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Lung Sound Classification Using Co-Tuning
and Stochastic Normalization

Truc Nguyen and Franz Pernkopf , Senior Member, IEEE

Abstract—Computational methods for lung sound anal-
ysis are beneficial for computer-aided diagnosis support,
storage and monitoring in critical care. In this paper, we
use pre-trained ResNet models as backbone architectures
for classification of adventitious lung sounds and respi-
ratory diseases. The learned representation of the pre-
trained model is transferred by using vanilla fine-tuning,
co-tuning, stochastic normalization and the combination
of the co-tuning and stochastic normalization techniques.
Furthermore, data augmentation in both time domain and
time-frequency domain is used to account for the class
imbalance of the ICBHI and our multi-channel lung sound
dataset. Additionally, we introduce spectrum correction to
account for the variations of the recording device proper-
ties on the ICBHI dataset. Empirically, our proposed sys-
tems mostly outperform all state-of-the-art lung sound clas-
sification systems for the adventitious lung sounds and
respiratory diseases of both datasets.

Index Terms—Adventitious lung sound classification,
respiratory disease classification, crackles, wheezes, co-
tuning for transfer learning, stochastic normalization, ICBHI
dataset.

I. INTRODUCTION

R ESPIRATORY diseases have become one of the main
causes of death in society. According to the World Health

Organization (WHO), the “big five” respiratory diseases, which
include asthma, chronic obstructive pulmonary disease (COPD),
acute lower respiratory tract infections, lung cancer and tuber-
culosis, cause the mortality of more than 3 million people each
year worldwide. Currently, CoViD-19, a special form of viral
pneumonia related to the coronavirus identified firstly in Wuhan
(China) in 2019, has caused globally more than 158 million
infections and 3,296,000 deaths [1]. On March 11, 2020, the
WHO officially announced that CoViD-19 has reached global
pandemic status. Furthermore, according to [2], the “big five”
lung diseases, except lung cancer, have increased during CoViD-
19 epidemics. These respiratory diseases are characterised by
highly similar symptoms, i.e. the adventitious breathing, which

Manuscript received 22 June 2021; revised 1 October 2021, 26
November 2021, and 20 January 2022; accepted 11 February 2022.
Date of publication 7 March 2022; date of current version 22 August
2022. This work was supported by Vietnamese - Austrian Government
Scholarship. (Corresponding author: Truc Nguyen.)

Truc Nguyen is with the Signal Processing and Speech Communi-
cation Lab., Graz University of Technology, 8010 Graz, Austria (e-mail:
t.k.nguyen@tugraz.at).

Franz Pernkopf is with the Signal Processing and Speech Communi-
cation Lab., Graz University of Technology, Austria.

Digital Object Identifier 10.1109/TBME.2022.3156293

could be a confounding factor during diagnosis [3]. Due to their
severe consequences, an early and accurate diagnosis of these
types of diseases has become crucial.

Lung sounds convey relevant information related to pul-
monary disorders with adventitious breathing sounds such as
crackles and/or wheezes [4], [5]. In the last decades, computa-
tional lung sound analysis (CLSA) [6] have been developed
to facilitate a more objective assessment of the lung sound
for diagnosis of pulmonary diseases/conditions. CLSA systems
automatically detect and classify adventitious lung sounds by
using digital recording devices, signal processing techniques and
machine learning algorithms. They are also carefully evaluated
in real-life scenarios and can be used as portable easy-to-use
devices without the necessity of expert interaction. Recently,
automatic diagnostic of CoViD-19 disease has been popu-
lar using respiratory sound data including cough, voice and
breaths [7], [8]. Most of the CoViD-19 diagnostic systems
use respiratory sound datasets such as Coswara [7], CoViD-19
crowd-sourced sound dataset [9] or COUGHVID [10]. There
is only a modest number of works using lung sounds recorded
by digital stethoscope. For instance, in [11], an automated lung
sound analysis the LungPass platform has been introduced. It is
based on neural networks for identifying lower respiratory tract
involvement in COVID-19. In our paper, we focus on CLSA
using only lung sounds from our multi-channel lung sound
dataset and the ICBHI 2017 dataset, which is a popular and
public lung sound dataset for benchmarking.

In CLSA, there are two popular classification tasks, namely
(i) adventitious lung sound and (ii) respiratory disease classifica-
tion. We consider both in this article. In adventitious lung sound
classification, recognition of normal and abnormal sounds (i.e.
crackles and/or wheezes) is important; while for respiratory dis-
ease classification, several categories have been considered e.g.
binary classification (health and pathological), ternary chronic
classification (healthy, chronic and non-chronic diseases) or
six class classification of distinct pathologies. The proposed
systems have been evaluated on non-public datasets such as
R.A.L.E. [12] or multi channel lung sound data [13] (ours) and
public datasets i.e. the ICBHI 2017 dataset [5] or the Abdullah
University Hospital 2020 dataset [14]. Due to limitations in the
amount and quality of available data, the performance and gen-
eralization of the lung sound classification system may suffer. To
deal with these challenges, different feature extraction methods
[15], [16], conventional machine learning [17], [18], [19], deep
learning [20], [21], [22], [23] and data augmentation have been
introduced in the recent past.

