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Abstract—Objective: We implement a data assimilation
Bayesian framework for the reconstruction of the spa-
tiotemporal profile of the tissue temperature during laser
irradiation. The predictions of a physical model simulating
the heat transfer in the tissue are associated with sparse
temperature measurements, using an Unscented Kalman
Filter. Methods: We compare a standard state-estimation
filtering procedure with a joint-estimation (state and pa-
rameters) approach: whereas in the state-estimation only
the temperature is evaluated, in the joint-estimation the
filter corrects also uncertain model parameters (i.e., the
medium thermal diffusivity, and laser beam properties). We
have tested the method on synthetic temperature data, and
on the temperature measured on agar-gel phantom and
porcine liver with fiber optic sensors. Results: The joint-
estimation allows retrieving an accurate estimate of the
temperature distribution with a maximal error <1.5 ◦C in
both synthetic and liver 1D data, and <2 ◦C in phantom
2D data. Our approach allows also suggesting a strategy
for optimizing the temperature estimation based on the po-
sitions of the sensors. Under the constraint of using only
two sensors, optimal temperature estimation is obtained
when one sensor is placed in proximity of the source, and
the other one is non-symmetrical. Conclusion: The joint-
estimation significantly improves the predictive capability
of the physical model. Significance: This work opens new
perspectives on the benefit of data assimilation frameworks
for laser therapy monitoring.

Index Terms—Data assimilation, Kalman filter, laser ab-
lation, temperature measurement, thermal treatment, un-
scented Kalman filter, fiber optic sensors, bioheat equation.
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I. INTRODUCTION

LASER Ablation (LA) has proven to be an important
tool in the thermal-based treatment of focal neoplasms.

This minimally invasive procedure has the advantage of being
relatively low-risk, and has been proposed as an alternative
therapy for the localized treatment of some tumors, like liver
metastases and pancreatic adenocarcinoma, when the patient
cannot undergo surgery or transplant [1]–[3]. LA represents
also a ground-breaking therapy in other fields, such as pediatric
neurosurgery [4]. Improvement of the procedure for inducing
thermal damage within the tumor volume and safety margins,
while spearing the surrounding healthy tissue and structures,
is still a priority for research groups and companies working
in this field. A critical concern in LA is the poor on-line con-
trol of the induced thermal effect, being the latter responsible
for the effective tumor treatment. The treatment planning is
usually based on manufacturer-initiated working algorithms in
combination with operator experience. However, the shape and
volume of the ablation zone are depending on physical and phys-
iological tissue-specific parameters, such as blood perfusion and
temperature-dependent properties [5]. For these reasons, the
real-time monitoring of the temperature evolution could improve
the therapy outcome and enable patient-specific treatment.

Two approaches for temperature monitoring are mostly used
during LA procedures: contactless methods, relying on diag-
nostic imaging, and contact ones, based on the use of physical
sensors. The most common contactless method is the magnetic
resonance thermal-imaging (MRTI). Even though magnetic
resonance (MR)-compatible fiber optics guide the laser beam
inside the MR room, the interaction between the laser light
and the tissue may cause the creation of cavitation bubbles.
This phenomenon provokes artifacts on the thermometric im-
age, which may impair the accurate temperature measurement
of the target [6], [7]. Additionally, measurement errors such
as drift of the magnetic field under temperature change and
motion still represent a source of uncertainty in the temperature
measurement [8]. Contact methods are accurate, highly resolved
in space and do not require expensive equipment. In particu-
lar, fiber optic sensors with diverse sensing principle, such as
fiber Bragg gratings (FBGs) technology and optical frequency
domain reflectometry (OFDR) based on Rayleigh scattering,
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allow for simultaneous multipoint temperature measurement
with minimally invasive approach [9], [10]. Whereas FBGs
allow for a typical spatial resolution ranging from 1 grating/cm
to 1 grating/mm, OFDR-based Rayleigh scattering enables a
distributed sensing approach for thermometry, characterized
by a theoretical infinite number of sensing points for a given
length [11]. It has been recently demonstrated that improvement
of spatial resolution for distributed sensors in the sub-millimetric
range determines an increase of noise in the signal, thus electing
millimeter-resolved FBGs as the suitable choice for accurate
thermometry in laser irradiated tissues [12]–[14]. FBGs are
also biocompatible, immune from electromagnetic interferences
and flexible; they can be easily embedded within needles to
be inserted inside the organ under treatment [9]. However, the
minimally-invasive clinical context imposes limitations on the
ability to render a complete temperature map of the ablated
zone. Indeed, typically not more than two or three needles
can be inserted to monitor the procedure in real-time [3]. This
restriction limits the spatial information that the clinician has
on the treatment and the control on the extension of the thermal
margins of the target.

