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Anatomically Parameterized Statistical Shape
Model: Explaining Morphometry through

Statistical Learning
Arnaud Boutillon, Asma Salhi, Valérie Burdin, and Bhushan Borotikar

Abstract— Objective: Statistical shape models (SSMs)
are a popular tool to conduct morphological analysis of
anatomical structures which is a crucial step in clinical
practices. However, shape representations through SSMs
are based on shape coefficients and lack an explicit one-
to-one relationship with anatomical measures of clinical
relevance. While a shape coefficient embeds a combination
of anatomical measures, a formalized approach to find the
relationship between them remains elusive in the literature.
This limits the use of SSMs to subjective evaluations in
clinical practices. We propose a novel SSM controlled by
anatomical parameters derived from morphometric anal-
ysis. Methods: The proposed anatomically parameterized
SSM (ANATSSM) is based on learning a linear mapping
between shape coefficients (latent space) and selected
anatomical parameters (anatomical space). This mapping is
learned from a synthetic population generated by the stan-
dard SSM. Determining the pseudo-inverse of the mapping
allows us to build the ANATSSM. We further impose orthog-
onality constraints to the anatomical parameterization (OC-
ANATSSM) to obtain independent shape variation patterns.
The proposed contribution was evaluated on two skeletal
databases of femoral and scapular bone shapes using
clinically relevant anatomical parameters within each (five
for femoral and six for scapular bone). Results: Anatomical
measures of the synthetically generated shapes exhibited
realistic statistics. The learned matrices corroborated well
with the obtained statistical relationship, while the two
SSMs achieved moderate to excellent performance in pre-
dicting anatomical parameters on unseen shapes. Conclu-
sion: This study demonstrates the use of anatomical rep-
resentation for creating anatomically parameterized SSMs
and as a result, removes the limited clinical interpretabil-
ity of standard SSMs. Significance: The proposed models
could help analyze differences in relevant bone morphom-
etry between populations, and be integrated in patient-
specific pre-surgery planning or in-surgery assessment.

Index Terms— Statistical shape modeling, morphometry,
anatomical parameters, femur, scapula
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I. INTRODUCTION

Automatic interpretation and analysis of three-dimensional
(3D) anatomical structures is key in medical applications. To
this end, statistical shape modeling (SSM) is a popular tool that
provides a compact representation of a family of objects as a
normal distribution of their shape variations [1]. These models
adopt an analysis-by-synthesis approach in which to explain
and interpret a 3D object, one needs to be able to synthesize
it. Popularity of these models lies in their ability to model
biological shapes that naturally have a high variability and
complexity. Furthermore, being linear representations, these
models are mathematically convenient [2]. Literature reports
that SSMs have been integrated into medical workflows [3] to
help clinicians diagnose pathologies [4], [5], design implants
[6], [7], reconstruct 3D anatomy from 2D radiographs [8]
or plan patient-specific intervention [9], [10]. Consequently,
SSMs of bony structures have been developed in the literature
which include but are not limited to the femur [4], [5], [11],
[12], humerus [2], [13], pelvis [6], scapula [2], [10], [14], tibia
[5], [12], vertebrae [15], and wrist [8].

For clinical use, the key property of the SSM lies in the
dense correspondence established during the registration pro-
cess, which identifies the points sharing the same anatomical
characteristics [2], [16], [17]. This feature has been effectively
used to embed bony SSM with landmark-based anatomical
information such as muscle insertions [18] or identify cortical
bone thickness [13]. Moreover, the generative capabilities of
these models enable the exploration of the shape coefficient
representation within the valid anatomical shape variation
[2], [5]. Shapes generated in such manner allow the user to
understand the anatomical feature having higher variability
by virtue of varying individual principal components. How-
ever, the shape variation patterns observed through individual
change of principal components do not explicitly correspond to
a unique anatomical parameter used in morphometric analysis
by the clinicians. Thus, clinicians are often left with a visual
guesswork upon how changing a single anatomical parameter
can affect the remaining parameters.

Morphometry refers to the quantitative analysis of the shape
in terms of lengths, widths, angles, and masses [19], [20]. In
the context of anatomical structure analysis, this information is
used to quantify the morphological development over time or
due to a disorder, detect changes or abnormalities in the shape,
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understand variation in population (healthy or impaired), and
deduce functional relationship (normal or affected) [3]. Hence,
clinicians have developed indexes that are correlated with the
instability of bony structures and musculoskeletal joints. For
example, for the upper limb, extreme critical shoulder angle,
defined on the scapular bone, is an indicator of degenerative
rotator cuff tears and glenohumeral osteoarthritis [21]. Simi-
larly, the kinematic instability of the knee joint is characterized
by the tibiofemoral alignment index, which integrates five
angle measurements [22]. Therefore, anatomical parameters
are used as predictive tools to assess biomechanical disorders
and instabilities and to make an informed treatment decision.
However, the computation of these indexes relies on man-
ual landmarking on medical images or on 3D reconstructed
surfaces. Both these approaches are either time consuming
or suffer from intra- and inter-observer variability [23], [24].
Hence, in order to improve the robustness and accuracy
of quantifying anatomical parameters, automatic geometrical
methods have been proposed in the literature [23], [24].

Recent studies have proposed to use point-to-point cor-
respondence, established during the SSM building process,
to automatically compute anatomical measurements [6], [11],
[14], [15], while others have suggested classification method-
ologies based on shape coefficients [5], [12], [25]. These
automatic approaches provide accurate measurements of the
anatomical parameters and reliable assessment of the instabil-
ity of knee and shoulder joints. Furthermore, certain studies
have investigated the relationship between shape coefficients
and anatomical parameters [11], [13], [15] in which shape
coefficients were found to encode anatomical parameters.
However, to the best of our knowledge, none of these studies
have presented a mathematical framework in which each mode
of variation of the SSM represented an individual anatomical
parameter regarded as relevant in clinical practice.

In this paper, we propose a novel technique to build SSMs
which integrate the relationship between the shape coefficients
(a shape representation arising from principal component anal-
ysis) and the anatomical parameters (a shape representation
derived from relevant morphometric analysis). To that end,
we define a mapping between both these representations,
which is learned through linear regression on a synthetic
population generated by the standard SSM. With this approach,
we develop two types of SSMs with anatomical parameters
as their modes of variation. The first one is an anatomically
parameterized SSM which allows us to explore the relation-
ship between the entire shape and the selected anatomical
parameters. The second one is a constrained version of the
first model with an orthogonal anatomical parameterization
to obtain independent shape variation patterns. We apply and
evaluate the proposed methodology to the femoral and scapular
bone shapes using clinically relevant anatomical parameters.
The contributions of this study are three-fold:

1) Generation of synthetic populations with automatic
anatomical measurements performed using dense point-
to-point correspondence and landmark tracking.

2) Development of two anatomically parameterized SSMs
controlled by anatomical parameters derived from mor-
phometric analysis, thanks to a statistical learning of

the mapping between shape coefficient and anatomical
parameters representations.

3) Assessment of the prediction performance of the devel-
oped models and exploration of the novel representation
arising from anatomical parameters.

The remainder of this paper is structured as follows. Section
II presents the anatomically parameterized statistical shape
model (Section II-B), the constrained model (Section II-C) and
a measure of shape variability (Section II-D). The experiments
are explained in Section III which mainly encompasses the
automatic anatomical measurements derivation (Section III-
B), the synthetic populations generation (Section III-C) and
the assessment of the two models (Section III-E). The re-
sults reported in Section IV validate the automatic derivation
approach (Section IV-A), the synthetic populations (Section
IV-B) and the developed statistical models (Section IV-D).
Section V follows with the discussion of results (Section V-A),
clinical benefits (Section V-C) and limitations of the proposed
methodology (Section V-D). Finally, Section VI presents the
conclusion and perspectives of the study.

II. METHODS

In this section, we first provide an overview of the math-
ematical formalism of standard SSMs (BASESSM) with prin-
cipal component analysis used for dimensionality reduction.
We then present the formalism of the proposed novel genera-
tive model (ANATSSM) based on anatomical parameterization
derived from least squares regression. We further propose
a constrained form of ANATSSM leading to an orthogonal
anatomical parameterization model (OC-ANATSSM) which is
formalized as an orthogonal Procrustes problem. Finally, sim-
ilar to BASESSM, we define the shape variability induced by
the two proposed models.