Deep neural networks (DNNs) trained from scratch require
large amounts of data. As data collecting is a time consuming
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task for lung sound data, transferring pre-trained parameters
from DNNs, which are trained on other datasets e.g. ImageNet
is advantageous. Less data of the target task is required, faster
training is enabled, and usually better performance after fine-
tuning the model on the target task is achieved [24]. Therefore,
fine-tuning brings great benefit to the research community such
as transfer learning from ImageNet [25], [26], or audio scene
datasets [27].

In this work, we further improve the generalization ability and
model performance for adventitious lung sound classification
and respiratory disease classification systems using the ICBHI
2017 dataset and our multi-channel lung sound dataset. The main
contribution is to exploit different transfer learning approaches,
in which the pre-trained ResNet models of the ImageNet clas-
sification task are used as backbone architectures. We compare
the following approaches:

� We fine-tune the pre-trained model on a target domain
and update all top (i.e. feature representation) layers and
bottom (i.e. task-specific) layers. We call this vanilla fine-
tuning.

� We apply co-tuning to fully transfer the knowledge of
the pre-trained model [28], in which representation layers
and task-specific layers of both source domain and target
domain are collaboratively exploited. Co-tuning learns a
relationship between source and target categories. Both,
the target labels and the probabilistic source labels deter-
mined by the category relationship are used for fine-tuning
the model for the target domain [28].

� We replace Batch Normalization (BN) layers, which suffer
from poor performance in case of a data distribution shift
between training and test data. We introduce stochastic
normalization (StochNorm) [29] in each residual block of
the pre-trained backbone architecture. StochNorm is a par-
allel structure normalizing the activation of each channel
by either mini-batch statistics or moving statistics to avoid
influence of sample statistics during training. Thus, it is
considered as a regularization method. Furthermore, fine-
tuning inherits further prior knowledge of moving statis-
tics of the pre-trained networks compared to vanilla fine-
tuning. Both properties help to avoid over-fitting on small
datasets such as the ICBHI and our lung sound dataset.

� We combine co-tuning and stochastic normalization tech-
niques to take advantages of both techniques.

Furthermore, we apply data augmentation in both time do-
main and time-frequency domain to account for the class imbal-
ance in the datasets. In particular, beside using time stretching
on audio signals, we double the size of the training dataset by
flipping samples i.e spectrograms in the target domain. This
enhances the performance of adventitious lung sound classi-
fication. In addition, we use spectrum correction [30] of the
lung sounds to compensate the recording device variations in
the ICBHI dataset. This improves the generalization ability by
accounting for the recording device differences. Currently, there
are a few approaches which address this problem. They focus
on either training or fine-tuning specific models for a specific
device which is used for majority recordings to limit sensitivity
to characteristics of the recording device [31], [32].

The outline of the paper is as follows: In Section II, we
introduce the lung sound databases. In Section III, we present
our lung sound classification systems. In Section IV, we present
the experimental setup including the evaluation metrics and the
experimental results. We review related works for ICBHI and
our multi-chanel lung sound dataset in Section V. Finally, we
conclude the paper in Section VI.

II. DATABASES

We evaluate our models on the ICBHI dataset and our multi-
channel lung sound dataset. Both are introduced in the following.

A. ICBHI 2017 Dataset

The ICBHI 2017 database [5] consists of 920 annotated audio
samples from 126 subjects corresponding to patient patholog-
ical conditions i.e. healthy and seven distinct disease cate-
gories (Pneumonia, Bronchiectasis, COPD, upper respiratory
tract infection (URTI), lower respiratory tract infection (LRTI),
Bronchiolitis, Asthma). The audios were recorded using dif-
ferent stethoscopes i.e. AKGC417 L, Meditron, Litt3200 and
LittC2SE. The recording duration ranges from 10 s to 90 s
and the sampling rate ranges from 4000 Hz to 44100 Hz.
Each recording is composed of a certain number of breathing
cycles with corresponding annotations of the beginning and the
end, and the presence/absence of crackles and/or wheezes. The
annotations of the database support to split audio recordings
into respiratory cycles. The cycle duration ranges from 0.2 s
to 16 s and the average cycle duration is 2.7 s. The database
includes 6898 different respiratory cycles with 3642 normal
cycles, 1864 crackles, 886 wheezes, and 506 cycles containing
of both crackles and wheezes.

We propose a classification system for the following tasks.
� ALSC: Adventitious lung sound classification (ALSC) is

separated into two sub-tasks for respiratory cycles. The
first one is a 4-class task classifying respiratory cycles into
four classes (Normal, Crackles, Wheezes and both Crack-
les and Wheezes). The second sub-tasks is a 2-class task
of normal and abnormal lung sounds including Crackles,
Wheezes and both Crackles and Wheezes. We evaluate our
system on the official ICBHI data split. The dataset was
divided by the ICBHI challenge into 60% for training and
40% for testing. Both sets are composed with different
patients (i.e. non-overlapping).

� RDC: Respiratory disease classification (RDC) also con-
sists of two sub-tasks for audio recordings. The first one is a
3-class task classifying audio recordings into three groups
of Healthy, Chronic Diseases (i.e. COPD, Bronchiectasis
and Asthma) and Non-Chronic Diseases (i.e. URTI, LRTI,
Pneumonia and Bronchiolitis). The second sub-tasks is a
2-class task (healthy/unhealthy), where the unhealthy class
comprises of the seven diseases. Similarly, we evaluate our
system on the official ICBHI data split.