Simulations based on the bioheat equation describe the heat
transfer in tissues undergoing thermal therapies, but still suffer
from the absence or inaccuracy of temperature-dependent and
patient-specific parameters. However, a heat transfer model
combined with the real-time monitoring of the tissue tempera-
ture in specific regions would allow a robust estimate of the pro-
cedure state [15], [16]. Following this approach, it would be pos-
sible to design also an accurate monitoring stage able to control
the tissue temperature at the desired therapeutic levels. Kalman
Filter theory is largely used in the biomedical field for estimating
the state of the controlled quantity, and permits to manage
noisy measurements and potential inaccuracies of the medical
device, such as its placement inside the anatomical district [17].
In the scenario of the thermal treatments, Kalman Filter has
been proposed to predict temperature during MR-guided thermal
therapy delivery in the presence of noise or corrupted data [16],
[18], [19]. Image-based thermometry can suffer from inaccuracy
related to motion or artifact in the images, but can still benefit
from a large number of information within the image field of
view. When the procedure is not performed under image-based
thermometry, alternative monitoring methods are needed. In
this framework, the application of a data assimilation approach
based on limited temperature information is of paramount
importance.

In this work, we suggest reconstructing the temperature map
through a data assimilation Bayesian framework. The predic-
tions of a physical model simulating the heat-transfer in the
tissue are associated with information retrieved from the tem-
perature measurements using an Unscented Kalman Filter, to
obtain a spatial and temporal augmentation of the temperature.
Thermometry is performed with FBG sensors. We compare
a standard, state-estimation filtering procedure, where only
the temperature is evaluated, with a joint-estimation approach,
where uncertain model parameters are also corrected through
the filtering loop. We also suggest a strategy for choosing the

positions of the sensors in order to optimize the temperature
estimation. Our filtering methodology that combines theoretical
predictions with temperature measurements is designed to tackle
two important challenges which are imposed by the clinical
context: at first, the complexity of the targeted biological system
limits the scope of purely theoretical temperature predictions
based on heat diffusion principles; secondly, the real-time tem-
perature values measured by the FBGs - while being accurate -
are sparse.

II. MATERIALS AND METHODS

In this section, after some generalities regarding the physical
model and the filtering scheme, we focus on three aspects: i)
the comparison between simple (state only) and joint (state
and parameters) estimation, ii) the tuning of the filter meta
parameters, and iii) the criteria related to the placement of the
temperature sensors. The experimental setup used to test our
approach is also presented.

A. Numerical Model

We consider at first a one-dimensional homogeneous heat
model to describe the essential physical and geometrical features
of the phenomenon:

∂T

∂t
= D

∂2T

∂x 2
− β(T − Tb) (1)

where T is the temperature, t is the time, D is the tissue dif-
fusivity, x is the spatial coordinate, β is the perfusion value and
Tb the blood temperature [18]. For laser-irradiated tissues, we
consider a supplementary term Tl , representing the additional
temperature increase due to the laser source, as proposed by [20].
The 1D object is modeled as a grid composed of L-nodes at a
distance of Δx (Fig. 1). The explicit discretized equation of
the temperature at the ith node, where n represents the current
time-step of duration Δt, becomes:

T i
n = T i

n−1 +DΔt

(
T i+1

n−1 − 2T i
n−1 + T i−1

n−1

Δx 2

)

− β(T i
n−1 − Tb) + Tl

i (2)

We assume fixed (Dirichlet) Boundary Conditions at the grid
extremities, corresponding to a constant ambient temperature.

B. Bayesian Filtering

The discretized (2) is an ideal representation of the physical
process occurring in the biological tissue and may be affected
by uncertainties and parameterization errors. The computed
temperature is characterized by a Gaussian error ωi:

T i
n = T i

n−1 +DΔt

(
T i+1

n−1 − 2T i
n−1 + T i−1

n−1

Δx 2

)

− β(T i
n−1 − Tb) + Tl + ωi (3)

At the same time, the estimation of the local temperature can
also be affected by some random errors νi, related to intrinsic
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Fig. 1. The 1D object is modeled as a grid of L-nodes. The central
node i represents the target lesion, directly treated by the laser beam.
Over time, the temperature increases along the grid progressively af-
fecting all the nodes. Boundary conditions are applied at the extremities
(red).

sensors properties: T i
n = TFBGi

n + νi. By combining the pre-
dicted temperature computed through the theoretical model with
current information provided by the sensors, we can obtain an
optimal estimation of the temperature value. Since our model
will be validated in the ex vivo scenario, the term β has been set
to zero [18].

Based on a general prediction-update scheme, Bayesian fil-
ters [21] allow estimating a random state Xn by recursively
updating its probability density function P(Xn). The ran-
dom state is described by an uncertain process model Xn =
fn(Xn−1, ωn), representing its behaviour in time, and noisy
external observations Zn = gn(Xn, νn), providing partial in-
formation on its current state. Given the previous estimation
P (Xn−1| Zn−1) at discrete time n− 1, the first step consists
in computing a prediction of the probability density function by
propagation through the process model fn: P (Xn|Zn−1). Then,
the predicted estimate is updated using the current observation,
to provide the posterior estimate: P (Xn|Zn). The final state
of the system Xn is thereafter computed according to some
optimality criteria (e.g., Maximum A Posterior or expected
value). Within such a Bayesian framework, we want to estimate
the temperature of an object by combining an uncertain process
model which describes the temperature distribution (3) with
noisy external measurements provided by FBG sensors. In this
work, we use an Unscented Kalman Filter [22] that applies a
sampling based approach to handle a non-linear prediction and

observation models. The original Kalman Filters, which were
designed for linear systems, have been adapted to non-linear es-
timation. While Extended Kalman filters require explicit deriva-
tive of the model with respect to the parameter which cannot
be obtained easily in our case, we opt for Unscented Kalman
Filter. In a nutshell, the Unscented Kalman Filter samples the
probability space in each step of the estimation and thus requires
forward execution of the model (i.e., finite element simulation)
for each sample.