A. Overview of statistical shape modeling
Statistical shape models assume that the space of all possible

shape deformations can be learned from a set of example
shapes. Let Γ1, ...,Γn be a set of n shapes in which each
instance Γi is represented by a mesh that is a discrete set of
N landmark points, Γi = {γki | γki ∈ R3, k = 1, ..., N}. The
points among the shapes are assumed to be in correspondence,
which means that for two shapes Γi and Γj the k-th landmark
points, γki and γkj , represent the same anatomical mesh point.
In the case of dense set of points, correspondence is usually
established automatically using a registration algorithm [2].
In order to build the model, each shape Γi is described as
a vector shape si ∈ R3N , where the x, y, z- coordinates of
each point γki = (xki , y

k
i , z

k
i ) are concatenated as follows:

si = (x1i , y
1
i , z

1
i , ..., x

N
i , y

N
i , z

N
i )T .

Based on the vectorial representation, it is possible to
construct a probability distribution over shapes by applying
multivariate statistics [1], [26]. We assume that the shape
variations can be modeled using a multivariate normal distri-
bution s ∼ N (µ,Σ), in which the mean µ and covariance
matrix Σ are estimated from the example vector shapes,
s1, ..., sn. The covariance matrix Σ is usually intractable as
the number of points N is large (N � n). However, since
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Anatomically Parameterized Statistical Shape Model

Shape
s ∈ R3N

Shape
coefficients
α ∈ Rn−1

Anatomical
parameters
β ∈ Rm

PCA⇒ P,D LSR⇒ Q

ANATSSM = µ+ PDQ+β

Fig. 1: Proposed anatomically parameterized statistical shape
model (ANATSSM) which encompasses a deformation model
added to the mean shape. The linear mapping between the
shape space and the representation arising from shape coeffi-
cients is based on principal component analysis (PCA), while
least squares regression (LSR) is used to estimate the mapping
from shape coefficients to anatomical parameters.

the rank of the covariance matrix is at most n−1, performing
principal component analysis (PCA) on Σ generates a new
representation defined by n − 1 basis vectors which leads to
the following model:

BASESSM = µ+

n−1∑
i=1

αi
√
λiφi (1)

where (λi, φi)1≤i≤n−1 are the eigenvalues and eigenvectors of
the covariance matrix Σ, while αi are the shape coefficients.
The eigenvectors φi are orthogonal and form the principal
components of the model. Each of these principal components
represents an independent shape variation pattern, while the
corresponding eigenvalue λi quantifies their variance. The
eigenvalues and their corresponding eigenvectors are typically
arranged from largest to smallest, and the first principal
components correspond to the main modes of variation [1].

If we adopt the notation P = (φ1, ..., φn−1) ∈ R3N,n−1,
D = diag(

√
λ1, ...,

√
λn−1) ∈ Rn−1,n−1 and α =

(α1, ..., αn−1)T ∈ Rn−1, (1) is reformulated as follows:

BASESSM = µ+ PDα (2)

Assuming that the shape coefficients α are distributed ac-
cording to N (0, In−1), then the shapes follow a normal
multivariate distribution N (µ,Σ). Thus, the BASESSM is a
model of deformation added to the mean shape, and the
shape distribution is efficiently parameterized by the shape
coefficients [1], [10].

However, in the context of morphometric analysis, the
shape variation patterns of the principal components of the
BASESSM do not explicitly represent a one-to-one relationship
between them and the anatomical parameters that are typically
employed to characterize these structures. Hence, we devel-
oped an SSM parameterized by a novel representation arising
from the anatomical parameters. This novel representation is
derived from a learned mapping between shape coefficients
and anatomical parameters, and its formalism is explained in
the following sections.

B. Anatomically parameterized statistical shape model
(ANATSSM)

In the morphometric analysis of an anatomical structure, its
shape can be characterized by a small set of m ≤ n− 1 clin-
ically relevant anatomical parameters β = (βc1 , ..., βcm)T ∈
Rm [19], [20]. Here, c1, ..., cm are the labels of the anatomical
parameters. Hence, similar to the shape coefficients α, the
anatomical parameters based representation of shape β enables
another way of compactly describing the shape distribution.
Thus, each shape instance can be represented either by using
the shape coefficients or using the anatomical parameters.
Therefore, we proposed that there exists a mapping between
the two representations which can be effectively determined.
Specifically, we proposed that the anatomical parameters based
representation can be derived from the shape coefficients based
representation (Fig. 1).

In this proposed method, we presume that the mapping be-
tween the shape coefficients α and the anatomical parameters
β is linear, and there exist a matrix Q ∈ Rm,n−1 such that:

β = Qα (3)

The matrix Q is learned by employing least squares regression
on a set of shapes with their corresponding shape coefficients
and anatomical parameters. This set of shapes can be obtained
using the BASESSM as a generative model parameterized by
the coefficients α. Then, the parameters β are automatically
estimated from the synthetic shapes. Additionally, if the
shape coefficients follow a multivariate normal distribution
N (0, In−1), then the anatomical parameters β would be dis-
tributed according to N (0, QQT ). Hence, QQT corresponds
to the covariance matrix associated with the distribution of the
anatomical parameters.

Next, we inverse the learned linear mapping to obtain a
generative model controlled by the anatomical parameters,
referred to as anatomically parameterized statistical shape
model (ANATSSM). The matrix Q is reversed by computing
its Moore-Penrose pseudo-inverse, Q+ = QT (QQT )−1, as-
suming that Q is of full rank m. This inverse mapping leads
to the following generative model:

ANATSSM = µ+ PDQ+β (4)

= µ+

m∑
j=1

βcj

n−1∑
i=1

Q+
i,j

√
λiφi (5)

where the shape deformation distribution added to the mean
shape is efficiently parameterized by the anatomical param-
eters β. As the anatomical parameters are typically cor-
related (i.e. QQT 6= Im), the shape deformation vectors
(
∑n−1
i=1 Q

+
i,j

√
λiφi)1≤j≤m that best-fitted anatomical param-

eters are not orthogonal, and thus the shape variation patterns
arising from these vectors are not independent.

However, it would be relevant for clinical practice to build
a model with an independent parameterization in order to
understand the effect of modifying one anatomical parameter
at a time during pre-surgery planning. To this end, we orthogo-
nally constrained our covariance matrix to enforce independent
shape deformation, as explained in the next section.
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C. Orthogonally constrained and anatomically
parameterized statistical shape model (OC-ANATSSM)

To obtain the closest independent anatomical parameters, as
the distribution (of parameters) is assumed to be Gaussian, we
enforce the covariance to be the identity matrix by employing
the nearest matrix K ∈ Rm,n−1 to Q subject to KKT = Im:

K = arg min
KKT=Im

‖Q−K‖2F (6)

where ‖.‖F is the Frobenius norm. This optimization problem
is known as the orthogonal Procrustes problem for which the
closed-form solution is known [27]. The problem is solved
in two steps. First, we compute the reduced singular value
decomposition of Q, Q = U∆V T , with U ∈ Rm×m,
∆ ∈ Rm×m, V ∈ Rn−1×m. Second, the solution to (6)
optimization problem is given by K = UV T .

Therefore, we obtain a new linear mapping between the
shape coefficients α and the uncorrelated anatomical parame-
ters β̃ defined as follows:

β̃ = Kα (7)

where β̃ follows a multivariate normal distribution with iden-
tity covariance matrix N (0,KKT ) = N (0, Im).

To build the generative model parameterized by the prin-
cipal anatomical components, we can reverse the linear sys-
tem by employing the matrix KT . Hence, the orthogonally
constrained and anatomically parameterized statistical shape
model (OC-ANATSSM) can be defined as follows:

OC-ANATSSM = µ+ PDKT β̃ (8)

= µ+

m∑
j=1

β̃cj

n−1∑
i=1

KT
i,j

√
λiφi (9)

in which the deformation vectors (
∑n−1
i=1 K

T
i,j

√
λiφi)1≤j≤m

are independent. These vectors are closest to the shape de-
formations vectors of the ANATSSM, while subjected to the
orthogonality constraints. Hence, the shape variation patterns
arising from these vectors are independent.