Beside the target domain role for ALSC and RDC, the ICBHI
dataset is used as an additional source domain to retrain pre-
trained models of ImageNet for crackle detection on our multi-
channel lung sound dataset.
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TABLE I
NUMBER OF SUBJECTS AND CYCLES IN THE DATASET

Fig. 1. Multi-channel lung sound recording device.

Fig. 2. Proposed systems using co-tuning for transfer learning or
stochastic normalization.

B. Multi-Channel Lung Sound Database

The multi-channel lung sound database [20], [13] has been
recorded in a clinical trial. It contains lung sounds of 16 healthy
subjects and 7 patients diagnosed with idiopathic pulmonary
fibrosis (IPF). We used our 16-channel lung sound recording
device to record lung sounds over the posterior chest at two
different airflow rates, with 3 - 8 respiratory cycles within 30 s.
The lung sounds were recorded with a sampling frequency of
16 kHz. The sensor signals are filtered with a Bessel high-pass
filter with a cut-off frequency of 80 Hz and a slope of 24 dB/oct.
We extracted full respiratory cycles using the airflow signal
from all recordings. We manually annotated respiratory cycles
in cooperation with respiratory experts from Medical University
of Graz, Austria. The number of breathing cycles with/without
IPF are shown in Table I. We use this dataset as another target
domain to evaluate our proposed systems using transfer learning
from different source domains.

III. PROPOSED LUNG SOUND CLASSIFICATION SYSTEMS

The proposed systems include two key stages i.e. feature
processing and classification as shown in Fig. 2. Firstly, the
respiratory cycles/ recordings are pre-processed in time domain
and transformed into log-mel spectrograms of fixed size. Sec-
ondly, the features are fed to the CNN model where co-tuning

TABLE II
PERCENTAGE OF SAMPLES RECORDED BY EACH DEVICE OF THE ICBHI

DATASET

or stochastic normalization are explored for the different classi-
fication tasks. During inference, the label of an input respiratory
cycle/ recording is determined via majority voting [33] of the
predicted labels of the individual segments.

A. Audio Pre-Processing and Feature Extraction

We use the audio pre-processing and feature extraction tech-
niques presented in [23] for both datasets. Audio recordings
are resampled to 16 kHz for the ALSC tasks of the ICBHI
challenge and our dataset, while the RDC tasks use 4 kHz
sampling rate. Similar to our previous works on ALSC of ICBHI
and our multi-channel dataset [24], [35], the respiratory cycles
are split without overlap into segments. Furthermore, we apply
sample padding in time-reversed order to achieve fixed-length
segments without abrupt signal changes. For the RDC task of
the ICBHI dataset, recordings are decomposed into segments
of the same length using 50% overlap. An ablation study over
different segment lengths is provided in Section IV. Again
sample padding is applied to the segments being shorter than the
fixed length. Hence, the pre-processing for both tasks is similar.

We use a window size of 512 samples for the fast Fourier
transform (FFT) using 50% overlap between the windows. The
number of mel frequency bins is chosen as 50 and 45 for the
ICBHI dataset and our multi-channel dataset, respectively. The
logarithmic scale is applied to the magnitude of the mel spectro-
grams. The log-mel spectrograms are normalized with zero mean
and unit variance. Then these spectrograms are duplicated into
three channels to match the input size of the pre-trained ResNet
model for the ALSC task. However, for the RDC task of the
ICBHI dataset, we convert the spectrogram, which is considered
as a grey image, into a RGB color image and enlarge the image
to twice the size using linear interpolation. These techniques are
commonly used [35].

B. Spectrum Correction

We observe a different frequency response across recording
stethoscopes which results in a performance degradation for
under-represented devices. Hence, we calibrate the features of
the audio segments by applying spectrum correction instead of
training or fine-tuning the model for a specific device [31], [32].
The spectrum correction or calibration was first applied for
acoustic scene classification [30]. It scales the frequency re-
sponse of the recording devices. In particular, the calibration
coefficients are calculated for each device based on data from ref-
erence devices. Table II shows the recorded data portions of each
recording device of the ICBHI dataset. The magnitude spectrum
ski of each segment i recorded by the device k is an averaged
spectrum along the time axis of all FFT windows. The mean
device spectrum s̄k = 1

Nk

∑Nk

i=1 s
k
i , where device k records Nk

segments corresponding to Nk spectra. The reference spectrum
sref is furthermore averaged over all mean device spectra of the
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D reference devices sref = 1
|D|

∑
k∈D s̄k, where D contains

the indices of the reference devices. We investigate different
cases of reference devices based on their prominence i.e only
one device either AKGC417 L or Meditron or both AKGC417 L
and Meditron, or all recording devices. The scaling coefficients
ck of each device is the element-wise fraction (i.e for each
frequency bin) of the reference spectrum and its corresponding
device spectrumck =

sref

s̄k
. The magnitude of the STFTs of each

device is scaled by using the corresponding coefficient vector
ck for the frequency bins. We empirically observed that the
normalization in spectrogram domain is more successful than
in log-mel domain.