C. State and Observations Vector

The state vector takes into account all the variables that are
iteratively estimated by the filter. In the classic state-estimation
approach, the state vector is composed of the temperature value
T i of each node of the grid mesh Xn ∈ RL×1. In the state
space, the state equation is presented in (4), shown at the bottom
of the page, where ωn(Tl , D) is the random error depending
on the uncertainties on both the heating source and thermal
diffusivity value, and α = D Δt

Δx2 , according to (2). To improve
the estimation and the predictive power of the model, it is
possible to consider an augmented state. In practice, the physical
parameters representing the source of model uncertainties are
estimated along with the temperature. In our case, we suppose
to have a misknowledge on D, as well as on the parameters
defining the additional temperature due to heating source Tl :

Tl =
Tl0

σ2
e−x2

i /2σ
2

(5)

where xi is the distance between the laser and the ith node,
σ is the standard deviation of the laser beam (described with a
Gaussian distribution), and Tl0 is function of the laser power and
includes the parameters describing the optical behaviour of the
medium [20]. Its purpose is to provide a general and simplified
description of any additional changes in the target that are related
to the laser-tissue interaction. The main potential sources of error
depend on the accurate knowledge of the optical properties of
the medium, which are supposed unknown in our approach. The
augmented state vector can hence be formalised as:

Xn

=
[
T 0

nT
1
n . . .mT i

n . . .mTL
n D Tl01/σ

2
]t

∈ RN (6)

In the state space, the process model may be written as: Xn =
AnXn−1 + ωn.

Using FBG sensors, we retrieve the temperature value of M
known locations of our object. The observations vector Zn ∈

⎡
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RM×1 is related to the state vector through a constant mapping
between corresponding nodes: Zn = MXn + νn. In practice,
M is a diagonal matrix with non-null elements corresponding
to the ith nodes of the grid mesh, where the temperature is mea-
sured with the sensor; νn is the random Gaussian noise affecting
the measurements. As above stated, both the process and the
observation model are affected by some uncertainties and errors
expressed respectively by ωn and νn. Such quantities are taken
into account within the prediction-correction loop [23], through
the process noise covariance matrix Qn = E[ωnω

t
n] ∈ RN×N ,

and the observations noise covariance matrix Rn = E[νnν
t
n] ∈

RM×M . An appropriate initialization of such parameters is
fundamental to an accurate estimate of the state variables.

D. State Vs. Joint Estimation

Classical Kalman Filters are designed to provide estimations
of the state variables of the system. However, it is also possible
to identify uncertain parameters of the model through the same
prediction-correction scheme, via a joint-estimation algorithm.
In this approach, the system state is augmented by the parameters
of the model, and the filter simultaneously updates the system
state together with the parameters. In this process, the corre-
sponding diagonal values of the covariance matrix are initiated
with the variances of the parameters.

In our system, three parameters of the (2) are considered
uncertain (D, Tl0, 1/(σ2)). In the following, we compare the
temperature estimation accuracy of state-estimation and joint-
estimation for all the explored scenarios. The computation time
is directly related to the dimension S of the state vector, i.e.,
we need to perform S simulations per time step to estimate our
system. Additionally, the simulation accuracy of (2) depends
on the discretization of the domain (Δx). The following values
were set: time resolution (Δt) of the simulations equal to 0.2 s,
and Δx = 0.5 mm, considering that the ground truth data are
provided with a time resolution of 1 s and a spatial resolution
of 1 mm. To adapt the filter, the parameters are updated every
5Δt (thus, each 1 s). The code is implemented in Phyton; the
characteristics of the system are: Intel(R) Core(TM) processor
i7, 9th generation, CPU 2.60 GHz, RAM 16 GB.

E. Process and Measurement Noise

An important task in the Bayesian filtering framework is to
determine the appropriate meta parameters, i.e., Q and R. A poor
choice of these values may result in reducing the estimation
accuracy of the dynamic process. Also, in the case of parameter
identification, these values impact the convergence rate; thus,
improper tuning results in slow convergence or alternatively
overshooting. The value of R, which represents the noise of
the measurement process, is relatively easy to determine. In
our system, R reflects the accuracy of the temperature measure-
ments, and it is evaluated at 0.1 ◦C. This value results from the
accuracy of the optical spectrum interrogator (1 pm accuracy
corresponding to 0.1 ◦C) [24]. Q represents the model noise, or
the ‘distance’ between the physical phenomenon and its abstract
mathematical representation. In our context, this ‘distance’ is
related to effects not taken into account by the model, such