D. Shape variability induced by anatomical parameters
In BASESSM, the shape variation corresponding to the i-

th eigenvector is quantified by the eigenvalue λi, and the
principal components are ordered from largest to smallest
eigenvalues as explained in Section II-A. Similarly, we define
the shape variation induced by the j-th anatomical parameters
of ANATSSM and OC-ANATSSM as follows:

κcj =

n−1∑
i=1

Q+2

i,j λi (10)

κ̃cj =

n−1∑
i=1

KT 2

i,j λi (11)

The shape variance κcj and κ̃cj of ANATSSM and OC-
ANATSSM can be determined by the matrices Q+ and KT , and
the eigenvalues λi. Therefore, for each anatomical parameter,
a scalar value represents the shape variability induced by this
parameter. Finally, we sorted the anatomical parameters in

decreasing order (from largest to smallest) based on their
corresponding variance, with the first anatomical parameter
producing the largest shape variation.

III. EXPERIMENTS

In this section, we present the experiments conducted to
assess and validate the proposed methods. First, we provide
an overview of the femoral and scapular bone datasets em-
ployed and BASESSM building process. We then summarize
the frameworks to automatically derive the five femoral and
six scapular anatomical measurements using the BASESSM and
landmark tracking. The BASESSM are subsequently employed
to generate synthetic populations from which the anatomi-
cal measurements are automatically extracted. The generated
synthetic populations enable the learning of the matrices
Q and K and the creation of anatomically parameterized
SSMs, ANATSSM and OC-ANATSSM. Finally, we assess the
characteristics of the obtained matrices and SSMs.

A. Femoral and scapular statistical shape models
Experiments were conducted on two human skeleton

datasets of femoral and scapular bone shapes.
Femoral dataset. The femoral bone images were extracted
from an open whole body CT scan dataset maintained by Sicas
Medical Image Repository (SMIR) [28] and publicly available
at (https://www.smir.ch/). This dataset consisted of
n = 50 whole body CT scans acquired using SIEMENS
SOMATOM Force Dual Source scanner (Siemens Healthcare,
Germany) with a resolution of 0.99 × 0.99 × 0.50 mm3.
The images were manually segmented by a medically trained
annotator (years of experience = 12) to extract 3D surface
models of femur bones (right only) with N = 17000 points.
Scapular dataset. The scapular dataset contained n = 76 sam-
ples previously acquired from the Department of Anatomy at
the regional University Hospital (CHRU de Brest, France). CT
scan images were acquired using the SIEMENS SOMATOM
Definition AS scanner (Siemens Healthcare, Germany) with
a resolution of 0.96 × 0.96 × 0.60 mm3. The images were
evaluated for anatomical integrity and manually segmented by
two radiologists (years of experience: R1 = 19 years, R2 = 12
years). Surface 3D mesh models with N = 15000 points were
obtained using Amira software (Amira, FEI, Hillsboro, V5.4).

For each anatomical structure, we used the IMCP-GMM (it-
erative median closest point-Gaussian mixture model) pipeline
[2] to create the BASESSM which comprised three steps: 1)
Rigid alignment of shapes using iterative median closest point
(IMCP) algorithm and creating a virtual manifold [29], 2) non-
rigid alignment of datasets to establish dense correspondence
using a coherence point drift (CPD) algorithm [30] and 3)
BASESSM creation using GPMM as reported in [10]. After
establishing point-to-point correspondence across all shapes in
step 2), experiments were performed following a leave-one-out
strategy, in which one shape was retained for evaluation and
the remaining ones were employed to build the models. The
BASESSM were implemented using the open-source toolbox
for scalable image analysis and shape modeling (https:
//scalismo.org/). Please refer to the supplementary ma-
terial for an assessment of the robustness of the BASESSM.

https://www.smir.ch/
https://scalismo.org/
https://scalismo.org/
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Scapular Anatomical Measurements

Critical Shoulder Angle (∠)

Glenoid Inclination (∠)
& Version (∠)

Glenoid Height (–)
& Width (–)

Scapula Length (–)

TS

AS

LA

AI

GI/IGR4

GS

IGR5-8IGR1-3

SFH

GTSNS

INS

MMC
LLC

PLC PMC

IMC

FP

Femoral Anatomical Measurements

Neck Shaft Angle (∠)
& Head Diameter (–)

Femur Length (–)Bicondylar Width (–)
& Femoral Version (∠)

Fig. 2: Automatic derivation of femoral and scapular anatomical measurements based on 18 femoral and 20 scapular landmarks
(•) selected on the mean shape of the respective BASESSM. Femoral anatomical measurements include: neck shaft angle
(NSA), femoral version (FV), bicondylar width (BW), head diameter (HD) and femur length (FL), while scapular anatomical
measurements encompass: critical shoulder angle (CSA), glenoid inclination, version, height and width (GI, GV, GH and GW)
as well as scapula length (SL). Please refer to the supplementary material for definitions of the landmarks and measurements.

B. Automatic derivation of anatomical measurements
from landmarks

The femoral and scapular morphologies were characterized
by sets of anatomical measurements selected based on their
relevance to hip, knee and shoulder joint replacement pro-
cedures [10], [14], [31], [32]. For each anatomical structure,
these anatomical measurements were automatically computed
using a set of anatomical landmarks selected on the mean
shape of the BASESSM (Fig. 2).
Femoral anatomical measurements. We employed m = 5
femoral anatomical measurements: neck shaft angle (NSA),
femoral version (FV), bicondylar width (BW), head diame-
ter (HD), and femur length (FL), which were automatically
computed using a set of 18 anatomical landmarks [31]–[36].
Angulation (NSA), torsion (FV) and dimension (HD) of the
proximal femur are essential for surgical planning of hip
joint replacements [31]–[33], [35], [36], whereas BW is an
important measurement for knee joint replacements [34] and
FL provides an evaluation of the size of the femur [32].
Scapular anatomical measurements. The scapular shape was
characterized by a set of m = 6 anatomical measurements:
critical shoulder angle (CSA), glenoid inclination (GI), glenoid
version (GV), glenoid height (GH), glenoid width (GW), and
scapula length (SL) using 20 landmarks [7], [14], [19], [21],
[37]. Orientation (GI, GV) and size (GH, GW) of the glenoid
are crucial for shoulder joint replacements [7], [14], [37],

while CSA is a robust indicator of glenohumeral osteoarthritis
[21] and SL assesses the global dimension of the scapula [19].

During leave-one-out evaluation, the selected anatomical
landmarks on the mean shape were transferred to the retained
shape by using the established point-to-point correspondence
between the BASESSM and the retained shape. The tracked
landmarks were then used to automatically compute the
anatomical measures for the retained shape. To determine
the accuracy of the automatic computation of anatomical
measures, we evaluated the absolute error between anatomical
measures derived from manual (expert) landmarking and those
derived from automatically transferred landmarks.

C. Synthetic population generation
To learn the matrices Q and K of each anatomical structure,

we generated synthetic datasets of shapes with their corre-
sponding shape coefficients and anatomical measures. These
synthetic populations were obtained by using the femoral and
scapular BASESSM (developed in Section III-A) as genera-
tive models parameterized by the shape coefficients α ∼
N (0, In−1). Then, as a point-to-point correspondence between
the BASESSM and the synthetic shapes was already established,
we could track the selected landmarks in each generated shape.
Using the automatic methods described earlier (Section III-
B) we computed the anatomical measures in each generated
shape. In total, we generated 1000 synthetic shapes for each
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bone to learn the matrices Q and K. The anatomical measures
were then used as anatomical parameters for characterizing the
shapes, mapping their relationship with the respective shape
coefficients, and ultimately to build the proposed models.

To determine if the distribution of the anatomical parameters
among the synthetic shapes was represented by a normal dis-
tribution, we employed the Shapiro-Wilk normality test. This
test computed the p-value for the significance of normality of
each marginal distribution (individual parameter distributions),
which was compared against the typical significance level
of 0.01. We then computed the histogram and estimated the
mean and variance of each marginal distribution. A normal
distribution was fitted to each histogram based on the es-
timated mean and variance. For the rest of this study, the
marginal distributions were normalized to have zero mean and
unit variance. Furthermore, to assess the statistical relationship
between the anatomical parameters, we computed the Pearson
correlation coefficients between each pair of parameters. We
also evaluated the correlation between shape coefficients and
anatomical parameters using Pearson correlation coefficients.

