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 
Abstract — Objective: The larger sample sizes available 
from multi-site publicly available neuroimaging data 
repositories makes machine-learning based diagnostic 
classification of mental disorders more feasible by 
alleviating the curse of dimensionality. However, since 
multi-site data are aggregated post-hoc, i.e. they were 
acquired from different scanners with different acquisition 
parameters, non-neural inter-site variability may mask 
inter-group differences that are at least in part neural in 
origin. Hence, the advantages gained by the larger sample 
size in the context of machine-learning based diagnostic 
classification may not be realized. Methods: We address 
this issue using harmonization of multi-site neuroimaging 
data using the ComBat technique, which is based on an 
empirical Bayes formulation to remove inter-site 
differences in data distributions, to improve diagnostic 
classification accuracy. Specifically, we demonstrate this 
using ABIDE (Autism Brain Imaging Data Exchange) multi-
site data for classifying individuals with Autism from 
healthy controls using resting state fMRI-based functional 
connectivity data. Results: Our results show that higher 
classification accuracies across multiple classification 
models can be obtained (especially for models based on 
artificial neural networks) from multi-site data post 
harmonization with the ComBat technique as compared to 
without harmonization, outperforming earlier results from 
existing studies using ABIDE. Furthermore, our network 
ablation analysis facilitated important insights into autism 
spectrum disorder pathology and the connectivity in 
networks shown to be important for classification 
covaried with verbal communication impairments in 
Autism. Conclusion: Multi-site data harmonization using 
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I. INTRODUCTION 

Autism Spectrum Disorder (ASD) is a developmental non-
focal brain disorder that is clinically characterized by impaired 
social communication, restricted interests and repetitive 
behaviors and can be diagnosed in early years of life [1]. The 
diagnosis of ASD is typically performed using observation of 
behavior as well as clinical interviews and questionnaires of 
the child and the parents [2]. These techniques however may 
create disparities in diagnosis and therefore it has become 
crucial to identify objective pathological biomarkers of ASD 
that can support clinical diagnosis, especially in ambiguity, as 
well as an aid in predicting the risk of ASD before the 
manifestation of behavioral symptoms [3]-[5]. 

Earlier neuroimaging-based research in ASD relied on 
univariate analysis techniques such as voxel-based 
morphometry, region-of-interest based analysis etc. These 
studies indicated widespread brain abnormalities that include 
gray matter, white matter volume differences and atrophy in 
frontal, parietal, temporal and limbic regions mainly based on 
structural and diffusion MRI [6]-[10]. Resting state functional 
magnetic resonance imaging (rs-fMRI) probes the dynamic 
alterations in ASD by mapping connectivity and deviations in 
the activation patterns [11], [12]. Existing work has illustrated 
altered connectivity and activation patterns in various brain 
regions within the frontal, parietal, temporal, limbic and 
striatal regions using rs-fMRI. However, there is little 
agreement on the connectivity and activation patterns that 
could be attributed towards variability in populations, the pre-
processing and analytic techniques employed, MRI acquisition 
protocol etc. Moreover, these studies that relied on statistical 
group analysis, could not provide a patient specific prediction 
or a quantifiable score that could serve as a pathophysiological 
signature of autism. 

Recent studies have therefore focused on multivariate analysis 
based on machine learning (ML) algorithms that can facilitate 
patient specific quantifiers of pathology. These classifier-
based techniques have illustrated reasonably high prediction 
accuracies using multiple imaging modalities that include 
structural MRI, diffusion MRI, magnetoencephalography and 
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fMRI [13]-[19]. Furthermore, including the interactions 
between the brain regions via large scale structural and/or 
functional brain connectomes, ML has been able to 
additionally support in predicting ASD [20]-[22]. 
Connectomic multi-variate analysis methods have gained 
importance as these not only facilitate subject specific 
signatures but also offer a non-invasive means to understand 
the macroscopic regional interactions and anomalies that exist 
between these interactions. However, majority of these studies 
have been carried out on small locally scanned datasets and 
the reproducibility on other sites/scanners has not been 
evaluated thoroughly [14]. 