C. Data Augmentation

The ICBHI 2017 dataset is extremely imbalanced with around
53% of respiratory cycles belonging to the normal class and 86%
of audio recordings belonging to COPD. Furthermore, with our
multi-channel lung sound dataset, around 71% of respiratory
cycles are annotated as normal class. Therefore, we use data
augmentation in both time domain and time - frequency domain
in order to balance the training dataset and prevent over-fitting.

1) Time Domain: For ALSC of the ICBHI dataset, we use
time stretching to increase/reduce the sampling rate of an audio
signal without affecting its pitch [36]. It is used to double the
number of segments of the wheeze, and both wheeze and crackle
classes. We use a random sampling rate uniformly distributed
with ±10% of the original sampling rate. For RDC of ICBHI,
time stretching is used for all classes to double the number of
samples. Furthermore, on the doubled training set further data
augmentation methods1 i.e volume adjusting, noise addition,
pitch adjusting and speed adjusting are randomly applied based
on a predefined probability.

2) Time-Frequency Domain: Vocal tract length perturba-
tion (VTLP) selects a random wrap factor α for each recording
and maps the frequency f of the signal bandwidth to a new
frequency f ′ [37]. We select α from a uniform distribution
α ∼ U(0.9, 1.1) and set the maximum signal bandwidth to Fhi

= [3200, 3800]. VTLP is applied directly to the mel filter bank
rather than distorting each spectrogram. VTLP is applied to
enlarge the dataset for all classes in both tasks for both the
original training set and the time stretched data. Additionally,
we double the log-mel features by adding the flipped log-mel
features (in frequency axis) for the ALSC and crackle detection
task of our dataset.

D. Exploiting Transferred Knowledge

1) Transfer Learning: Given a DNN M0 pre-trained on a
source dataset Ds = {(xi

s, y
i
s)}ms

i=1, transfer learning aims to
fine-tune M0 on a target dataset Dt = {(xi

t, y
i
t)}mt

i=1. In this
work, Ds is selected from ImageNet and Dt is the ICBHI 2017
dataset or our multi-channel lung sound dataset. OnlyDt and the
pre-trained model M0 are available during fine-tuning. Because
Ds andDt are different domains, which may have different input
spaces Xs and Xt, corresponding to different output spaces Ys
and Yt, respectively. Therefore, M0 can not be directly applied
to the target data. It is common practice, to split M0 into two

1https://github.com/makcedward/nlpaug

parts: a general representation function Fθ̄ (parametrized by θ̄)
and a task-specific function Gθs (parameterized by θs), which
denotes the last layers of the pre-trained model. Usually, the rep-
resentation function is retained and the task-specific function is
replaced by a randomly initialized function Hθt (parameterized
by θt) whose output space matches Yt. Hence, we optimize

(θ̄∗, θ∗t ) = argmin
θ̄,θt

1

|Dt|
mt∑

i=1

l(Hθt(Fθ̄(x
i
t)), y

i
t), (1)

where l(·) is a loss function such as cross-entropy for classifica-
tion. We will call this vanilla fine-tuning. Pre-trained parameters
θ̄ provide a good starting point for the optimization. It means that
the vanilla fine-tuning for a target dataset can be beneficial by
transferring the knowledge of the part Fθ̄ of the source dataset.

In this work, we explore different depths of ResNet archi-
tectures i.e. ResNet18, ResNet34, ResNet50 and ResNet101 as
neural network backbones.

2) Co-Tuning: Co-tuning for transfer learning enables full
knowledge transfer of the pre-trained models using a two-step
framework [28]. The first step is learning the relationship be-
tween source categories and target categories from the pre-
trained model with calibrated predictions. Secondly, target labels
(one-hot labels) and source labels (probabilistic labels) trans-
lated by the category relationship, collaboratively supervise the
fine-tuning process. Co-tuning empirically proves its ability in
enhancement of the performance compared to vanilla fine-tuning
of the ImageNet pre-trained models [28]. In this work, we
apply co-tuning to fully exploit the ImageNet pre-trained models
for significantly distinct datasets such as the ICBHI and our
multi-channel lung sound dataset. The co-tuning block in Fig. 2
shows the source output layer Gθs , the target output layer Hθt ,
the ResNet50 backbone Fθ̄ and category relationship, which
is the relationship between output spaces i.e. the conditional
distribution p(ys|yt).

During training, the category relationship p(ys|yt) is needed
to translate target labels yt into probabilistic source categories
ys, which is used to fine-tune the task-specific functionGθs . The
gradient of Gθs can be back-propagated into Fθ̄. Both outputs
yt and ys collaboratively supervise the transfer learning process
described as

(θ̄∗, θ∗t , θ
∗
s) = argmin

θ̄,θt,θs

1

|Dt|
mt∑

i=1

[l(Hθt(Fθ̄(x
i
t)), y

i
t)

+λl(Gθs(Fθ̄(x
i
t)), p(ys|yt = yit))],

(2)

where λ trades off the target and source supervisions. Variables θ̄
and θs are initialized from pre-trained weights. In this way, the
pre-trained parameters are fully exploited in the collaborative
training. During inference, the task specific layers Gθs are
removed to avoid the additional cost.