D. Assessment of the learned matrices
To assess the learned matrices Q and K, which represented

the linear mapping from the shape coefficients to the anatom-
ical parameters, we computed the mean absolute difference
between the learned matrices weights and the Pearson correla-
tion coefficients computed between the shape coefficients and
anatomical parameters. Similarly, to evaluate the matrix QQT ,
which represented the learned covariance between anatomical
parameter, we computed the mean absolute difference between
the matrix QQT weights and the Pearson correlation coeffi-
cients computed between anatomical parameters pairs. Finally,
we assessed the orthogonality constraints by verifying that
KKT was the identity matrix.

The generative models ANATSSM and OC-ANATSSM were
then built using the matrices Q and K as formalized in
Sections II-B and II-C.

E. Assessment of ANATSSM and OC-ANATSSM

The predictive performance of ANATSSM and OC-ANATSSM
were assessed at each iteration of the leave-one-out evaluation
by computing the absolute error between anatomical measures
derived from manual landmarking and those obtained by both
models on the retained shape. We used the correspondence
between ANATSSM and OC-ANATSSM and the retained shape
to automatically extract the anatomical parameters.

Furthermore, to assess and compare the shape variation
patterns induced by the two models in each anatomical struc-
ture, we generated shapes by changing the value of the j-th
anatomical parameter between ±3σcj . For each anatomical
parameter, we performed visual comparison of the shape
variation patterns of ANATSSM and OC-ANATSSM. We also
computed the shape variability (κcj and κ̃cj ) induced by
the j-th anatomical parameters in the two models, and their
corresponding sub-models. Sub-models were derived from the
anatomical models by retaining the anatomical parameter with
largest anatomical variability sequentially. More specifically, at

each step of the ablation study, the sub-models ANAT\βcj
and

OC-ANAT\β̃cj
were obtained by removing the j-th column

of the matrices Q and K associated with the cj anatomical
measurements (i.e. sub-matrices). The obtained values were
normalized by total BASESSM shape variability (

∑n−1
i=1 λi).

IV. RESULTS

A. Accuracy of automatic derivation of anatomical
measurements

Automatic determination of anatomical measurements
achieved moderate to excellent accuracy in comparison with
manual measurements (Table I). In both anatomical structures,
angle measures were harder to predict as compared to size
measurements. For angle measurements, the mean absolute
error of the NSA, FV, CSA, GI and GV measures were compa-
rable (1.7°, 1.7°, 1.6°, 2.0° and 1.2° respectively). Automatic
computation of femoral size measures (BW, HD and FL) was
found excellent with mean absolute errors below 1.0 mm (0.7
mm, 0.5 mm and 1.0 mm respectively). For scapular size
measurements, the mean absolute error of the GH measure
was highest (1.4 mm) while GW and SL measures performed
only marginally lower (1.0 mm and 0.8 mm respectively).
Prediction of FV and GI measures were the least robust with a
standard deviation of 1.4° (1.5° respectively) and a maximum
absolute error of 6.7° (6.6° respectively).

B. Assessment of synthetically generated population

Each anatomical parameter passed the test of normality with
p-value greater than the significance level of 0.01 (Fig. 3).
In both datasets, it was confirmed that the mean values of
the anatomical parameters (µNSA, ..., µFL and µCSA, ..., µSL)
corresponded with the anatomical measurements obtained on
the mean shape of the femoral and scapular BASESSM, while
the variance (σNSA, ..., σFL and σCSA, ..., σSL) represented
the variability of the generative models (Fig. 3).

The Pearson correlation coefficients between anatomical
parameters of femoral and scapular synthetic data ranged from
0.01 to 0.89 with both positive and negative correlations (Table
II). The highest correlation value (ρ = 0.89) was found be-
tween femoral BW-HD pairs while the lowest value (ρ = 0.01)
was found between GI and GV scapular measures. In both
anatomical structures, the correlation coefficients between size
measurements were high and positive (ρ ≥ 0.59), while angles
measures were less correlated (ρ ≤ 0.47). In the scapular
population, all size measures were negatively correlated with
angle measurements.

The Pearson correlation coefficients between shape co-
efficients from BASESSM and anatomical parameters from
generated populations expectedly showed that in each bone,
each anatomical parameter was correlated with multiple shape
coefficients (Table III). Furthermore, the statistical relation-
ships were sparse as 79% of the femoral and 76% of the
scapular correlation coefficients were close to zero (|ρ| ≤ 0.1).
In both anatomical structures, the first shape coefficient was
highly correlated with size measurements (|ρ| ≥ 0.72), while
being marginally correlated with angles measures (|ρ| ≤ 0.27).
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TABLE I: Leave-one-out assessment of the absolute error between BASESSM, ANATSSM and OC-ANATSSM predictions and
manually derived anatomical measurements. Mean, standard deviation (STD), maximum and minimum are reported.

Absolute Error BASESSM ANATSSM OC-ANATSSM
mean STD min max mean STD min max mean STD min max

Fe
m

ur

NSA (°) 1.7 1.3 < 0.1 5.3 2.1 1.5 0.1 6.7 2.0 1.6 < 0.1 6.3
FV (°) 1.7 1.4 < 0.1 6.7 2.7 2.2 0.1 9.9 3.1 2.6 0.1 10.1

BW (mm) 0.7 0.5 < 0.1 1.8 1.1 0.9 < 0.1 3.2 3.4 2.5 0.2 9.7
HD (mm) 0.5 0.3 < 0.1 1.4 1.0 0.8 < 0.1 3.9 2.2 1.6 0.1 7.7
FL (cm) 0.1 0.1 < 0.1 0.3 0.1 0.1 < 0.1 0.3 1.4 1.0 < 0.1 4.6

Sc
ap

ul
a

CSA (°) 1.6 1.1 < 0.1 4.6 2.0 1.8 < 0.1 9.6 2.4 2.0 0.1 7.8
GI (°) 2.0 1.5 0.1 6.6 2.4 2.1 0.1 8.7 2.6 2.3 0.1 9.3
GV (°) 1.2 1.0 < 0.1 5.2 2.1 1.8 < 0.1 9.6 2.6 2.1 < 0.1 9.7

GH (mm) 1.4 1.2 < 0.1 5.7 1.5 1.2 0.1 6.2 2.4 1.7 0.1 8.6
GW (mm) 1.0 1.1 < 0.1 7.0 1.3 1.4 < 0.1 8.5 1.8 1.6 < 0.1 8.6
SL (mm) 0.8 0.6 < 0.1 2.7 1.4 1.0 0.1 4.0 5.1 3.7 0.1 15.8
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Fig. 3: Histograms of femoral and scapular marginal (individual) anatomical parameters (–) derived from the synthetically
generated populations. The p-values (pNSA, ..., pSL) assessed the normality of the distributions while normal distributions (–)
were fitted based on estimated mean (µNSA, ..., µSL) and variance (σNSA, ..., σSL).

C. Assessment of the learned matrices

The learned weights of the femoral and scapular matrices Q
and K were similar to the Pearson correlation coefficients pre-
viously obtained (Table III), with a mean absolute difference
lower than 0.05. This provided an indirect validation that the
learned matrices correctly integrated the statistical relationship
between shape coefficients and anatomical parameters com-
puted in the synthetic populations. Furthermore, the matrices
were sparse with at least 68% of the learned weights close
to zero (|.| ≤ 0.1). This characteristic was also noted for the
Pearson correlation coefficients in Section IV-B. Finally, it was
confirmed that in both structure the matrix Q was of rank m.

The anatomical parameter covariance matrices QQT and
KKT were computed and compared with the Pearson corre-
lation coefficient of the synthetic data (Table II). The weights
of the femoral and scapular covariance QQT were close (0.01
and 0.02 mean absolute difference) to the reported Pearson
correlation coefficients indicating that the learned matrices cor-
rectly integrated the statistical relationship between anatomical
parameters computed in both synthetic populations. Second, in
each anatomical structure, we performed the sanity check to

confirm that the introduction of orthogonality constraints led
to an identity covariance matrix KKT . Please refer to the
supplementary material for the weights of the matrices.