Autism Brain Imaging Data Exchange (ABIDE) is a large-
scale imaging dataset (about 1000 subjects) of MRI data 
pooled from multiple sites. It has provided a platform to gain a 
deeper understanding of the pathological mechanisms 
underlying autism. Moreover, the dataset facilitates as an 
open-access benchmarking instrument for novel ML based 
algorithms that are being developed to identify autism from 
neuroimaging. Earlier work on ABIDE employed standard 
machine learning algorithms on functional connectomes which 
includes general linear model, supervised methods such as 
support vector machines, random forest (RF), logistic 
regression, naïve Bayes classifier and linear discriminant 
analysis, as well as unsupervised methods [23]-[29]. Recent 
developments in identifying ASD have focused on employing 
novel deep learning algorithms, which takes the classification 
problem to a new level by allowing better predictions than 
standard ML algorithms [30], [31]. These algorithms use 
complex data representations and have the capability to auto-
extract the most relevant features [32]. Convolutional neural 
net (CNN), a deep learning technique, has been applied to 
discriminate ASD patients with superior accuracies [33]. 
However, effectively using connectomic data for purposes of 
classification is more complicated when compared to other 
conventional data representations such as images or signals. 
For example, CNNs inherently may not perform optimally on 

graphs as graphs do not possess a smoothly varying 
neighborhood like images making it complicated for the 
convolution kernel to match the underlying pattern. 
Accounting for this problem with CNNs, Parisot et al. 
proposed to employ graph based convolutional neural nets that 
represents populations as sparse graphs where the nodes 
represent the subjects and edge weights represent the pair-wise 
similarity features computed from auxiliary phenotypic data 
[34]. Although the technique combines imaging and non-
imaging data, it expects the phenotypic information to be 
available for each subject. Moreover, the entire connectome is 
compressed into a single number (similarity) which may not 
be the best representation of the complete connectome. 
Another deep learning technique applied to ABIDE that 
employs denoising autoencoders, has facilitated state-of-the-
art accuracies. However, these do not exceed 70%, making 
these ML algorithms ineffective for clinical usage [35]. 

In general, prediction tasks on connectomes are non-trivial and 
require a cautious effort in engineering the most distinctive 
features. Moreover, with neuro-psychiatric disorders like 
autism, the differences are subtle and capturing these in a 
diverse population is challenging. Additionally, multi-center 
studies such as ABIDE are often afflicted with non-
pathological variability emerging from scanner magnetic 
strength and vendor differences, inconsistencies in MR 
protocols and other intrinsic factors such as head motion etc. 
[36], [37]. 

Despite the promise that neuroimaging markers facilitate, 
translating these to the clinic is still infeasible. Multiple fMRI 
studies have reported systemic scanner differences [37]. 
However, these are not accounted for during post-processing 
and analysis, that in turn may perturb the multi-variate model. 
This is illustrated in a study by Lanka et al. where leave-site-
out type of analysis was carried out using 18 different 
conventional machine learning classifiers (in ABIDE as well 
as other multi-site data such as ADHD-200) revealing a 
substantial drop in accuracy on test data [26], [27]. Although 
merging data from multiple sites may facilitate more 
generalizability to the multi-variate model, it is crucial to test 
the robustness and/or uncertainty about the adaptability to 
unseen datasets. Recent work in site-harmonization, that 
statistically removes the scanner effects, has demonstrated 
exceptional results on diffusion imaging, structural imaging as 
well as on functional connectivity (FC) analysis [38], [39]. 
Applying such techniques on the 18-site ABIDE-I data may 
facilitate promising classification results as well as support in 
gaining insights into the discriminative connectivity patterns 
that emerge after harmonization. Our work harmonizes the 
ABIDE-I connectivity matrices using the state-of-the-art 
ComBat technique and employs a simple ANN-based 
architecture for classification of typically developing kids 
from autism [39]. Our sub-network-based ablation analysis on 
the harmonized data extracts the most significant sub-
networks that are finally correlated with clinical markers in 
autism.  