The category relationship p(ys|yt) is computed based on the
output of task-specific function Gθs (i.e. a probability distri-
bution over source categories Ys) and target labels Yt by two
ways:

� Direct approach: The category relationship is determined
as average of the predictions of the pre-trained source

https://github.com/makcedward/nlpaug


2876 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 69, NO. 9, SEPTEMBER 2022

model over all samples of each target category i.e.

p(ys|yt = y) ≈ 1

|Dy
t |

∑

(x,yt)∈Dy
t

M0(x), (3)

where Dy
t = {(x, yt) ∈ Dt|yt = y} and the pre-trained

model M0 is considered as a probabilistic model approx-
imating the conditional distribution M0(x) ≈ p(ys|x).

� Reverse approach: When categories in the pre-trained
dataset are diverse enough to compose a target category,
we can use a reverse approach. We learn the mapping
ys → yt from (M0(xt), yt) pairs, where yt is the target
label and M0(x) ≈ p(ys|x) is a probability distribution
over source categoriesYs. Then p(ys|yt) can be calculated
from p(yt|ys) by Bayes’s rule.

In addition, according to [28], it is necessary to calibrate the
neural network, i.e. calibrating the probability output of the pre-
trained model, to enhance performance.

3) Stochastic Normalization (StochNorm): In [30],
stochastic normalization is proposed to avoid over-fitting during
fine-tuning on small dataset. It replaces the Batch Normalization
(BN) layers. It implements a two-branch architecture including
one branch normalized by mini-batch statistics and another
branch normalized by moving statistics (specified in detail
below). A stochastic selection mechanism like Dropout is
used between the two branches to avoid over-depending on
some sample statistics. This is interpreted as an architecture
regularization.

Let’s assume a mini-batch of feature maps of each channel
z = {zi}mi=1 and a moving statistic update rate α ∈ (0, 1). The
normalization process in the two branches is calculated as

ẑi,0 =
zi − μ̃√
σ̃2 + ε

, ẑi,1 =
zi − μ√
σ2 + ε

, (4)

during training, where the mean μ and variance σ2 of the current
mini-batch data of size m, i.e.

μ← 1

m

m∑

i=1

zi, σ2 ← 1

m

m∑

i=1

(zi − μ)2 (5)

are used as usual, while the other branch uses moving statistics
μ̃ and σ̃2 of the training data

μ̃← μ̃+ α(μ− μ̃), σ̃2 ← σ̃2 + α(σ2 − σ̃2). (6)

The moving statistics are initialized by using the correspond-
ing parameters from the pre-trained model.2 During forward
propagation, either ẑi,0 or ẑi,1 is randomly selected with prob-
ability p in each channel of the normalization layers and each
training step, i.e.

ẑi = (1− s)ẑi,0 + sẑi,1, (7)

where s is the branch-selection variable generated from a
Bernoulli distribution s ∼ Bernoulli(p). The learnable scale
and shift parameters β, γ can be applied after the stochastic
selection as usual

yi ← γx̂i + β. (8)

2This exploits prior knowledge of pre-trained networks.

Stochastic normalization in Fig. 2 uses a ResNet backbone
where BN layers are replaced by StochNorm.

4) Combination of Co-Tuning and Stochastic Normaliza-
tion: We empirically evaluate the combination of co-tuning
and StochNorm for lung sound classification. To do that, the
category relationship is initially calculated based on the pre-
trained ResNet models, followed by replacing BN layers with the
StochNorm modules in the backbone of the original co-tuning
architecture (i.e replacing the green ResBlocks from Co-tuning
by the blue ResBlocks of Stochastic Normalization in Fig. 2).
After that, co-tuning is processed on the new architecture.

IV. EXPERIMENTS

In this section, we first provide details of the experimental
setup. Furthermore, we empirically evaluate the following cases:

� Transfer learning of different pre-trained ImageNet
ResNet models on the ICBHI dataset.

� Ablation study for respiratory segment length, spectrum
corrections and flipping data augmentation.

� Transfer learning of different ResNet models pre-trained
on ImageNet and ICBHI for our multi-channel lung sound
dataset.

Our systems for the ALSC and RDC tasks on the ICBHI
dataset are also compared against state-of-the-art works for the
official ICBHI data split. Additionally, we compare our best
system for crackle detection to our previous work on the multi-
channel lung sound dataset.

A. Evaluation Metrics

We use the evaluation metrics supported by the ICBHI Chal-
lenge [5] for ALSC of 4 classes. The evaluation is based on
respiratory cycles using sensitivity (SE), specificity (SP), aver-
age score (AS), known as the average of the sensitivity and the
specificity, and the harmonic score (HS), known as the harmonic
mean of the sensitivity and the specificity. For 2 classes, we
determine SE and SP as in [21] and [16] and AS and HS as
in [5].

Similarly, for RDC of 3 classes and 2 classes, a recording-wise
evaluation is performed using SE and SP as in [21] and [16] and
AS and HS as in [5].

Furthermore, for our multi-channel lung sound dataset, we
calculate Precision (P+), Sensitivity or Recall (Se), and the F-
score as specified in [20]. Precision provides information about
how many of the respiratory cycles recognized as crackles are
actually true. Sensitivity provides information about how many
respiratory cycles containing crackles are actually recognized
as crackles. The F-score is the harmonic mean of precision and
sensitivity.