D. Assessment of ANATSSM and OC-ANATSSM

Both ANATSSM and OC-ANATSSM achieved satisfactory
predictive performance compared with manual measurements
on each anatomical structure (Table I). Firstly, both ANATSSM
and OC-ANATSSM achieved lower predictive performance
than BASESSM for every anatomical measurement. This was
expected as both anatomical models were built on synthetic
data generated by BASESSM which were used as proxy for real
measurements. For this reason, we expected ANATSSM and
OC-ANATSSM to perform equally or worse than BASESSM on
real external shapes. More specifically, we observed maximum
error for extreme measures (e.g. SL = 180 mm), which
were scarce in the synthetically generated population. Hence,
ANATSSM and ANATSSM did not generalize well on these
extreme shapes while the method based on BASESSM and
landmark tracking did not suffer from this limitation. Secondly,
ANATSSM outperformed OC-ANATSSM for every anatomical
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TABLE II: Pearson correlation coefficients between anatomical
parameters in synthetic populations.

(a) Correlation in femoral synthetic population.

Corr. βNSA βFV βBW βHD βFL

βNSA 1 0.37 0.07 0.21 0.26
βFV 0.37 1 −0.06 0.03 0.07
βBW 0.07 −0.06 1 0.89 0.79
βHD 0.21 0.03 0.89 1 0.85
βFL 0.26 0.07 0.79 0.85 1

(b) Correlation in scapular synthetic population.

Corr. βCSA βGI βGV βGH βGW βSL

βCSA 1 0.43 0.47 −0.51 −0.46 −0.24
βGI 0.43 1 0.01 −0.37 −0.22 −0.04
βGV 0.47 0.01 1 −0.08 −0.33 −0.16
βGH −0.51 −0.37 −0.08 1 0.67 0.71
βGW −0.46 −0.22 −0.33 0.67 1 0.59
βSL −0.24 −0.04 −0.16 0.71 0.59 1

measurements except for neck shaft angle (2.1° and 2.0°
error). For both SSMs, the maximum angle measurement error
was reported for femoral version (9.9° and 10.1°) while the
maximum size measurements error was reported for femur
length (0.3 cm and 15.8 cm). Hence, the additional constraints
on OC-ANATSSM reduced its predictive performance com-
pared to the ANATSSM. This was expected as Q corresponded
to the best fitted solution. Please refer to the supplementary
material for further evaluation of the predictive performance.

We then visually confirmed that each anatomical param-
eter variation induced the correct modification in femoral
and scapular shapes (Fig. S4). With regards to the femoral
parameters, the NSA altered the orientation of the femoral
head with regards to the femoral shaft, while the FV changed
its orientation with respect to the femoral condyles. The BW
controlled the size of the condyles, whereas the HD modified
the size of the femoral head and the FL changed the size of the
femur. For the scapular shape, the CSA changed the orientation
of the acromion with regards to the glenoid, while the GI and
GV modified the glenoid orientation. The glenoid dimension
was altered by both GH and GW anatomical parameters,
whereas the SL changed the size of the scapula. We also
visually validated the constraints added to the OC-ANATSSM
led to independent shape variation patterns. For instance, the
variation of the GW less altered the size of the scapula in
OC-ANATSSM as compared to ANATSSM. Please refer to the
supplementary material for a direct evaluation of orthogonality
and video demonstrations of the shape variation patterns.

Finally, the obtained shape variation values revealed that the
femoral ANATSSM and OC-ANATSSM incorporated 98.7% and
90.3% of the total variability present in the BASESSM, while
the scapular models accounted for 63.1% and 61.2% of the
total variability (Fig. 5). Hence, in both anatomical structures,
OC-ANATSSM integrated marginally less shape variability. In
femoral models, the FL represented the most shape variation
(κFL = 88.8% and κ̃FL = 57.7%) while the FV corresponded
to the least shape variation (κFV = 1.3% and κ̃FV = 1.4%).
Scapular results were similar with SL accounting for the most
shape variation (κSL = 29.8% and κ̃SL = 28.8%) and GV

TABLE III: Pearson correlation coefficients between anatomi-
cal parameters and shape coefficients in synthetic populations.
Only the first 15 shape coefficients are reported.

(a) Correlation in femoral synthetic population.

Corr. βNSA βFV βBW βHD βFL

α1 −0.18 −0.02 −0.8 −0.85 −0.99
α2 0.58 0.36 −0.14 −0.1 0.08
α3 −0.23 −0.33 −0.15 −0.14 −0.01
α4 −0.15 −0.55 −0.05 −0.14 −0.02
α5 0.33 0.48 −0.28 −0.18 0.03
α6 −0.15 0.04 −0.34 −0.18 0.02
α7 0.21 −0.33 0.1 0 0.03
α8 −0.09 0.23 0.13 0.05 −0.02
α9 0.24 −0.1 −0.14 −0.04 0.02
α10 0.24 0.01 −0.12 −0.01 −0.02
α11 0.07 0.07 0.1 0.02 −0.04
α12 −0.03 −0.01 0.02 0.01 0
α13 −0.04 −0.04 −0.06 0.01 −0.03
α14 0.04 −0.01 0 0.14 −0.01
α15 −0.05 −0.03 0.01 0.02 0.03

(b) Correlation in scapular synthetic population.

Corr. βCSA βGI βGV βGH βGW βSL

α1 −0.27 −0.25 −0.17 0.76 0.72 0.89
α2 −0.27 0.26 −0.16 0.27 0.09 0.41
α3 0.18 0.12 0 −0.05 −0.15 −0.07
α4 −0.24 0.28 −0.22 −0.13 −0.01 0.04
α5 −0.02 0.28 −0.35 −0.2 0.29 0.02
α6 −0.51 −0.17 −0.33 0.26 0.23 −0.13
α7 0.17 0.33 0.13 −0.22 −0.1 0.02
α8 −0.09 −0.1 −0.2 −0.01 0.16 −0.03
α9 −0.08 0.08 0.33 0.11 0.03 −0.09
α10 0.07 0.28 0.19 0.08 0.07 0.01
α11 −0.07 −0.22 −0.03 0.15 0.07 −0.06
α12 0.19 0.16 0.04 −0.19 −0.19 0.04
α13 0.3 0.13 0.3 0.07 0.01 0.05
α14 0.07 0.05 −0.17 −0.16 −0.01 0.01
α15 −0.04 0.16 −0.22 0.09 −0.14 0.05

representing the least variability (κGV = 1.7% and κ̃GV =
1.5%). However, in both bones, the order of the anatomical
parameters differed between the two models, the CSA was for
instance third in ANATSSM while being fifth in OC-ANATSSM.
Furthermore, as expected, the shape variability exhibited by
the sub-models was lower than original models, indicating that
shape variability is an increasing function with respect to the
number of anatomical parameters. The results obtained from
OC-ANATSSM provided further validation of the orthogonality
constraints, as the shape variability induced by the anatomical
parameters remained unchanged across sub-models, contrary
to ANATSSM sub-models in which κGH increased from 7.9%
in ANATSSM to 27.6% in ANAT\βSL

.

V. DISCUSSION

This study illustrated the development and evaluation of
two novel SSMs, ANATSSM and OC-ANATSSM, controlled by
anatomical parameters derived from morphometric analysis.
Experiments performed on the femoral and scapular bone
shapes demonstrated that both SSMs integrated the statisti-
cal relationship between shape coefficients and anatomical
parameters while preserving most of the BASESSM shape
variability. The exploration of the novel anatomical parameter
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Fig. 4: Visual comparison of shape variation patterns arising from anatomical parameters of femoral ANATSSM (βNSA, βFV ,
βHD) and OC-ANATSSM (β̃NSA, β̃FV , β̃HD), as well as scapular ANATSSM (βCSA, βGV , βGW ) and OC-ANATSSM (β̃CSA,
β̃GV , β̃GW ). Each anatomical parameter cj is shown with the shape varied between three standard deviations (±3σcj ) from
the mean shape (µ). Please refer to the supplementary material for visualization of the remaining anatomical parameters.
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Fig. 5: Shape variability induced by each of the femoral and scapular anatomical parameters in ANATSSM, OC-ANATSSM and
their respective sub-models built by retaining the anatomical parameter with largest anatomical variability at each step. The
shape variability values of the models were normalized by total BASESSM shape variability.

representation further confirmed the feasibility and validity
of the two proposed models. We finally validated that the
added orthogonality constraints on OC-ANATSSM resulted in
independent shape variation patterns. To the best of our knowl-
edge, the proposed modeling framework is the first illustration
to build an SSM using anatomically relevant measures on
a bone structure. The proposed models have deeper impact
in multiple stages of any computer assisted surgery or even
in intuitive understanding of morphometry and how multiple
relevant anatomical measures are correlated.