Fig. 1.  A schematic diagram of all the classification methods used. An
artificial neural network (ANN) based classifier was implemented
along with a Random forest (RF) of classification trees. Architecture
for classification involving denoising autoencoders based on Heinsfeld
et. al. has been shown. 
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II. MATERIALS AND METHODS 

A. Participants 

The present study was carried out using the rs-fMRI data from 
the ABIDE-I dataset [40]. ABIDE is an open access, multisite 
image repository comprising structural and functional scans of 
ASD and matched typically developing (TD) controls [41]. 
We included 432 ASD and 556 TDs in our dataset. Note that 
ABIDE I data release contains 1112 subjects. We excluded 
some subjects based on the following criteria: (i) 36 PDD-
NOS subjects since this disorder has been removed in DSM-
V, (ii) 6 subjects with a diagnosis of “Asperger’s or PDD 
NOS”, (iii) 10 subjects from the UCLA (University of 
California, Los Angeles) site with partial data missing, and 
(iv) 72 subjects from Stanford and OHSU (Oregon Health and 
Science University) sites who did not have a DSM-IV 
diagnosis. This left us with a total of 988 subjects for our 
analysis. 

B. Imaging 

ABIDE-I encompasses rs-fMRI and T1 structural brain images 
that were acquired at 18 sites. The image acquisition 
parameters and protocol information can be found at 
https://fcon_1000.projects.nitrc.org/indi/abide. 

C. Data Preprocessing 

The ABIDE I fMRI dataset’s preprocessing followed a 
standard pipeline using Data Processing Assistant for Resting-
State fMRI Toolbox (DPARSF) which is based on SPM 
(Statistical Parametric Mapping) [42], [43]. The pipeline 

consisted of first five volumes removal, slice time correction 
and motion correction. T1-weighted anatomical images were 
co-registered to the mean functional images, using which the 
fMRI images were spatially registered to a standard MNI152 
template. Nuisance variables such as low-frequency drifts and 
motion parameters were regressed out. Unwanted 
physiological fluctuations (white-matter and cerebrospinal 
fluid signals) were removed using aCOMPCor (anatomical 
component-based noise correction). The fMRI time series 
from every voxel in the brain was deconvolved by estimating 
the voxel-specific hemodynamic response function (HRF) 
using a blind deconvolution procedure to obtain the latent 
neural signals [44], [45]. This is necessitated by the fact that 
HRF variability across brain regions and individuals has been 
shown to corrupt functional connectivity estimates [46], [47]. 
Further, HRFs have been shown to vary considerably in 
mental disorders including Autism [48]-[50]. Following 
deconvolution, fMRI data was then temporally band-pass 
filtered (0.01-0.1 Hz) using a 30th order finite impulse 
response filter. 
 

D. Functional Connectivity computation 

 
We used FC as the feature to classify the ASD group from the 
TD group. FC matrix is a weighted adjacency matrix, which 
indicates the level of co-activation between paired regions of 
interest in the brain during resting state. To construct the FC 
matrix, 200 homogeneous regions of interest (ROIs) were 
defined using the Craddock CC200 functional parcellation 
atlas [51]. The corresponding mean time series were extracted 
from these 200 regions for each subject. Each value in the FC 
matrix was calculated using the Pearson correlation coefficient 

Fig. 2. Bar chart showing the site-specific accuracy, sensitivity and specificity obtained from harmonized as well as non-harmonized data for 
the three methods (random forests, artificial neural networks and Heinsfeld’s auto-encoders) employed. 
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Fig. 3. Comparison of Area under receiver-operating characteristic (AU-ROC) between harmonized and non-harmonized datasets for all the 

classification methods used. 

of two corresponding time series. The range of each value in 
the FC matrix is from -1 to 1. The 200 200 correlation matrix 
across 988 subjects was vectorized by removing the upper 
triangle owing to the symmetric nature of the matrix. The 
diagonal elements which correspond to self-correlation were 
omitted. Thus, a column array of 19900 values was obtained 
for analysis.  