Fig. 2. Representation of the methodology for analysing the impact
of the observation position on the filter estimation. (a) Illustration of
the parameter space for selecting the observation locations in a two-
dimensional cross section of the heated zone. The red axis corresponds
to the laser beam axis, the blue and green vectors represent the location
of two different observations. In this representation, the location Pi of
observation i is given by its polar coordinates (Ri, θi). (b) Illustration of
the estimation accuracy for three possible choices of P1 and P2 along
the x axis. In this graph, the coordinates of each point correspond to
{P1, P2} and its color corresponds to the temperature error obtained
using sensors placed at P1 and P2.

as potential heterogeneity of the medium properties, sensor
location and boundary conditions. Having access to ground truth
temperature values, we have adopted an empirical approach
which consists of comparing the estimation accuracy for a large
range of Q values and evaluating the sensitivity to Q as well as its
optimal value, as discussed in section III-B. We use two metrics
for computing the estimation accuracy. The mean and max errors
represent respectively the average and the maximal, spatial and
temporal difference between the estimation and the ground truth
values of the temperature. The mean error is calculated as the
difference between the temperature predicted with the specific
method and the measured temperature, and it is averaged over
the N nodes (i.e., sensors).

F. Observations Location

Besides measurement errors which are intrinsic to sensors
properties, the quality of the data-driven correction is mostly
related to the number and the placement of the observations
inside the heated volume [25]. We propose a systematic analysis
of the effect of the observation position on the filter estimation.

To perform this analysis, we represent the domain of interest
Ω using a polar coordinate system (Fig. 2). We believe it is a
natural choice as the diffusion process is an axial symmetric
phenomenon, arising from the heat source generated by the
laser. For clarity purpose, Fig. 2 illustrates the 2D case where
the red axis corresponds to the laser beam, the blue and green
vectors represent the location of two different observations.
In this coordinate system, the location Pi of observation i is
represented as Pi = (Ri, θi).

To make such a study computationally feasible, we need to
discretize Ω in n different locations, and define a number of
observations k. This leads to the following number of possible
combinations

Cn
k =

n!

k!(n− k)!
(7)



SCHULMANN et al.: MODEL-BASED THERMOMETRY FOR LASER ABLATION PROCEDURE USING KALMAN FILTERS AND STM 2843

For sake of simplicity, we choose to perform the analysis on
the observation location for a one-dimensional scenario. In the
1D case, the location Pi of an observation can be represented as
Pi = (R, θ ∈ {0, π}) and can be reduced to:

Pi =

{
Ri, if θ = 0

−Ri, if θ = π
(8)

As an example, the case of 1 or 2 sensing needles (which
embed several FBGs) placed along a line passing through the
laser beam center is considered. We discretize this line in 8 pos-
sible observation locations at R = −4,−3,−2,−1, 1, 2, 3, 4,
and with the laser R = 0. In this scenario, which can be later
generalized to a more realistic case in which the sensors do
not pass through the laser beam center, we want to study the
influence of the sensors placement onto the temperature esti-
mation. Fig. 2(b) describes our findings, where (i, j) represent
the location of the two FBG sensors (one called “position of
observation 1, P1,” the other one “position of observation 2,
P2”). The color corresponds to the relative temperature error
obtained using FBG sensors placed at P1 and P2. Based on this
methodology, quantitative results will be discussed in section
III-A and III-B.

G. Experimental Setup

We tested the proposed approach in two simplified settings
which describe LA in biological tissues (Fig. 3). At first, we
used a 3% agar gel phantom mimicking the thermal properties
of the biological tissue (Fig. 3(a)) [26]. The homogeneity of
the phantom makes it suitable for a preliminary analysis of
our data assimilation Bayesian framework. The second setup
was based on fresh ex vivo porcine liver, obtained from a local
butcher and stored in the fridge before the test (Fig. 3(b)).
The ablation was performed with a diode laser (LuOcean Mini
4, Lumics, Berlin, Germany, 808 nm) and the laser light was
guided through a quartz optical fiber connected to a collimator,
positioned perpendicularly at 5 cm from the phantom and liver
surfaces. Two cases have been reproduced: 1D case and 2D case.
For the 1D case, a laser power of 3.5 W was irradiated on both
the phantom and liver for 60 s. An array of 25 FBG sensors
embedded in a single fiber and placed on the phantom surface
monitored the temperature evolving during laser irradiation.
Similarly, an array of 40 FBG sensors was arranged upon the
liver surface. For the 2D case, a grid of 25 x 5 FBGs (5 fibers,
each embedding 25 sensors, for a total of 125 sensors), placed at
2 mm distance, measured the phantom temperature during con-
tactless irradiation (Fig. 3(c)). An optical spectrum interrogator
(Micron Optics si255, Atlanta, USA, 1 pm accuracy) was used to
interrogate the sensors and collect their optical output, which is
function of the measured temperature. The initial samples tem-
perature was measured by a K-type thermocouple and resulted
to be 23±1 ◦C in all the settings. Details about the measure-
ment systems can be found in previous works from the same
group [12], [27]. For each setting, three experiments have been
repeated in the same conditions (laser power and wavelength,
time).