We provide the 99% confidence interval (CI) for the average
score and F-score in all bar charts and tables for the ICBHI
dataset and our multi-channel lung sound dataset, respectively.
The CI is computed from standard deviation over runs [38].

B. Experimental Setup

We evaluate our ALSC system for 4 and 2 classes and RDC
task of 3 and 2 classes on the official ICBHI 2017 dataset split,
which consists of 60% recordings for the training set and 40%



NGUYEN AND PERNKOPF: LUNG SOUND CLASSIFICATION USING CO-TUNING AND STOCHASTIC NORMALIZATION 2877

Fig. 3. Comparison of vanilla transfer learning, co-tuning, stochastic
normalization and both co-tuning and stochastic normalization of differ-
ent ResNet backbones for the adventitious lung sound classification task
of 4 classes.

for the test set. Each patient is either in the training or test set. The
reported performance is the average score of five independent
runs. As co-tuning requires a validation set to compute the
category relationship, we randomly select 20% of the samples
from the training set.

Due to the limited amount of data samples in our multi-
channel lung sound dataset, we use 7-fold cross-validation with
the recordings of each IPF subject appearing once in the test
set. Each subject is assigned to either training, validation or test
set. The best model is selected based on the best accuracy on
the validation set. The reported performance of the system is an
average accuracy of seven folds using the same data splittings.

Experiments are implemented based on Pytorch [39]. For
vanilla fine-tuning, the learning rate and number of epochs is
set to 0.001 and 150 for all tests, respectively. The fine-tuning of
co-tuning and stochastic normalization techniques3 updates the
weights after each mini-batch. The learning rate of the feature
representation layers and the last layer are set to 0.001 and 0.01,
respectively. The fine-tuning process optimizes the cross entropy
loss using SGD with a momentum of 0.9. The batch size is 32
for all experiments.

C. Experimental Results

1) Transfer Learning Techniques for Different ResNets:
We evaluate the vanilla fine-tuning (VanillaFineTuning), co-
tuning (CoTuning), stochastic normalization (StochNorm) and
the combination of co-tuning and stochastic normaliza-
tion (CoTuning-StochNorm) for different ResNet architectures
trained on the ImageNet dataset for the ALSC task of 4 classes
(see Fig. 3) and the RDC task of 3 classes (see Fig. 5) on
the official ICBHI dataset split. These systems use a segment
length of 8 s, spectrum correction using reference data sref of
all devices and all data augmentation methods introduced in
Section C.

Fig. 3 shows that ResNet50 is the best performing architecture
to build the backbone for these transfer learning techniques of the
4-class ALSC task. ResNet101 is also performing well except
for vanilla fine-tuning. Co-tuning achieved the best performance
of∼58% compared to the other techniques. Although CoTuning
and StochNorm improve significantly the performance of Vanil-
laFineTuning, the combination of co-tuning and StochNorm is
not able to outperform the respective techniques for this task.

3Code are available at https://github.com/thuml/Cotuning and https://github.
com/thuml/StochNorm.

Fig. 4. Average pooling output representations reduced into 2D
by t-distributed stochastic neighbourhood embedding (t-SNE) of the
ResNet50 backbone architecture. Distributions of training set of (a)
vanilla fine-tuning, (b) co-tuning, (c) stochastic normalization (d) com-
bination of co-tuning and stochastic normalization. The color indicates
the classes.

Fig. 5. Comparison of vanilla transfer learning, co-tuning, stochastic
normalization and both co-tuning and stochastic normalization of differ-
ent ResNet backbones for the respiratory disease classification task of
3 classes.

Fig. 4 visualizes the average pooling outputs of the ResNet50
architecture for different transfer learning techniques projected
to 2D by t-distributed stochastic neighbourhood embedding (t-
SNE) [40]. Distributions of the training set using vanilla fine-
tuning, co-tuning, stochastic normalization and combination of
co-tuning and stochastic normalization are shown in (a), (b), (c)
and (d), respectively. Comparing to vanilla fine-tuning (a) and
the stochastic normalization technique (c), the distribution of the
4 classes using co-tuning (b) and the combination of co-tuning
and stochastic normalization (d) is better separated. It shows
that the collaborative fine-tuning using the category relationship
of source and target domain is useful for the adventitious lung
sound classification task.

In Fig. 5, we see that the different transfer learning tech-
niques using the ResNet101 model achieve the best performance
for the 3-class RDC task. The ResNet50 model works better
than the others for vanilla fine-tuning. CoTuning-StochNorm
and StochNorm achieved a better performance compared to
CoTuning and VanillaFineTuning. It proves the efficiency of the
stochastic normalization in the fine-tuning process for the RDC
task.