Further, the fMRI FC matrices were Fischer-Z transformed. 
Absolute values of the matrices were used. Twelve sub-
networks namely sensory/somatomotor hand, 
sensory/somatomotor mouth, cingulo-opercular task control, 
auditory, default mode, cingulo-parietal, visual, fronto-parietal 
task control, salience, subcortical, ventral attention and dorsal 
attention were identified among the ROIs used. In addition, we 
extracted seven global graph theoretical measures for each 
sub-network. The graph measures obtained included density, 
modularity, transitivity, global efficiency, assortativity, 
characteristic path-length and clustering coefficient. 
Associations were assessed between global measures of each 
sub-network and symptom-severity/behavioral measures of the 
subjects’ ADIR-Social and Verbal scores. Multiple 
comparisons were corrected using the false discovery rate 
(FDR) method.  

E. ComBat Harmonization 

To evaluate whether site-harmonization impacts the power of 
classification models in predicting diagnostic status using the 
ABIDE dataset, we employed ComBat named for 'combating 
batch effects when combining batches’ [52]. ComBat 
technique was initially developed for adjustment of batch 
effects in genomic microarray analysis and has since been 
applied to harmonization of diffusion tensor imaging data [39] 
and brain connectivity data [53]. ComBat is based on the 
empirical Bayes method; it assumes that the errors introduced 
in the imaging features can be standardized by adjusting the 
location (means) and scale (variances) across the batches. This 
location and scale (L/S) model is defined as: 
 

 
              (1) 

 
Where, for every feature v, in our case, this is the connectivity 
between two given brain regions,  represents the actual 
value of the feature which in our case, it is the actual value of 
FC between the given brain regions for the scan j at site i.  

corresponds to the overall feature value for the feature v.  is a 
design matrix for the covariates of interest (e.g. age and 
gender).  is the feature specific vector of regression 

coefficients corresponding to . The terms  and  
represent the additive and multiplicative site effects of site i 
for feature v respectively and  is the error term which is 
assumed to follow a normal distribution with mean zero and 
variance . ComBat improves the variance of the parameter 

estimates  and  by estimating an empirical statistical 
distribution for each of those parameters. It assumes that all 
the features share the same common distribution, and site-
effect parameters have the parametric prior distributions. The 
hyperparameters are estimated empirically from the data as 
described in [52]. The final ComBat-harmonized values are 
defined as: 
 

 
(2) 

F. Classification 

We employed three classification techniques that include an 
artificial neural network (ANN) architecture, random forest 
(RF) classification as well as state of art auto-encoders as 
proposed by Heinsfeld et al. on harmonized and non-
harmonized connectivity matrices [24], [35], [54] . For all the 
methods, classification was implemented in leave-one-site-out 
(LOSO) manner. Of the 18 available scanner sites, the training 
set included subjects belonging to 17 sites and the remaining 
site was used for testing. 

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2021 at 18:36:42 UTC from IEEE Xplore.  Restrictions apply. 



0018-9294 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2021.3080259, IEEE
Transactions on Biomedical Engineering

Ingalhalikar et al.: Title - Functional connectivity-based prediction of Autism on site harmonized ABIDE dataset 

5 
 

1) ANN 

The ANN approach comprised of a shallow set of dense layers 
for the classification task. The architecture for the ANN model 
included a dense layer at the input. This dense layer consisted    
of 19900 neurons corresponding to the vectorized array of 
input from the connectivity matrices. A hidden layer with 16 
neurons was employed to scale down the dimensionality and 
learn the classification encodings followed by a ReLU 
activation function. Batch normalization was used between 
layers and dropout of 0.5 was applied before the final layer 
[55]. The final output dense layer had 2 neurons 
corresponding to the autistic and typically developing class 
with a SoftMax activation function yielding probability values 
for every class. Training was performed with Adam optimizer 
using binary cross-entropy as the loss function. An illustration 
of the ANN architecture is provided in Fig.1. 