Fig. 3. Experimental setup of contactless laser ablation on (a) agar
gel phantom mimicking biological tissue and (b) ex vivo porcine liver.
(c) Schematic of the placement of the sensors on the media and laser
source, for both 1D and 2D cases.

III. RESULTS AND DISCUSSION

In the following sections, we aim at demonstrating the ef-
ficiency of our physics-based Bayesian approach, evaluating
filter performances on synthetic, phantom, and liver data. For
all the above scenarios, we considered both simple state and
state-parameters estimation. In general, using a Bayesian ap-
proach enables retrieving a more accurate temperature distribu-
tion compared to using a purely deterministic model.

A. Synthetic Data Results

We first considered a synthetic data set defined as a 1D
grid of L-connected nodes, where the temperature of each
node is described by (2). In general, having a known refer-
ence scenario allows outlining some initial hypothesis about
model uncertainties and their impact on estimation accuracy.
In particular, we have evaluated the sensitivity of the model
to errors in physical parametrization. Model parameters can be
known from literature within a range of physically coherent
values: D ∈ [0.05, 0.3] mm2/s [28], Tl0 ∈ [5.13, 15.0] ◦C, and
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Fig. 4. Sensitivity of temperature error to model parameters. This
figure shows that temperature estimation is sensitive to D, Tl0 , and
1/σ2. We consider three variations of values for each parameter, one
corresponding to the correct value, the other two being the min and max
bounds of the values. Having 3 parameters and 3 possible values for
each parameter, 27 possible combinations are obtained. In each graph,
the three box plots correspond to a variation of 1/σ2, and we have nine
graphs for 3× 3 values of D and Tl0 . The middle value of the middle
graph corresponds to the correct parameters (D = 0.175, Tl0 = 10.06,
and 1/σ2 = 0.18). We observe that as we move away from these values,
the temperature estimation deviates quickly from the correct values.

1/(σ2) ∈ [0.11, 0.25] mm−2. In light of that, we forecast sev-
eral deterministic simulations, each characterized by a different
initialization of physical parameters, whose values have been
chosen within ranges above presented.

Different temperature estimations result from different initial-
izations of D, Tl0 , and 1/σ2 (Fig. 4). These results highlight the
sensitivity of the deterministic model to the three parameters.
A correct knowledge of their initial value is paramount for an
efficient estimation of the actual temperature.

To address this aspect, we compared the accuracy of a simple
state-estimation with the accuracy of a joint-estimation (where
data assimilation is performed along with temperature esti-
mation), together with the estimation provided by the purely
deterministic model. The ground truth scenario, which is the
reference for comparing the quality of our estimation, is initial-
ized with Dreal = 0.05 mm2/s, Tl0real

= 5.13 ◦C, and 1/σ2 =
0.11 mm−2. Instead, incorrect parameters are initialized as:D =
0.175mm2/s, Tl0 = 10.6 ◦C, and 1/σ2 = 0.18mm−2. External
observations consist of the temperature values measured at two
known locations on the grid (−2 mm and 2 mm around the center
of the laser beam). The Bayesian approach enables achieving
a more accurate temperature distribution compared to using
a purely deterministic model (Fig. 5). In particular, whenever
including the incorrect parameters within the state vector (pur-
ple line), we are able to accurately retrieve the ground truth
distribution (blue line), as provided in Fig. 5(a). Fig. 5(b) shows

Fig. 5. Temperature prediction via state and joint Bayesian estimation
using 1D synthetic data. (a) Ground truth temperature distribution (blue
line), temperature prediction through deterministic model (yellow line),
state-estimation (green line) and joint-estimation (purple line). (b) Time
evolution of the mean temperature error for the model (yellow line), state
(green line) and joint (purple line) estimation with respect to the ground
truth.

the mean error respectively obtained by the joint-estimation,
the state-estimation and the deterministic model with respect to
the ground truth. The time evolution of the mean error further
confirms that solely when performing parameter estimation, the
estimation error converges through time (purple line). Although
less accurate, performing simple state-estimation (green line),
allows retrieving better results than the pure deterministic model
(yellow line).

As above stated, having a better knowledge on physical
parameters, allows retrieving an accurate estimate of the real
temperature distribution with a maximal error <1.5 ◦C (purple
line in Fig. 5(b)). In addition, performing the joint-estimation,
where we include incorrect parameters within the state vector,
allowed us to rapidly retrieve their real value. As shown in Fig. 6,
starting from an erroneous initialization, the filter is able to
estimate the real value of the parameters after a few iterations.

In conclusion, a Bayesian framework provides in general a
better estimation than a purely deterministic model affected by
errors and uncertainties. In particular, a joint-estimation, where
the sources of error (i.e., incorrect parameters) are included
within the state vector, allows significantly increasing the ac-
curacy of the estimation.

B. Phantom Data Results

We carried out a second series of experiences on a agar
phantom mimicking soft tissues (Fig. 3(a)). The FBG sensors
are used to retrieve the actual temperature distribution along the
surface, which is used as ground truth (Fig. 7).

