whole.
(a) Preprocessing of data by splitting into tonic and phasic components, (b) Screening of thresholds with chosen threshold marked with bolded
rectangle, (c) Pulses extracted at chosen threshold, (d) Full KS-plot showing goodness-of-fit at chosen threshold.
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Fig. 5. Results for Subject S6 from the awake and at rest cohort, showing agreement with the trends of the cohort as a whole. (a) Preprocessing
of data by splitting into tonic and phasic components, (b) Screening of thresholds with chosen threshold marked with bolded rectangle, dashed
rectangles indicate other thresholds (low and high) also shown in Fig. 1, (c) Pulses extracted at chosen threshold, (d) Full KS-plot showing goodness-
of-fit at chosen threshold.

TABLE III
SETTLING RATE RESULTS FOR THE AWAKE AND AT REST COHORT

IG= inverse Gaussian, LogN= lognormal, Exp= exponential.

Looking at the tail behavior analysis (Table III), the settling
rate of the inverse Gaussian model is always less than that of
the exponential and gamma, predicting a heavier tail than the
exponential and gamma, even though all three are commonly
classified as medium-tailed distributions. The lognormal is com-
monly classified as a heavy-tailed distribution. Therefore, our
method selects for a heavier tail in pulse extraction, representing
heavy-tailed inverse Gaussians or mixtures of them which can
be approximated by the lognormal.

Subject S5 presented an interesting case in which the
goodness-of-fit curves deviate noticeably from the overall co-
hort trends (Fig. 5(b)). There are two clear deviations. First,
the inverse Gaussian never crosses below the gamma model

in goodness-of-fit, so the ‘sweet spot’ is determined by the
lognormal alone. Second, the gamma signature appears shifted
to the right, since it starts with a poor fit, then becomes the
best fit model before crossing the lognormal. This also shifts
the sweet spot and choice of optimal prominence threshold
to the right. We accordingly chose an optimal threshold of
0.027. These trends would indicate that this subject’s data are
characterized by a much higher level of noise than the rest of the
cohort. This is also clear when looking at the data themselves
(Fig. 5(c)). Interestingly, even though the KS distance selects for
the lognormal over the gamma, the gamma is the best fit model
according to AIC (Tables I and II). The tail behavior analysis
indicates that the gamma has a much higher settling rate for this
subject than any of the other models, suggesting that it is able to
accommodate the higher degree of noise and therefore shorter
inter-pulse intervals with a light tail.

D. Propofol Sedation Subject Cohort Phases I and II

The overall goodness-of-fit curves for all four models for
the propofol sedation cohort (Fig. 6) show some similarities
to the awake and at rest cohort and some key differences with
respect to the four trends previously discussed. Here, the log-
normal and inverse Gaussian are always the best fitting models,
largely remaining under the significance cut-off throughout. The
exponential is almost always the worst-fitting model, although
it never crosses below the significance cutoff. The behavior of
the gamma is the trend most distinctly different from that of
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Fig. 6. Overall goodness-of-fit curves for all 4 distributions (left y-axis) and number of pulses extracted (right y-axis) across the propofol sedation
cohort.

the other cohort. The gamma is never the best-fitting model
for this cohort nor is it ever under the significance cutoff. This
reflects more stringent significance cutoffs and narrower 95%
confidence bounds due to a longer duration of data (and therefore
more data points) for each subject compared to the awake and at
rest cohort. However, the shape of the gamma signature is still
visible, just shifted to the right. The gamma starts with poor fit,
then improves slightly to a local minimum around a threshold of
0.004 before slowly rising out. This suggests that the propofol
sedation cohort has a much higher level of noise compared to
the awake and at rest cohort, and therefore the region of optimal
prominence thresholds would also be higher. Based on the Phase
II analysis, the optimal prominence thresholds for most subjects
in this cohort should be in the range of 0.015 to 0.055, where
the gamma has risen out of its local minimum sufficiently and
the exponential is still the worst fitting model. Because of the
nature of the trends in this cohort, this range is very broad.

E. Propofol Sedation Subject Cohort Phase III

Subject P09 shows similar goodness-of-fit curves to the over-
all propofol sedation cohort (Fig. 7(b)). The lognormal and
inverse Gaussian models are the best fitting throughout. The
gamma model signature is shifed to the right slightly, with
it reaching a local minimum around a threshold of 0.01 and
then rising out, even crossing above the exponential model,
which is overall the worst fitting model throughout. We chose
an optimal prominence threshold of 0.04. At that threshold,
the extracted pulses include all pulse-like activity by visual
inspection. Because of the level of noise inherent in the subject
cohort overall, it is likely that the extracted pulses may include
some noise. However, there are clear regions with no pulses
that are still excluded correctly, such as between 20 and 60

TABLE IV
KS-DISTANCE RESULTS FOR THE PROPOFOL SEDATION COHORT

The best model for each subject is indicated in bold. Asterisks indicate that the model was
under the significance cutoff.
Num. pulses= number of pulses, Sig. cutoff= significance cutoff, IG= inverse Gaussian,
LogN = lognormal, Exp = exponential.

minutes (Fig. 7(c)). In addition, the small zoom-in shows that
the extracted pulses do actually correspond to pulse-like activity
and not noise (Fig. 7(c)). The final KS-plot (Fig. 7(d)) shows
that the lognormal and inverse Gaussian models stay close to
the 45-degree line throughout while the gamma and exponential
models do not.