2) Autoencoders 

This network architecture involved denoising autoencoders to 
scale down the dimensionality of data from 19900 features to 
1000 features using a first autoencoder setup. Input features 
were corrupted by adding noise with data corruption of 20% 

(binomial distribution: n=1, p=0.8). Dimensionality was 
further reduced from 1000 features to 600 features using a 
second encoder-decoder model with corruption of 30% this 
time (binomial distribution: n=1, p=0.7). The classifier 
comprised a model which takes its shape based on the first two 
auto-encoders with 19900 neurons at the input dense layer 
followed by 1000 and 600 neurons in intermediate hidden 
layers. Finally, a SoftMax based dense layer with two neurons 
was employed for the two classes. The weights of the 
classifier were initialized with the weights of autoencoders 
used for dimensionality reduction to utilize the knowledge 
extracted from the autoencoders. For details, please refer to 
Heinsfeld et al. 2019 [35]. An illustration of the auto-encoder 
architecture is provided in Fig.1. 

3) Random forests 

The random forest (RF) classification involved an ensemble of 
classification trees for predictive modeling of the connectivity 
matrix [54], [56]. It uses ‘bagging’ (bootstrap-aggregating) 
and feature randomness when building each individual tree to 
try to create an uncorrelated ‘forest’ of trees whose combined 
prediction is more accurate than that of any individual tree.

Fig. 4. Brain maps showing ROIs associated with each of the 12 sub-networks used in the ablation analysis. Table S1 in the supplement 
provides further information about each sub-network, such as ROIs in each sub-network, their names and MNI centroids. 
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The number of estimators was set to 100 trees with minimum 
samples per leaf equal to 1. The data samples were split based 
on the condition of minimum samples equal 100. Maximum of 
square root of the total features was chosen at a time for the 
input per estimator. Gini impurity which measures the 
likelihood of an incorrect classification of a new instance of a 
random variable was used as the loss function and 
bootstrapping was set to True to train the RF classifier. An 
illustration of the RF architecture is provided in Fig.1. 

G. Ablation analysis 

Gaining deeper understanding about the discriminative 
connectivity sub-networks is crucial for clinical 
interpretability. To this end, we performed ablation analysis 
between 12 well-defined sub-networks (please refer to Table 
S1 in the supplement for ROI names, MNI coordinates and 
corresponding sub-networks). The sub-networks included 
sensory/somatomotor hand (15 ROIs), sensory/somatomotor 
mouth (3 ROIs), cingulo-opercular task control (12 ROIs), 
auditory (9 ROIs), default mode (41 ROIs), cingulo-parietal (3 
ROIs), visual (20 ROIs), fronto-parietal task control (24 
ROIs), salience (10 ROIs), subcortical (25 ROIs), ventral 
attention (8 ROIs), dorsal attention sub-networks (13 ROIs) 
and uncertain (17 ROIs; regions that did not belong to any 
other defined network). One of these network assignments 
were made to each of the 200 ROIs (the number of ROIs in 
each network is mentioned above). The networks, originally 
derived in Power et al. were adopted to the CC200 atlas by 
matching each CC200 ROI with an ROI from the Power264 
atlas, and then assigning the network based on Power264’s 
network assignment [57]. The criteria for matching was the 
minimum Euclidean distance between the CC200 and 

Power264 ROIs. The assignments were further manually 
checked to ensure that the ROIs from the two atlases were 
visually and numerically close by. 