2) Respiratory Segment Length: The length of respiratory
cycles in the ICBHI dataset varies in a wide range. Hence,
we applied cycle splitting into segments and perform sample
padding in order to obtain fixed-length segments. We observe
different segment lengths for the ResNet 50 model fine-tuned by
co-tuning and applied data augmentation in both time domain
and time-frequency domain with spectrum correction. Results

https://github.com/thuml/Cotuning
https://github.com/thuml/StochNorm
https://github.com/thuml/StochNorm
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TABLE III
RESPIRATORY SEGMENT LENGTH: AVERAGE SCORE (AS) FOR VARIOUS
INPUT LENGTH SIZES USING CO-TUNING OF RESNET50 AS BACKBONE
NETWORK AND DATA AUGMENTATION WITHOUT SPECTRUM CALIBRATION

TABLE IV
COMPARISON OF SPECTRUM CORRECTION METHODS USING DIFFERENT

REFERENCE DATA

Co-Tuning of the ResNet50 With Data Augmentation is Used

Fig. 6. Comparison of vanilla transfer learning, co-tuning and stochas-
tic normalization using ResNet50 for the cases of spectrum correction
and flipping data augmentation.

are shown in Table III. The best AS is obtained with 8 s
fixed-length segments for 4 classes. We also use 8 s segments
for the other tasks of the ICBHI and our lung sound dataset.

3) Spectrum Correction: We performed experiments on
the ICBHI dataset with/without spectrum correction (calibra-
tion) using different reference spectra sref , which are deter-
mined by one or more devices. No-Calib denotes that no spec-
trum correction is applied. Calib-Dev1 and Calib-Dev2 denote
calibration using data of device AKGC417 L and Meditron,
respectively. Calib-Dev1Dev2 denotes calibration using data
of both devices and Calib-AllDev denotes spectrum adaptation
using reference data of all four devices. From Table IV, we
can see that co-tuning of the ResNet50 model using reference
data of all devices achieves the best performance. It is 1.62%
(absolute) better than without using spectrum calibration. Thus,
we apply spectrum calibration for both adventitious lung sound
classification and respiratory diseases classification.

4) Flipping Data Augmentation: We apply data augmenta-
tion in time domain and VTLP in order to balance the dataset.
In this section we focus on the influence of feature flipping
data augmentation (see Section III). Fig. 6 shows that when
the system does not use spectrum correction, doubling the size
of the augmented training set by the flipping technique always
performs well for vanilla fine-tuning, co-tuning and stochas-
tic normalization. It improves significantly the performance of
vanilla fine-tuning and stochastic normalization of about 3% and
2%, respectively. For co-tuning, the flipping data augmentation
achieves an improvement of 1% accuracy. Furthermore, we
can see from Fig. 6 that using the combination of spectrum
calibration and flipping data augmentation always enhances the

Fig. 7. Comparison of co-tuning and vanilla fine-tuning of different
ResNet architectures pre-trained on ICBHI and ImageNet for crackle
detection. Our multi-channel lung sound dataset and flipping data aug-
mentation are used.

TABLE V
COMPARISON BETWEEN THE PROPOSED SYSTEMS AND THE SYSTEM IN [35]

USING OUR MULTI-CHANNEL LUNG SOUND DATASET FOR CRACKLE
DETECTION TASK

robustness of the adventitious lung sound classification systems
as the confidence intervals decrease.

5) Effect of Pre-Trained Model on the Multi-Channel
Lung Sound Dataset: According to the above evaluation of
transfer learning techniques for different residual neural net-
works for the 4-class ALSC task, co-tuning achieves the best
performance. Thus, we evaluate the effect of pre-trained models
using co-tuning (CoTuning) for the 2-class ALSC task on our
multi-channel lung sound dataset. It is shown in Fig. 7. Co-
tuning using the ImageNet pre-trained model always slightly
outperforms that of the ICBHI pre-trained model. The smaller
ResNet architectures tend to work better for co-tuning. We also
can see from Fig. 7 that the ResNet34 backbone system achieves
the best performance, followed by ResNet18, ResNet50 and
ResNet101. In addition, Fig. 7 shows that transferred knowledge
from full pre-trained models of ICBHI and the ImageNet dataset
by co-tuning to our small lung sound dataset can achieve better
accuracy than vanilla fine-tuning (VanillaFineTuning) using the
ImageNet pre-trained model.

Overall, the best segment length for lung sound classification
is 8 s. Spectrum correction is useful to improve the performance
of our ALSC and RDC system on the ICBHI dataset. This helps
to correct the different frequency responses of the recording
devices. The ALSC system using the flipping data augmentation
enhances performance on both ICBHI and our multi-channel
lung sound dataset. The new transfer learning methods always
outperform vanilla transfer learning. Co-tuning works better
for the ALSC task while StochNorm and its combination with
co-tuning achieve higher performance for the RDC task. Further-
more, ResNet34 and ResNet50 are more suitable for the ALSC
tasks, while a large ResNet101 model tends to be more robust
for the RDC task in most transfer learning settings.

D. Performance Comparison

1) Comparison to State-of-the-Art Systems Using the
ICBHI Dataset: Tables VI and VII show the comparison of
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TABLE VI
COMPARISON BETWEEN THE PROPOSED SYSTEMS AND STATE-OF-THE-ART SYSTEMS FOR ALSC TASKS OF 4-CLASS AND 2-CLASS

TABLE VII
COMPARISON BETWEEN THE PROPOSED SYSTEMS AND STATE-OF-THE-ART SYSTEMS FOR RDC TASK OF 3-CLASS AND 2-CLASS

our best systems of different transfer learning techniques and
state-of-the-art systems (see Section V for more details on
the systems) for the ALSC and RDC tasks, respectively. Our
best systems are presented in bold and the highest scores are
presented in bold and italic. It is notable that the performances
on the official 60/40 ICBHI separation without common pa-
tients in both sets are significantly lower than that of randomly
80/20 splitting i.e. 5-fold cross validation and overlap of the
same patients in both sets. Despite of the same fixed length
for segments, the RDC systems always achieve considerably
higher performance compared to the ALSC system for different
sub-tasks. The RDC tasks have the full audio recordings which
consists of many available respiratory cycles, while the ALSC
tasks are processed and evaluated on respiratory cycles.