Across the 11 subjects in the propofol sedation cohort, the
final prominence thresholds used ranged between 0.02 and 0.055
(Table IV), which is fully within the range suggested from
the cohort analysis in Phase I. The total number of pulses in
the 3 to 4-hour time window ranged between 383 and 1250,
which also reflects the higher degree of noise in the cohort. At
the respective optimal prominence thresholds for each subject,
either the lognormal or inverse Gaussian was the best fitting
model for all 11 subjects according to both AIC and KS-distance
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Fig. 7. Results for Subject P8 from the propofol cohort, showing agreement with the trends of the cohort as a whole. (a) Preprocessing of data by
splitting into tonic and phasic components, (b) Screening of thresholds with chosen threshold marked with bolded rectangle, (c) Pulses extracted at
chosen threshold, (d) Full KS-plot showing goodness-of-fit at chosen threshold.

(Tables IV and S-III). The exponential was the worst of the
four models tested for 8 of the 11 subjects according to AIC
and KS-distance, with the gamma performing slightly worse for
the other 3 subjects. Specifically, with respect to KS-distance,
the inverse Gaussian and lognormal models were within the
significance cutoff for all subjects, the gamma for only one, the
exponential for none of the subjects. Based on the tail behavior
analysis (Table S-IV), similar to the awake and at rest cohort, the
settling rate of the inverse Gaussian model is always markedly
less than that of the exponential and gamma. These results verify
that our method was able to extract pulses while capturing the
desired inverse Gaussian-like structure in the propofol sedation
cohort, a second cohort with very different properties from the
awake and at rest cohort.

F. Comparison to Existing EDA Analysis Tools

The Ledalab algorithm extracted almost an order of mag-
nitude more pulses than the model-based framework for each
subject in the awake and at rest cohort (Table S-III), likely
due to the low default threshold value of 0.001 for pulses.
In comparison, with the model-based framework, we chose a
threshold at least 2.5 times greater for all subjects. Since this
method does not adapt any parameters to the properties of the
data at hand, there is no guarantee that pulse extraction will
be consistent across subjects or cohorts. This was reflected in
the statistical properties of the pulses extracted. The extracted
pulses largely look like noise (Fig. 8(a)), and the goodness-of-fit
analysis (Fig. 8(b)) indicates that for the majority of subjects

(Table S-V, Figs. S20-S29), none of the four models offered an
accurate statistical description of the data.

For the cvxEDA method, we could not compare extracted
EDA pulses, since this algorithm does not provide guidelines
for extracting pulses from the phasic component. Therefore,
we performed qualitative comparison, shown in Fig. 9 for three
representative subjects. Fig. 9A is an example subject for whom
the model-based paradigm and cvxEDA yielded similar qualita-
tive results, showing the estimated neural activity from cvxEDA
aligned with extracted pulses from the model-based paradigm.
Fig. 9(b) shows an example subject for whom cvxEDA yielded
a qualitatively similar phasic component to the model-based
paradigm. However, the estimate of neural activity, the ultimate
output of cvxEDA, is much noisier and masks the dynamics seen
clearly in the extracted pulses from our model-based paradigm.
Finally, Fig. 9(c) shows an example subject for whom both
phasic activity and estimated neural activity were fully corrupted
by noise with cvxEDA compared to the model-based paradigm.
In all cases (Figs. S30-S48), there was no way to validate
the estimate of neural activity from cvxEDA against known
physiology.

V. DISCUSSION

In this work, we defined a systematic and robust method to
extract pulses from EDA data that preserved the statistical struc-
ture in the data derived from physiology while excluding noise.
This method was used for EDA data in observational settings,
without known, controlled experimental stimuli. This method
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Fig. 8. (a) Pulse selection and (b) goodness-of-fit results using the Ledalab algorithm for Subject S8 from the awake and at rest cohort.

Fig. 9. Results from the cvxEDA algorithm for (a) Subject S6 from the awake and at rest cohort, appearing similar qualitatively to the model-based
framework, (b) Subject S9 from the awake and at rest cohort, appearing similar with respect to phasic activity to the model-based framework but
yielding a very noisy estimate of neural activity compared to extracted pulses, and (c) Subject P2 from the propofol sedation cohort, appearing
drastically different from the model-based framework and clearly corrupted by noise.
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also allowed for an assessment of the signal to noise profile
across a whole cohort of data and identification of individual
subjects whose data do not behave like the rest of the cohort. We
tested this method on simulated EDA data as well as two cohorts,
each collected using different equipment and under different
experimental conditions. We showed that the method captures
the statistical structure in all cases, including with a recall greater
than 94% and precision greater than 98% on simulated EDA data
(Tables II, IV and S-II). In each subject cohort, the goodness-of-
fit properties inherently reflected the signal to noise ratio in that
cohort (Figs 3 and 6). Finally, we compared our method to pulse
selection using the Ledalab algorithm for EDA and qualitatively
to the cvxEDA algorithm and showed that unlike our method,
these did not perform consistently on new subject cohorts on
which they were not built (Figs 8 and 9).