The mean standard deviation on the central sensor (11 mm)
is 2.1% along the whole trend in time (Fig. 7(a)) and is 2.5%
considering the spatial profile at 60 s (Fig. 7(b)), thus proving
a good repeatability across the experiments [5]. For this reason,
one of the tests has been randomly selected as the ground truth
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Fig. 6. Parameters Estimation. We parametrize the simulation using,
for each parameter, the maximal value of the parameter range. During
the assimilation process, the filter is initialized with the mean value of
each parameter range. By including the model parameters in the state
vector, it is possible to correct their value during the assimilation process.

Fig. 7. Temperature measured during laser irradiation of agar-gel
phantom in 1D configuration. (a) Temperature distribution in time, ac-
cording to different sensors at different locations. (b) Temperature distri-
bution at different positions and at different time-steps.

for the validation of our framework. Through our Bayesian
framework, by combining the prediction model for temperature
distribution and external observations obtained from two FBG
sensors, we want to retrieve an optimal estimate of the phantom
temperature. Generally speaking, the accuracy of filter estima-
tion is not absolute but depends on both the filter parameters
initialization and the quality of external observations. For that,
we used this second data-set to empirically evaluate the tuning
of the filter parameters and external observations characteristics.

Errors associated to estimated variables, which are due to
model uncertainties, are taken into account by the filter through
the model error covariance matrix (Q). Since a unique criteria to
initialize such parameters does not exist, we wanted to test the
sensitivity of our framework to different values of Q. In general,
such quantity can be defined as a squared matrix with non-null
elements on the diagonal Q = diag(QT ) ∈ RN×N .

Fig. 8 shows the sensitivity analysis of our framework to
different values of the parameter Q. The temperature error, Te, is
calculated as the difference between the estimated temperature

Fig. 8. Sensitivity Analysis for the model covariance (Q = diag(QT ) ∈
RN×N ). The estimation quality is poorly sensitive to the value of Q in
the range of small values, but overestimating the error associated to the
estimated vector (i.e. QT = 10, QT = 100) implies a deterioration on
filter performances.

values and the ground truth, being this last the temperature
measured by the FBGs. The estimated temperature values are
obtained by updating the filter with two measurements, and
the rest of the measurements are used as reference (ground
truth) to evaluate the filter performance. In our case, choosing
different values of QT ∈ [0.01, 100], we saw that the model
is not sensitive to small values of QT (Fig. 8), and different
initializations within a small range provide the same results (best
results achieved for QT = 1.0). Instead, estimation accuracy
strongly decreases when significantly increasing the value of
QT . This means that our state vector is affected by a certain
error due to uncertainties in model parametrization, which can
be efficiently taken into account by initializing Q with small
values. Overestimating the error associated to the estimated
vector (i.e,QT = 10,QT = 100) implies a deterioration on filter
performances.

External observations, providing information on the current
state of our estimated variables, are provided by M sensors
located at different emplacements of the tissue phantom. To
complete this study, we explored the influence of the location
of the observations on the temperature estimation. We recall
here that, from a clinical standpoint, we are limited in the
number of needles that can be placed in the organ to monitor
the temperature. For this reason, in the following example, we
limit the number of needles/observations to two.

Following the methodology described in Section II, Fig. 9
shows that the best temperature estimation is obtained when
following two heuristic rules: first, one observation should be
placed as close as possible to the heating source; secondly, the
2 observations should not be at the same distance from the laser
beam center. The two needles can be placed on both sides of the
laser source, but also on the same side, as long as they measure a
temperature gradient. Considering only two observations (k =
2), i.e., using only two sensors, we empirically estimated the
optimal locations which give the best temperature estimation
in our specific scenarios. Since our material is homogeneous,
the temperature diffusion is isotropic, following a radial pattern
centered at the laser beam spatial origins. As a consequence, in
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Fig. 9. Analysis of the impact of the locations of two observations on
the quality of the estimation for (a) synthetic and (b) phantom data.
Heating source is located in 0, negative and positive values indicate
opposite sides from the heating source. Higher errors (red) obtained
when two sensors are in the same spot (diagonal) and far from the heat
source.

this example we limit our observation locations to a line passing
through the heat source. Fig. 9 reports our results.

We can see that the empirical rule derived from the synthetic
data in section III also applies. Under the constraint of using
only two observation points, optimal temperature estimations are
obtained when the two sensors are placed at different distances
from the heat source (Fig. 9). Our approach can estimate the
tissue temperature, at any two dimensional locations within the
phantom. When using the parameter estimation approach with
synthetic data (Fig. 9), the minimum error corresponds to 1.6
◦C, and it is obtained for the locations (2,1). The maximum
error results to be 5.9 ◦C, when both locations are at −4.
Considering the phantom, potential non-homogeneity of the
material may result in important errors when using only one
observation point. Adding a second observation, at a different
distance from the heat source, reduces the error significantly.
Indeed, the minimum error corresponds to 2.2 ◦C, and it is
obtained when the observation are placed in non-symmetrical
locations (i.e., 2,1). The maximum error results to be 21.4 ◦C,
when both locations are at 2. These results prove the effect of
the location of the observations on the quality of the estimation.