For ablation analysis, the fMRI connectivity matrix was 
separated based on the sub-networks assigned to every node. 
A zero-valued mask was generated for each sub-network. 
Each mask was multiplied with the input array of 19900 
elements separately to obtain a vector consisting of feature 
values belonging to all other subgroups except the one to be 
ablated. The resultant output was fed as input to the ANN 
based classifier for inferencing. Ablated sub-network 
inferencing was performed by occluding each sub-network at 
the input by multiplying with a zero-valued mask 
corresponding to the ablated sub-network. The accuracy with 
the ablated region was calculated and compared for a drop or 
increase with the baseline accuracy without ablation. The 
train-test split was based on LOSO where one site was tested 
with a trained model on rest of the 17 scanner sites. In ablation 
analysis, the sub-networks were ranked based on the drop-in 
accuracy for every site. Maximum drop indicated most 
significant sub-network for the classification. Frequency for 
every sub-network being the most significant was calculated. 

III. RESULTS 

Table 1 shows the comparison of classification metrics 
obtained from harmonized and non-harmonized data for each 
of the methods employed for a 10-fold LOSO cross-validation 
procedure. While harmonization did not have much effect on 
accuracy obtained from RF, the accuracy improved with 
harmonized data for auto-encoders (̴ 2.5%) and ANNs (4.5%). 
In fact, ANN with harmonized data provided highest accuracy

Fig. 5. Results from the ablation analysis of harmonized data with the ANN classifier. The drop in accuracy due to occluding every sub-
network can be observed per test site (LOSO). Positive values indicate a drop in accuracy due to ablation. 
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of 71.35%. Fig.2 illustrates the site-specific classification 
metrics obtained from harmonized and non-harmonized data 
for each of the methods employed. The general trend across 
sites replicates trends observed in the entire dataset shown in 
Table 1, i.e. ANN and Heinsfeld methods perform better than 
RF and that performance metrics for harmonized data 
outperform those obtained from non-harmonized data at 
almost every single site. The area under receiver operator 
characteristic curve (AUROC) over the complete harmonized 
dataset and non-harmonized dataset is shown in Fig.3. For the 
RF classifier, AUROC of harmonized data was 0.665 whereas 
AUROC of non-harmonized data was 0.616. Substantial 
increase in AUROC was observed for the ANN classifier 
where AUROC for harmonized data was 0.798 compared to 
AUROC for non-harmonized that was 0.602. Heinsfeld’s 
approach of using denoising autoencoders gave an AUROC of 
0.792 for harmonized data and an AUROC of 0.718 for non-
harmonized data.  

The brain regions representing the 12 sub-networks used in 
ablation analysis of harmonized data with the ANN classifier 
is shown in Fig.4. The corresponding results are illustrated in 
Fig.5, which shows the drop in accuracy when any of the 
given 12 sub-networks are occluded from the analysis. The 
drop in accuracy (indicated as positive values) is shown for 
individual sites in the LOSO framework. It can be seen that 

there is some variability across sites. Therefore, we assessed 
the frequency of drop in accuracy, i.e. the number of sites 
where in a drop in accuracy is observed, for occlusion of each 
of the sub-networks in ablation analysis (Fig.6). The 
percentage drop in accuracy (the median and range is shown) 
across all sites when each of the sub-networks are occluded in 
the ablation analysis is also shown in Fig.6. Both in terms of 
frequency and absolute percentage drop in accuracy, 
sensory/somatomotor (drop in 10 sites), auditory (drop in 9 
sites), cingulo-opercular task control (drop in 10 sites) and 
cingulo-parietal (drop in 11 sites) networks stand out.  

TABLE I 
10-FOLD CROSS-VALIDATION PERFORMANCE OF RANDOM FOREST (RF), 

ARTIFICIAL NEURAL NETWORK (ANN) AND AUTO-ENCODER (FROM 

HEINSFELD ET AL.) USING HARMONIZED AND NON-HARMONIZED 

DATASETS 

 

Fig. 6. The percentage drop in accuracy (the median and range is shown) across all sites when each of the sub-networks are occluded in the 
ablation analysis (top). The frequency of drop in accuracy, i.e. the number of sites where in a drop in accuracy is observed, for occlusion of 
each of the sub-networks in ablation analysis (bottom).