Our model-based framework for characterizing and analyzing
EDA data provided a structured and computationally efficient
way to extract the relevant physiological characteristics from
the data. We used a total of seven parameters across four mod-
els (inverse Gaussian, lognormal, gamma, and exponential) to
determine how to extract pulses. By doing so, we reduced the
arbitrariness of assigning a threshold to the data simply based
on visual inspection or assigning a single threshold across all
datasets. The idea of a sensitivity analysis across thresholds
reduced the arbitrariness of imposing assumptions about noise,
pulse amplitude, or pulse shape across the cohort. Results from
simulated EDA data showed that using statistical structure to
inform threshold selection allowed the threshold to increase with
noise level and preserve performance (Table S-II).

The continuous deconvolution-based Ledalab algorithm, on
the other hand, assumed a single unchanging pulse amplitude
threshold across all subjects and cohorts. This resulted in too
generous of pulse selection, with an average of one pulse every
two seconds across all subjects (mean of 1880 pulses in one hour)
(Fig. 8(a), Table S-V). This was far too frequent given known
sweat gland physiology and other studies of EDA [21]–[27]. In
addition, the goodness-of-fit results indicated that none of the
models was under the significance cut-off for the majority of sub-
jects at this threshold (Fig. 8(b), Table S-V). This was similar to
the threshold screening results of our method at low thresholds in
high-noise data. Even if one were to have attempted to threshold
the Ledalab pulse selection with a higher threshold, it would have
been arbitrarily based on visual inspection alone. CvxEDA, like
Ledalab, is a deconvolution-based algorithm. While we could
not compare pulse selection with cvxEDA, since it does not
have a step of selecting pulses, qualitative comparison of results
still showed inconsistencies across subjects and cohorts, with
some clearly affected by noise (Figs 9, S30-S48).

The ultimate goal of these methodologies was to estimate
the underlying neural input as a measure of sympathetic activ-
ity. However, these methodologies created a more challenging
approach. By attempting to estimate a faster time resolution phe-
nomenon (neural activity) that was not directly measured using a
slower time resolution phenomenon (sweat gland activity), these
methodologies were attempting to solve an under-constrained
optimization problem. This could not be done without imposing
a number of assumptions about pulse shape, pulse amplitude,

and noise level across all datasets. These assumptions ignored
variation between subjects, experimental conditions, and record-
ing equipment. In addition, the estimated neural activity was
highly sensitive to noise. In contrast, the model-based approach
took advantage of the physiology of sweat glands themselves to
uncover the necessary physiological characteristics of sympa-
thetic activity without making such assumptions. By allowing
the structure in the data to inform pre-processing and analysis,
instead of passing the data through a fixed analysis pipeline, we
could extract physiological characteristics at the time scale of
the EDA response rather than the more challenging question of
estimating faster neural activity. The fits we report in this work
may be improved upon by use of dynamics models, which we
will explore in our future work.

By developing an analysis pipeline that is computationally
efficient, statistically rigorous, and physiology-based, we have
enabled robust capture of relevant physiological characteristics
from EDA data, even in the absence of a known ground truth. We
can also track the goodness-of-fit of our models in any setting.
This robustness is a significant step forward in allowing EDA to
be a clinical marker for sympathetic activity in diverse conditions
such as pain, anxiety, depression, and sleep. Our future work will
investigate models for capturing the relevant information in the
amplitudes of the pulses as well and applying dynamic models
for both types of information. Data and code are available on the
PhysioNet database [28]. We hope to further refine this method-
ology and release further versions of the code that incorporate
pulse amplitude analysis and other modifications based on the
feedback we receive from those who use it on their own data.

VI. CONCLUSION

We have developed a novel paradigm for analyzing EDA data
that extracts pulses based on the statistical characteristics of
the EDA time series. This model-based paradigm can be used
for EDA data in observational settings, without a known ground
truth or controlled stimuli. The model-based paradigm performs
consistently on simulated EDA data and data from different
subject cohorts. It verifies that the selected pulses reflect known
sweat gland physiology, a process unique to the model-based
paradigm. Unlike existing EDA analysis tools, which have been
largely developed for controlled experimental data with ground
truth, the model-based paradigm does not make assumptions
about pulse shapes, amplitudes, or noise levels across data sets.
It also does not seek to estimate the underlying neural activity,
which occurs at a faster time scale than the recorded EDA
response, and is therefore challenging to infer with accuracy or
precision. Accurate pulse selection from EDA is key to inferring
underlying sympathetic information at the time scale relevant to
EDA responses. Sympathetic activation is implicated in many
physiologic and psychological states, including stress, anxiety,
depression, sleep, and pain. Our physiology-based paradigm for
robust pulse selection from EDA data opens the door for use
of EDA as part of standard clinical measures to track these
states.
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