A. Synthetically generated population characteristics
The proposed models were built on synthetically generated

shapes from BASESSM. Although the descriptive statistics of
synthetic data matched well with the original femoral and
scapular datasets of real shapes, it was important to refer to
the literature for larger acceptance. Thus, we compared the
descriptive statistics of each of the anatomical parameters (Fig.
3) and their correlations (Table II) with the values reported
in the literature [19], [32]–[35], [37]–[39]. The means and
variances computed on the synthetic population (Fig. 3) were
comparable to the values reported from real femoral and
scapular population: NSA (121.8±3.9°) [33], FV (13.9±6.5°)
[33], BW (83.9±6.3 mm) [34], HD (52.1±4.4 mm) [35], FL
(42.8±2.9 cm) [32], CSA (33.1±2.1°) [38], GI (11.0±4.0°)

[37], GV (−7.0 ± 4.0°) [37], GH (36.4 ± 3.6 mm) [19],
GW (28.6 ± 3.3 mm) [19] and SL (155.0 ± 16.0 mm) [19].
Although few studies focused on analyzing the correlation
between anatomical parameters, the scapular pair CSA and GI,
and the femoral couple GW and FL were respectively reported
to be positively correlated [39], [40]. Our observations on the
synthetic data were similar (Table II) and thus provided further
validation of the population generated through BASESSM.

B. Mapping assessment
We assumed that a linear mapping existed between the

anatomical parameters and shape coefficients. While this could
be a reasonable solution, the assumption may not be entirely
valid. PCA linearizes the shape space during SSM building
process, but whether the anatomical parameter representation
also gets linearized is not yet understood. Further to this, we
derived the inverse of this mapping to obtain ANATSSM using
the Moore-Penrose pseudo-inverse whose algebraic formula is
valid only if the matrix is of full rank. Hence, the anatomical
parameters selected to build the models should respect this
condition. Moreover, since the matrix Q is a best fit solution,
the approximated matrix K derived after solving the orthogo-
nal Procrustes problem needs to be evaluated to assure that it
integrates the statistical relationship between shape coefficients
and anatomical parameters (as in Section IV-C).
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C. Benefits for clinical practice

While previous studies already proposed to employ anatom-
ical parameters for shape modeling, these works focused on
predicting the complete shape from given partial observation
[26], [41]. Albrecht et al. [26] proposed a posterior shape
model to build a posterior distribution of the whole shape given
the known parts, which one of the clinical applications consists
in reconstructing a model of the premorbid shape as in [10],
[14]. Additionally, the work of Blanc et al. [41] used anthro-
pometric (patient age, weight, and height) and morphometric
(bone height, width, and orientation) information to improve
the prediction of the complete shape from sparse observation.
To this end, known points information and meta-variables were
concatenated into a single vector of predictors. Hence, our
work differs from these studies as it aims at mapping two
latent representations to build a new parameterization derived
from anatomical parameters and therefore at controlling the
whole shape variations through clinically relevant modes.

The integration of the two models in clinical workflow
could provide significant benefits for the understanding of
the relationship between bone shape and joint biomechanics,
and the planning of patient-specific intervention. Specifically,
as anatomical parameters can be used to characterize joint
kinematics [22], ANATSSM could provide a formalized rela-
tionship between shape and biomechanics through controlled
changes in anatomical parameters. This information is crucial
to analyze morphological and biomechanical changes over
time, and develop more accurate diagnostic tools. Further-
more, as ANATSSM integrated correlation between anatomical
parameters, this model could be used to analyze the difference
in these correlations among different populations. Specifically,
ANATSSM could help understand the variation in bone mor-
phometry across various gender and age groups.

While OC-ANATSSM is artificial due to the forced induc-
tion of orthogonal constraints, it may not reflect the true
relationship between anatomical parameters. Hence, as op-
posed to ANATSSM, OC-ANATSSM is not suitable to compare
correlations among different groups, since the same iden-
tity covariance matrix would arise for different populations.
However, this model could be effectively embedded into pre-
surgery planning tools, as the orthogonality constraints would
allow the clinician to modify one anatomical parameter at
a time - as typically done during the surgery. For instance,
in the context of bone loss in the glenoid region, the OC-
ANATSSM could be employed, first to predict the missing
scapular bone [10], [14], and next to modify the glenoid
parameters independently without altering the other ones. This
would allow the clinician to objectively calibrate the patient-
specific model leading to improved accuracy and reliability of
shoulder joint replacement procedures.

D. Limitations

This study has certain limitations which are categorically
listed in this section. First, our experiments were conducted
on only two anatomical structures. Hence, the genericity of the
method needs to be further evaluated. However, as formalized
in the Sections II-B and II-C, the proposed ANATSSM and

OC-ANATSSM can be derived from any BASESSM and for any
anatomical structures. Furthermore, the number of anatomical
parameters selected to develop ANATSSM and OC-ANATSSM
is limited by n − 1, with n the number of shapes in the
training set which is typically greater than 50. Although we
employed a limited number of anatomical parameters, the
proposed framework allows us to study localized parameters
(e.g. GV) and their relationship with global ones (e.g. SL).

Second, the automatic derivation of anatomical measure-
ments was based on dense point-to-point correspondence and
anatomical landmarks selected on the mean shape of the
BASESSM. While the reliability of the selection of the ma-
jority of those landmarks (angulus inferior, angulus superior,
trigonum spinae, inferior and superior points on the glenoid
rim, and the most lateral point on the acromion) has been
found to be excellent as reported in the literature [17], land-
mark transfer is still sensitive to the set of selected landmarks
[17]. This could affect the accuracy of the automatic derivation
method and thus deteriorate the quality of the anatomical
parameters used to build ANATSSM and OC-ANATSSM. Hence,
it could be beneficial to use automatic geometrical methods
[24] that do not depend on landmarks and may further improve
the reliability of the measurements.

Third, our experiments revealed that the six scapular param-
eters only accounted for 63.1% of total shape variability (Fig.
5), indicating that more anatomical parameters are needed to
attain the total BASESSM shape variability. For instance, the
coracoid morphology characterized by its length and thickness
[19] was not incorporated in the proposed models. While it is
true that developing models with more anatomical parameters
would increase their shape variability (as demonstrated by the
comparison to sub-models) and provide a more complete de-
scription of the scapular shape, such a thorough representation
is not needed in a clinical case. Hence, we made a deliberate
attempt to limit the number of anatomical parameters and
to select parameters relevant for morphometry around the
glenoid region [10], [14]. Finally, we observed that the five
femoral anatomical parameters represented 98.7% of the total
BASESSM shape variability, illustrating the relative complexity
to model the scapular morphology. Hence, the selection of the
anatomical parameters should be determined according to the
anatomical structure of interest and targeted applications.