Authorized licensed use limited to: Carleton University. Downloaded on June 05,2021 at 18:36:42 UTC from IEEE Xplore.  Restrictions apply. 



0018-9294 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2021.3080259, IEEE
Transactions on Biomedical Engineering

Ingalhalikar et al.: Title - Functional connectivity-based prediction of Autism on site harmonized ABIDE dataset 

8 
 

Although the percentage drop in accuracy was not very high, 
the dorsal attention network showed a drop in 9 sites. T-test 
performed between baseline accuracies and accuracies 
obtained after ablation showed near-significant p-values for 
Cingulo-opercular task control sub-network (p = 0.07) and 
Cingulo-parietal network (p = 0.1). 

Only the characteristic path-length of the auditory sub-
network showed a significant positive correlation with ADIR 
verbal scores in the Autism group alone (n=234) as shown in 
Fig. 7 (FDR-corrected q=0.04). Subsequently, sub-networks 
identified as important in the ablation analysis 
(sensory/somatomotor, auditory, cingulo-opercular task 
control and cingulo-parietal sub-networks) were combined and 
graph measures obtained from them and correlated with non-
imaging measures controlling for gender and age in the 
Autism group. For this, Global Efficiency and ADIR-Verbal 
scores were found to have a negative correlation with a p-
value of 0.01. However, this did not survive FDR correction 
for multiple comparisons (FDR-corrected q=0.08). 

 

IV. DISCUSSION 

With the advent of multi-site publicly available neuroimaging 
data repositories, there has been renewed interest in leveraging 
the larger sample size for predicting diagnostic status of 
subjects within a machine learning framework [58]. The larger 
sample size makes machine learning more feasible by 
alleviating the curse of dimensionality. However, many of 
these multi-site data are aggregated post-hoc, i.e. they were 
acquired from different scanners with different acquisition 
parameters. Consequently, inter-site variability may mask 
inter-group differences, and hence, the advantages gained by 
the larger sample size in the context of machine learning based 
diagnostic classification may not be realized. Our work 
focused on addressing this issue using harmonization of multi-
site neuroimaging data to improve diagnostic classification 
accuracy. Specifically, we demonstrate this using ABIDE 
multi-site data for classifying individuals with Autism from 
healthy controls using resting state fMRI-based functional 
connectivity data. We demonstrate that consistently higher 
classification accuracies across multiple classification models 

can be obtained from multi-site data post harmonization with 
the ComBat technique as compared to without harmonization, 
outperforming earlier results from existing studies using  
ABIDE. Furthermore, our sub-network ablation analysis 
facilitated important insights into ASD pathology by 
determining the importance of each sub-network based on 
their drop in accuracy across all the sites.  

Multi-scanner and multi-site studies such as ABIDE are 
significantly affected by inter-scanner variability. These 
variations usually arise from scanner hardware and calibration, 
magnetic homogeneity, acquisition parameters and 
reconstruction algorithms. These inter-site disparities can be 
detrimental to the study under consideration as these can limit 
the power to detect statistical differences and sometimes may 
also lead to erroneous findings. For functional MRI, previous 
work has illustrated existence of site differences that cannot be 
removed completely via ICA based techniques [59]. It is 
therefore crucial to employ harmonization techniques to 
remove the unsolicited site variations while retaining the 
underlying biological variability. Nonetheless, no studies on 
ABIDE till now have considered data harmonization on fMRI         
connectivity across sites before analyzing and interpreting 
ASD pathology. 