A more complex configuration based on 2D temperature
measurement has been adopted to assess the performances of
our Bayesian approach (Fig. 10). The temperature distribu-
tion measured after 55 s from the start of the irradiation is
shown in Fig. 10(a). In this case, three observations, placed
in (0,−3),(2,4),(0,1), have been used to update the filter. The
mean error represented in Fig. 10(b) is calculated by averaging
the node temperature error within the area heated by the laser.
The joint-estimation (Fig. 10(b), purple line) allowed retrieving
the best results, with a mean error<2 ◦C during the laser heating.
These results have been verified for arbitrary and different
locations of observations within the laser beam region.

C. Liver Data Results

Lastly, we evaluated the accuracy of our approach on liver data
(Fig. 3(b)). The ground truth value of the temperature is obtained
from the 40 FBG sensors used within the setup. Similarly to
the experiments on the agar gel phantom, also for the ex vivo

Fig. 10. Temperature prediction via state and joint Bayesian estima-
tion for agar-gel phantom in 2D configuration, using 3 observations in
(0,−3), (2,4), (0,1). (a) Temperature distribution at 55 s of the heating
process. (b) Time evolution of the mean temperature error for the model
(yellow line), state (green line) and parameter (purple line) estimation
with respect to the ground truth.

Fig. 11. Temperature prediction via state and joint Bayesian estimation
in liver. (a) Temperature distribution at 30 s of the heating process.
(b) Time evolution of the mean temperature error for the model (yel-
low line), state (green line) and parameter (purple line) estimation with
respect to the ground truth.

a mean standard deviation <3% was registered, in agreement
with previous observation [5]. In order to perform temperature
estimation through our Bayesian approach, model parameters
are initialized asD = 0.175mm2/s,Tl0 = 10.6 ◦C, and 1/σ2 =
0.18 mm−2, whereas external observations are obtained thanks
to two FBG sensors positioned at emplacement (−3,2) on the
virtual grid. Lastly, filter parameters are initialized with QT =
1.0.

The achieved results are presented in Fig. 11. Experiments
performed on liver further confirm the results obtained in the
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Fig. 12. Analysis of the influence of the number of observations on the
performances of the Bayesian framework: (a) 5 observations, obtained
with the sensors placed in (−4,−2,0,1,3) and (b) 10 observations, lo-
cated in (−8,−7,−6,−5,−4,−3,−2,0,1,3), where 0 corresponds to the
center of the laser beam.

synthetic scenarios. A joint-estimation (purple line), in which
incorrect parameters are included within the state vector, allowed
retrieving the best results, with a maximum error lower than 1.3
◦C, which is maintained over the treatment time. Conversely, the
state-estimation and the model provide respectively an error of
5.1 ◦C and 23.5 ◦C, after 50 s of irradiation.

We have analysed the performance of the proposed Bayesian
framework also with an increased number of observations, tak-
ing advantage of the quasi-distributed measurement properties
of the FBGs (Fig. 12).

For instance, when using 5 (Fig. 12(a)) and 10 (Fig. 12(b))
observations, both the state-estimation and the parameters es-
timation have improved performance (the mean error is signif-
icantly reduced in comparison with results of Fig. 5(b)). The
mean error obtained with the parameter-estimation is similar in
both cases, and with a maximum value of 0.5 ◦C; on the other
hand, the performance of the proposed framework with only
state-estimation improves with the number of observations (the
mean error decreases from 1 ◦C to 0.5 ◦C, green line).

The proposed approach sets the basis for the implementation
of a patient-specific model for procedure dosimetry and tem-
perature estimation based on the temperature information from
FBGs. When compared to thermometry based on diagnostic
imaging [29], [30], sensors provide limited information about
the temperature profile, but they are more interesting from a
clinical point of view for their usability and cost-effectiveness.
To reconstruct the temperature map from FBGs-based measure-
ment, we propose to use an Unscented Kalman Filter combined
with a heat transfer model. In our data assimilation approach,
the filter simultaneously predicts the temperature and estimates
the model parameters, such as the thermal diffusivity of the
medium and the properties of the laser beam. This approach
simultaneously furnishes a time-varying temperature profile
and improves the predictive capability of the model. Once the
parameter-estimation process has converged (which only takes
a few seconds) we can estimate the temperature at any point
of the tissue with a maximum error <1.5 ◦C while using only

two temperature measurements in the 1D case. This makes our
approach clinically applicable. In the more complex scenario
of 2D measurements, the temperature error provided by the
parameter-estimation framework is <2 ◦C after 50 s of irra-
diation. This last finding suggests that when the complexity of
the model and of the ground truth increases, the use of additional
parameters to be estimated by the filter can further aid the correct
temperature estimation.