VI. CONCLUSION

Understanding shape variations that are directly linked
to anatomical measures of a biological structure is key in
understanding the anatomo-physiological relationship between
form and function. This paper introduced two data-driven gen-
erative models (ANATSSM and OC-ANATSSM) controlled by
anatomical parameters. These models were derived from the
BASESSM by integrating a mapping between shape coefficients
and anatomical parameters. As opposed to traditional SSMs,
the shape variation patterns of these models were tuned with
selected anatomical parameters. Experiments conducted on the
femoral and scapular bone shapes validated the predictive
performance of the proposed models, and the shape variation
patterns were found to agree with morphometrics. Such models
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will provide intuitive understanding to clinicians and surgeons
on the selection of treatment strategies, and they will also
improve the comprehension of joint pathomechanics in a
population considered as risky based on anatomy. Future work
will focus on extending the validation of the methodology to
other anatomical structures. In addition, this approach will be
integrated into biomechanical models to further investigate the
relationship between bone shape and joint biomechanics.
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SUPPLEMENTARY MATERIAL

SI. BASESSM ROBUSTNESS

The robustness of the femoral and scapular BASESSM was
evaluated using the compactness C(R), generality G(R) and
specificity S(R) metrics, with 1 ≤ R ≤ n − 1 the number
of retained principal components (Fig. S1). The femoral and
scapular BASESSM were built using datasets of n = 50 and
n = 76 shapes respectively. The metrics were defined as
follows:

C(R) =

∑R
r=1 λr∑n−1
i=1 λi

(S1)

G(R) =
1

n− 1

n−1∑
i=1

‖s′i(R)− si‖
2
2 (S2)

S(R) =
1

n− 1

n−1∑
i=1

‖s′′i (R)− s′i‖
2
2 (S3)

s′i(R) was the best reconstruction of the instance si from
the model built excluding si with R principal components.
Additionally, s′′i (R) was a shape example randomly generated
using the model with R principal components and s′i was the
nearest instance of the training set to s′′i (R). The specificity
was computed using 200 randomly generated shapes.

SII. AUTOMATIC DERIVATION OF ANATOMICAL
MEASUREMENTS FROM LANDMARKS

Femoral landmarks. The five femoral anatomical parameters
(NSA, FV, BW, HD, and FL) were automatically computed
using a set of 18 anatomical landmarks. Nine were equally
distributed along the femoral head with one located at the
most superior point of the femoral head (SFH). The nine
remaining landmarks were positioned at anatomically relevant
locations: most inferior, most medial and most posterior
points of the medial condyle (IMC, MMC and PMC), most
lateral and most posterior points of the lateral condyle
(LLC and PLC), inferior and superior neck subcapital (ISN
and SNS), facies patellaris saddle point (FP) and greater
trochanter (GT) [31]–[36].

Femoral anatomical measurements. Automatic extraction
of the five femoral anatomical measures from the selected
18 landmarks comprised five steps. First, we fitted a sphere
using least squares regression (LSR) on the nine points
uniformly located on the femoral head. Center of this sphere
was established as the femoral head center and its diameter
defined the HD measure [32]. Second, we constructed the
femoral neck axis as the line passing through the femoral
head center and orthogonal to the ISN-SNS line [36], and the
femoral shaft axis as the FP-GT line [33]. Third, the NSA
measure was computed as the angle between the femoral
neck axis and the femoral shaft axis [31], [33], [35]. Fourth,
the FV measure was calculated as the angle between the
femoral neck axis and the PLC-PMC line projected onto the
plane orthogonal to the femoral shaft axis [31], [33]. Finally,

the FL measure was determined from IMC to SFH [32], and
the BW measure was calculated from LLC to MMC [34].

Scapular landmarks. The six scapular anatomical parameters
(CSA, GI, GV, GH, GW, and SL) were automatically
computed using a set of 20 anatomical landmarks. Sixteen
landmarks were equally distributed along the glenoid rim,
including glenoid superior (GS), glenoid inferior (GI), and
eight inferior glenoid rim (IGR1-8) points, while four were
placed at anatomically relevant locations: angulus inferior
(AI), angulus superior (AS), trigonum spinae (TS), and the
most lateral point on the acromion (LA) [7], [14], [19], [21],
[37].

Scapular anatomical measurements. Automatic extraction
of the six scapular anatomical measures from the selected 20
landmarks comprised five steps. First, we defined the glenoid
circle as a circle that best fitted the uniformly distributed points
IGR1-8 by employing LSR [14]. Center of this circle was
established as the glenoid center point and its diameter defined
the GW measure [7]. Second, we constructed a scapular plane
using the glenoid center point, AI, and TS landmarks. An axial
plane was constructed orthogonal to the scapular plane and
parallel to trigonum spinae–glenoid center point (TS–GCP)
axis. A glenoid plane was also established as the plane that
best fitted the sixteen points on the glenoid rim. Third, the
GV and GI measures were computed as the angle between
the TS–GCP axis and the glenoid plane normal, projected
to the axial plane and scapular plane respectively [14], [37].
Next, the CSA measure was computed as the angle formed
by the line connecting GI and GS and a line drawn from GI
to LA, projected onto the scapular plane [21]. Finally, the SL
measure was determined from AI to AS landmarks, and the
GH measure was calculated from GI to GS [19].

SIII. SIZE OF SYNTHETIC POPULATION

To assess the optimal size of the synthetic population
generated to build the anatomical models, we computed the
absolute error between the learned matrix Q and the Pearson
correlation coefficients for sizes ranging from 100 to 1000
(Fig. S2). The error ranged from 0.08 to 0.03 with a steep
decline between 100 and 300, and a slight decrease between
750 and 1000. Hence, the size of the synthetic population was
optimally set to 1000 samples.

SIV. EVALUATION OF ORTHOGONALITY

To directly evaluate the orthogonality constraints imposed
on OC-ANATSSM, we computed the measurements of shapes
generated by varying the j-th anatomical parameter between
±3σcj (Fig. S3). We compared OC-ANATSSM with ANATSSM
and used our automatic method based on point-to-point corre-
spondence and anatomical landmarks to derive the measure-
ments. The graphs obtained by varying FL and SL illustrated
an (approximately) linear relation between anatomical param-
eters with a slope corresponding to the covariance between
parameters. Therefore, the orthogonality of the OC-ANATSSM
model was demonstrated as all its anatomical parameters
remained unchanged (null slope).
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Compactness: Model’s ability to cover the
total variance.

Generality: Model’s ability to represent all
valid instances.

Specificity: Model’s ability to only represent
valid instances of the object.

Fig. S1: Compactness (%), generality (mm), and specificity (mm) measures of femoral and scapular BASESSM. The first 4
principal component of the femoral BASESSM represented 95% of total variance while its generality (respectively specificity)
was found average, ranging from 1.0 to 2.4 mm (respectively from 1.7 to 2.3 mm). With respect to the scapular BASESSM,
its first 15 principal component represented 95% of total variance and its generality (respectively specificity) was excellent,
ranging from 0.8 to 1.6 mm (respectively from 1.3 to 1.6 mm).

Fig. S2: Absolute error between the learned matrix Q and the Pearson correlation coefficients computed between the shape
coefficients and anatomical parameters. The absolute error was evaluated for different size of synthetic population (100, 300,
500, 750, 1000) and ranged from 0.08 to 0.03.
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Femur

Scapula

Fig. S3: Evaluation of orthogonality by comparing the anatomical measurements of ANATSSM and OC-ANATSSM models
with one varying anatomical parameter. The femoral varying parameter corresponded to the FL while the SL was the moving
parameter in scapular models.

TABLE SI: Weights of the learned linear mappings between the shape coefficients and the anatomical parameters. Only the
first 15 shape coefficients are reported.

(a) Learned matrix Q of femoral ANATSSM.

Q βNSA βFV βBW βHD βFL
α1 −0.19 −0.03 −0.82 −0.85 −0.99
α2 0.57 0.34 −0.11 −0.09 0.08
α3 −0.25 −0.39 −0.13 −0.12 −0.01
α4 −0.15 −0.55 −0.08 −0.18 −0.06
α5 0.28 0.47 −0.27 −0.18 0.01
α6 −0.17 0.08 −0.39 −0.22 −0.01
α7 0.24 −0.28 0.14 0.02 0.05
α8 −0.1 0.21 0.11 0.02 −0.03
α9 0.22 −0.11 −0.16 −0.06 0.02
α10 0.2 −0.03 −0.11 0 0
α11 0.07 0.08 0.11 0.03 −0.02
α12 −0.07 −0.04 0.03 0.02 0.02
α13 0.04 0.02 −0.07 0.02 0
α14 0.02 −0.01 0 0.15 0
α15 −0.09 −0.06 0.03 0.04 0.01

(b) Learned matrix K of femoral OC-ANATSSM.