We employed ComBat harmonization on ABIDE data, which 
earlier has been shown to eliminate site differences in 
functional connectivity while retaining the biological 
variability [53], [54]. Post harmonization, we employed 
standard classification models such as random forests and 
ANNs as well as the top performing model from earlier work 
by Heinsfeld et al. [35]. In all the classification models we 
observed that the overall accuracy increased significantly after 
harmonization (Table 1). Validation was performed using 
leave one site out type analysis, where again we demonstrated 
that harmonized data could preserve and add power to detect 
subtle biological variations (17/18 sites using ANN, 14/18 
using RF illustrated higher accuracies) in the absence of site-
variations resulting in superior and robust classification 
between ASD from TD subjects which was also reflected in 
the AU-ROC analysis. Also, for the technique from Heinsfeld 
et al. which relied on de-noising auto-encoders for 
generalizability, harmonization was crucial for capturing 
sensitive variations (in 12 out of 18 sites (in 676 subjects)) and 
to boost the classification accuracy. Heinsfeld et al’s method 
used denoising auto-encoders which were able to eliminate 
noise from the connectivity matrices. The weight parameters 
used for denoising were further used to initialize the 
parameters for the classifier which resulted in better 
performance. The sites CALTECH and SBL match the sites 
where Heinsfeld et al. illustrated lower accuracies as well. The 
data acquired from these sites has high intra-site variability 
that is not present in data from other sites, a probable reason 
why harmonization did not help [35]. Novel AI-based data 
harmonization has illustrated superior results in general, 
however at the same time it is yet to be demonstrated in the 
context of neuroimaging-based classification (and specifically 
ABIDE) wherein we have high dimensionality and relatively 
small sample size [60]. 

Fig. 7. Correlation between characteristic path length obtained 
from the FC matrices of the auditory network in Autism subjects 
with the ADIR verbal scores in those subjects. 
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To understand the neural patterns that were highly 
discriminative between ASD and TDs and contributed to the 
classification, we performed an ablation analysis where each 
sub-network was removed, and the ANN classifier was 
employed to find the drop in the accuracy. The results of this 
analysis (Figs 5 and 6) highlight the role of a few sub-
networks namely sensory/somatomotor, auditory, cingulo-
opercular task control and cingulo-parietal networks whose 
absolute drop in accuracy was generally higher than other 
networks. In addition, a drop in accuracy upon their ablation 
was found in 9-11 of the 18 sites. Thus, the most discerning 
brain regions which contributed to the classification were 
known. We could precisely quantify the contribution of every 
subnetwork based on the drop in accuracy. 

Heightened sensitivity to sensory stimuli is a behavioral 
hallmark of Autism. Therefore, it is not surprising that neural 
abnormalities in sensory processing and alterations in sensory 
networks including somatomotor and auditory network has 
been observed before [61], [62]. Specifically, with respect to 
the auditory network, we found that Autistic subjects with 
higher characteristic path length also had a higher ADIR-
Verbal score (Fig.7). A larger value of characteristic path 
length indicates lower efficiency in the network and hence it is 
not surprising that it is associated with greater impairment in 
verbal communication. This also lends credence to the notion 
that verbal communication difficulties in Autism may be 
linked to impairments in auditory processing of sensory 
stimuli [63].  

Cingulo-opercular and cingulo-parietal networks are basically 
control networks that are involved in a variety of executive 
functions including attention, salience, social cognition and 
communication [64]-[66]. Autism involves deficits in these 
domains and therefore, it is not surprising that we found these 
networks to be important for discrimination. In fact, our 
results are supported by previous studies that also found 
alterations in resting state networks anchored in the cingulate 
to be critical for identifying subjects with Autism [67]-[71]. 

V. CONCLUSION 

In summary, our work illustrates the importance of site-
harmonization in analysis of benchmark datasets such as 
ABIDE. Our classification using simple neural network 
models facilitated superior accuracy on harmonized data 
compared complex models that have been previously 
proposed. Ablation analysis was crucial for delineating the 
most discriminative sub-networks that were directly linked to 
the clinical markers of Autism. 
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