The proposed framework is able to perform the parameters
estimation in real-time, which is a fundamental ability for the
future intraoperative monitoring of the laser treatment. Indeed,
for the temperature acquisition of 90 s with a sampling time
of 1 s in 1D configuration, the filter estimates the parameters
in 21 s (we run the algorithm 20 times and 21 is the rounded
average running time). For the 2D case (60 s of acquisition),
the filter takes 18 s to perform the parameters estimation. These
excellent performances in terms of computational cost will allow
realizing our main long-term objective, which is the automatic
control of the laser settings [14]. Here, we leverage the benefits
of joint-estimation: the predictive capability of the model is
progressively improved by learning system-specific parameters
from current temperature measurements. The accurate parame-
terization of the model is a key factor for forecasting the impact
of a change in the laser power on the tissue temperature dis-
tribution. While classical state-estimation exploits observations
to compensate for model uncertainties, joint-estimation brings
additional benefits. At first, refining the model parametrization
improves the quality of the prediction step, which in turn re-
sults in a more accurate estimation by the prediction-correction
loop. Secondly, a suitable predictive model allows performing
better when real-time data is temporarily missing. Lastly, if
the parameter values are constants over time, their calibration
at the beginning of the process may result in a model which
has acceptable performance without the necessity to rely on
continuous measurements. We have chosen to address the most
challenging scenario, in which the number of observations is
strictly limited, in order to reduce the invasiveness of the mon-
itoring. Thus, the results of our framework are extendable to
other contact thermometry techniques, in which only a few
single sensors can be used (e.g., thermocouples). The developed
approach is valid for all the heating modalities, after considering
the specific heat source and parameters of interest (e.g., electrical
properties for RFA, acoustic properties for HIFU) [31], [32].
However, it is worth highlighting that using the temperature
output measured by several FBGs embedded in a needle will
improve the prediction capability of the filter, with a mean error
of 0.5 ◦C (Fig. 12). Before being applied in a clinical context,
our methodology needs to be further developed in three key
areas: tissue heterogeneity, temperature range and dimension.
Regarding tissue heterogeneity, our method will need to be
extended to include: i) supplementary heat sources and related
to blood flow and related parameters to be estimated by the
filer, and ii) space and temperature-dependent parameter which
describes heterogeneity in thermal diffusivity and its depen-
dence with tissue temperature. This upgrade will account for the
patient specific conditions, which include the tumor properties
and the individual blood perfusion characteristics. It is worth
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noticing that a patient-specific system including all the material
properties it is still a challenge in the computer medical simu-
lation for intraoperative guidance [33]. For this reason, the de-
velopment of the Bayesian framework for real-time parameter-
estimation enables to adjust the model parameters during the
procedure, and to provide an estimation of effective parameters
that improves the model predictions when the model is over-
simplified. One of the limitations of this study is the restrained
temperature range on which the developed Bayesian framework
has been tested. The temperatures achieved in the experiments
on phantom and liver used in this work (51 ◦C) include the
optimal temperature for the hyperthermal treatment, i.e., 43 ◦C.
Thus, future analysis will focus on expanding the temperature
range up to ablative temperatures, e.g., 60 ◦C. Regarding the
dimension of the model, the choice of a 1D representation is
a simplification intended for a first analysis of the framework
validity. The process of heating around the laser applicator tip
is axial symmetric, thus the 1D model captures the essence
of the physical phenomenon. The material heterogeneity and
experimental conditions can affect the symmetry, so this sim-
plification may be one of the causes of the large error between
the 1D model and the ground truth. However, when moving
from one to two dimensions, the approach implemented for
the parameter-estimation remains the same, thus we proved that
the results can be generalized to higher dimensions, but still in
superficial laser irradiation. With all these premises, this work
poses the preliminary basis towards the development of a more
complex 3D model representing the final therapeutic application
with the interstitial approach [24]. In this future step, two main
aspects should be considered: the exploration of supervised
training to refine the temperature and spatial accuracy, and the
effect of the computation time for the successful use of the
Bayesian framework. To keep the assimilation process as close
to real-time as possible, we will investigate methods to both
speed up the numerical simulations (using for example GPU
accelerators [34]) and will explore reduced data assimilation
variants such as ROUKF [35].

IV. CONCLUSION

We present a fast data assimilation Bayesian framework for
the real-time reconstruction of the spatiotemporal profile of
the tissue temperature, evolving under laser irradiation. An
Unscented Kalman Filter associates the predictions of a heat
transfer model with sparse real-time temperature measurements
obtained with fiber optic-based thermometers. The filter simulta-
neously predicts the temperature and estimates the model param-
eters (medium thermal diffusivity and laser beam properties).
This approach provides a time-varying temperature map and
improves the predictive capability of the deterministic model.
Results on different scenarios (synthetic data, phantom and liver)
show that the joint estimation allows retrieving an accurate
estimate of the temperature distribution, with a maximum error
<1.5 ◦C in 1D setting and <2 ◦C in 2D case, which represent
an optimal condition for the thermal therapies control. Our
approach allows also solving a key aspect of the intraoperative
monitoring, i.e., the optimal placement of the sensors in the

target. We have demonstrated that good temperature estimations,
when using only two sensors, are obtained when one sensor is
placed in proximity of the source, and the other one is in non-
symmetrical position. Further optimization of the framework
in terms of three-dimensionality of the domain, accounting for
tissue heterogeneity and physiological heat sources, will make
the methodology and findings of our work applicable in a clinical
scenario, towards the implementation of an automatic control of
the thermal therapy.
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