K β̃NSA β̃FV β̃BW β̃HD β̃SL
α1 −0.05 0 −0.38 −0.43 −0.81
α2 0.55 0.24 −0.06 −0.24 0.16
α3 −0.19 −0.38 −0.2 −0.09 0.16
α4 −0.04 −0.55 −0.02 −0.26 0.1
α5 0.21 0.43 −0.27 −0.21 0.2
α6 −0.21 0.09 −0.55 −0.09 0.31
α7 0.33 −0.34 0.23 −0.15 0
α8 −0.14 0.25 0.22 −0.04 −0.11
α9 0.26 −0.18 −0.25 −0.02 0.12
α10 0.22 −0.09 −0.2 0.08 0.01
α11 0.08 0.09 0.21 −0.04 −0.11
α12 −0.07 −0.03 0.01 0.02 0.02
α13 0.03 0.01 −0.15 0.11 0.01
α14 0.01 −0.02 −0.15 0.34 −0.1
α15 −0.08 −0.05 0.01 0.07 −0.01

(c) Learned matrix Q of scapular ANATSSM.

Q βCSA βGI βGV βGH βGW βSL
α1 −0.23 −0.25 −0.12 0.78 0.7 0.89
α2 −0.25 0.32 −0.17 0.22 0.07 0.37
α3 0.18 0.11 0.03 0 −0.12 −0.01
α4 −0.27 0.23 −0.16 −0.07 0.01 −0.06
α5 −0.04 0.27 −0.34 −0.23 0.24 −0.03
α6 −0.5 −0.17 −0.36 0.28 0.27 −0.13
α7 0.19 0.31 0.18 −0.22 −0.12 0.03
α8 −0.08 −0.06 −0.21 −0.05 0.14 −0.05
α9 −0.12 0.09 0.34 0.11 0.03 −0.09
α10 0.02 0.24 0.19 0.14 0.15 0.08
α11 −0.09 −0.24 −0.03 0.16 0.06 −0.08
α12 0.19 0.19 0 −0.18 −0.18 0.05
α13 0.32 0.14 0.34 0.08 −0.02 0.06
α14 0.06 0.03 −0.16 −0.15 −0.01 0.01
α15 −0.04 0.15 −0.18 0.08 −0.16 0.02

(d) Learned matrix K of scapular OC-ANATSSM.

K β̃CSA β̃GI β̃GV β̃GH β̃GW β̃SL
α1 0.02 −0.19 −0.05 0.43 0.43 0.7
α2 −0.31 0.41 −0.11 0.16 −0.14 0.36
α3 0.19 0.09 −0.04 0.13 −0.14 −0.01
α4 −0.39 0.29 −0.06 −0.17 −0.02 0.11
α5 −0.05 0.27 −0.28 −0.36 0.39 −0.02
α6 −0.38 −0.02 −0.28 0.33 0.17 −0.36
α7 0.04 0.27 0.19 −0.26 −0.03 0.15
α8 −0.01 −0.07 −0.19 −0.11 −0.19 −0.07
α9 −0.24 0.19 0.41 0.14 0.08 −0.19
α10 −0.03 0.31 0.23 0.16 0.19 −0.03
α11 0.01 −0.21 −0.05 0.23 0.02 −0.18
α12 0.13 0.12 −0.04 −0.17 −0.16 0.17
α13 0.31 0.12 0.29 0.17 0.04 0
α14 0.07 −0.03 −0.17 −0.21 0.02 0.09
α15 −0.02 0.18 −0.24 0.26 −0.31 −0.02
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TABLE SII: Weights of the covariance matrix QQT associated with the distribution of the anatomical parameter.

(a) Covariance of femoral ANATSSM.

QQT βNSA βFV βBW βHD βFL
βNSA 1 0.36 0.11 0.24 0.27
βFV 0.36 1 −0.06 0.03 0.07
βBW 0.11 −0.06 1 0.89 0.79
βHD 0.24 0.03 0.89 1 0.85
βFL 0.27 0.07 0.79 0.85 1

(b) Covariance of scapular ANATSSM.

QQT βCSA βGI βGV βGH βGW βSL
βCSA 1 0.42 0.46 −0.49 −0.46 −0.21
βGI 0.42 1 0.03 −0.36 −0.22 −0.03
βGV 0.46 0.03 1 −0.06 −0.32 −0.11
βGH −0.49 −0.36 −0.06 1 0.69 0.71
βGW −0.46 −0.22 −0.32 0.69 1 0.59
βSL −0.21 −0.03 −0.11 0.71 0.59 1
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Fig. S4: Visual comparison of shape variation patterns arising from anatomical parameters of femoral ANATSSM (βBW , βFL)
and OC-ANATSSM (β̃BW , β̃FL), as well as scapular ANATSSM (βGI , βGH , βSL) and OC-ANATSSM (β̃GI , β̃GH , β̃SL). Each
anatomical parameters cj is shown with the shape varied between three standard deviations (±3σcj ) from either side of the
mean shape (µ).
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TABLE SIII: Leave-one-out assessment of the absolute er-
ror between OC-ANATSSM predictions and manually derived
anatomical measurements. Models were learned sequentially
by retaining the anatomical parameter of β̃ with largest
anatomical variability at each step. Mean and standard de-
viation are reported.

(a) Prediction error of femoral OC-ANATSSM.

Absolute
Error

OC-ANATSSM
– \β̃FL \β̃HD \β̃BW \β̃NSA

FV (°) 3.1±2.6 3.1±2.6 3.1±2.6 3.1±2.6 2.7±2.2
NSA (°) 2.0±1.6 2.0±1.5 2.0±1.5 2.0±1.5 –

BW (mm) 3.4±2.5 2.9±1.9 1.1±0.9 – –
HD (mm) 2.2±1.6 1.9±1.6 – – –
FL (cm) 1.4±1.0 – – – –

(b) Prediction error of scapular OC-ANATSSM.

Absolute
Error

OC-ANATSSM
– \β̃SL \β̃GH \β̃GW \β̃GI \β̃CSA

GV (°) 2.6±2.1 2.6±2.1 2.6±2.0 2.5±1.9 2.4±1.9 2.1±1.8
CSA (°) 2.4±2.0 2.4±2.0 2.2±2.0 2.2±1.9 2.1±1.7 –
GI (°) 2.6±2.3 2.6±2.2 2.6±2.2 2.6±2.2 – –

GW (mm) 1.8±1.6 1.8±1.6 1.6±1.5 – – –
GH (mm) 2.4±1.7 2.2±1.7 – – – –
SL (mm) 5.1±3.7 – – – – –

SV. LEARNED MATRICES AND ADDITIONAL
VISUALIZATION OF SHAPE VARIATION PATTERNS

For both anatomical structures, the weights of the learned
matrices Q, K, and QQT are reported in Tables SI and SII.
Visualization of the shape variation patterns arising from the
femoral (BW, FL) and scapular (GI, GH, SL) anatomical
parameters are provided in Fig. S4.

SVI. PREDICTIVE PERFORMANCE

While the predictive performances of the BASESSM and
ANATSSM models were not affected by the number of anatom-
ical parameters, the orthogonality constraints and thus the
predictive performance of OC-ANATSSM were determined by
the number of anatomical parameters employed. Hence, to
assess the impact of the number of anatomical parameters
on the predictive performance of OC-ANATSSM, we retained
the anatomical parameter of β̃ with largest anatomical vari-
ability sequentially. As expected, the mean absolute error of
each remaining anatomical parameter decreased at each step
due to reduced orthogonality constraints (Table SIII), with
largest decrease for highly correlated parameters (e.g. FL and
BW). Most importantly, OC-ANATSSM models parameterized
by a unique anatomical parameter performed identically to
ANATSSM models with complete parameterization (FV =
2.7±2.2°, GV = 2.1±1.8°, Table I). Designing OC-ANATSSM
models with a limited number of anatomical parameters is
therefore crucial to reach satisfactory predictive performance.

SVII. VIDEO DEMONSTRATIONS

To compare the BASESSM to the proposed models
(ANATSSM and OC-ANATSSM) of each bone, we provide video
demonstrations demo_bone_base_ssm.avi and demo_
bone_anat_ssm.avi (with bone = femur or scapula)
which present the shape variation patterns of each model.
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