We evaluate our proposed system on the official ICBHI split
for the 4 and 2 class ALSC tasks. Our best systems of different
fine-tuning techniques outperform the other ALSC systems.
Our system using co-tuning of the ResNet50 pre-trained model
achieve the highest ICBHI average score of 58.29% and 64.74%
for the 4-class and 2-class ALSC task, respectively. Our RDC
systems are evaluated on the official ICBHI split of the 3-class
RDC task, our systems achieves the best performance with the
ResNet101 pre-trained architecture combined with stochastic
normalization. It obtains 92.72% of the ICBHI average score.
While on the 2-class RDC task, our systems using stochastic
normalization achieves the average scores of 93.77% for the
official splitting. Our best 2-class RDC system outperforms all
compared systems.
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2) Comparison for Our Multi-Channel Lung Sound
Dataset: Table V compares our best systems using different
transfer learning techniques with our previous system using fine-
tuning for a multi-input CNN model [34] on the multi-channel
lung sound dataset. We can see that our best transfer learning
systems outperform the previous system. The co-tuning system
using the ResNet34 model pre-trained on ImageNet achieves the
best performance, closely followed by the StochNorm system
using the pre-train ResNet50 model. The best F-score is 2.82%
better than for the multi-input fine-tuned system [34].

V. RELATED WORKS

We review recent works on ALSC and RDC using the ICBHI
2017 dataset and binary ALSC works (i.e. crackle detection)
using the multi-channel lung sound database. In general, it is
difficult to compare the score of some proposed methods for
ICBHI as substantial work does not use the official data splitting
or use a different evaluation metric.

A. Lung Sound Classification on ICBHI Dataset

There are two main directions: (i) conventional classifiers for
low-level features of time or frequency domain, (ii) deep neural
networks and robust machine learning techniques for spectral
features.

1) Conventional Approaches: Almost all proposed lung
sound classification systems of the ICBHI challenge 2017 used
conventional classifiers. The robust systems used hidden Markov
models and Gaussian mixture models for MFCC features [47]
or support vector machines (SVMs) for STFT and wavelet
features [48].

Recently, a binary RDC system using the RUSBoost algo-
rithm, which combines random under sampling and boosting
techniques (i.e decision tree as a base classifier) was also intro-
duced [46]. The input of the classifier are features selected from
MFCCs, discrete wavelet transform and time domain features.
The proposed system was evaluated on their own ICBHI dataset
split and achieved 87.1% of average score.

In addition, Mukherjee et al. [45] developed a method to detect
patients with respiratory infections. They extracted features
based on linear predictive coefficient for a multilayer perceptron
classifier. The method was evaluated on the ICBHI dataset using
5-fold cross-validation and achieved 99.22% of accuracy for the
2-class ALSC task.

2) Deep Learning Approaches: Deep learning systems use
CNNs, recurrent neural networks (RNNs) and hybrid architec-
tures. They are combined with machine learning techniques
such as data augmentation, ensemble methods and transfer
learning to enhance robustness. For the RNN-based systems,
Kochetov et al. [31] proposed a system using a noise making
RNN and MFCC features to classify cycles of lung sounds
into four categories. The performance was evaluated based on
5-fold cross-validation. It is the first work which considers
the effect of the recording devices on the performance. They
achieved a score of 64.8% and 68.5% with training data from
all devices and the most often occurring recording device (i.e.
AKGC417 L), respectively. In [21], Perna et al. also introduced
different architectures of RNNs such as long short time mem-
ory (LSTM), gated recurrent units (GRU), bidirectional-LSTM
(BiLSTM) and bidirectional-GRU (BiGRU) for MFCC features

to perform 4-class and 2-class ALSC and the 3- and 2-class
RDC task. The results on random train-test ICBHI split of
80% and 20% are 74% and 81% of average score for the
4-class and 2-class ALSC task, respectively. The average per-
formance of the RDC tasks of 3 and 2 classes is 84% and 91%,
respectively.

Furthermore, CNNs or hybrid architectures have been used.
In [23], we proposed a lung sound classification using a snapshot
ensemble of CNNs for log-mel spectrograms. We applied tem-
poral stretching and vocal tract length perturbation (VTLP) for
data augmentation to deal with the class-imbalance of the ICBHI
dataset. Our system achieved 78.4% and 83.7% of average score
on the random train-test split of 80% and 20% with common
patients in both sets for the ALSC task of 4 classes and 2 classes,
respectively. Acharya et al. [26] introduced a deep CNN-RNN
model for mel spectrograms to classify adventitious lung sounds
into four classes. The performance for 5-fold cross validation
evaluation was 66.31%. When this system was combined with a
patient specific model tuning strategy, its performance increased
up to 71.81% of average score. Similarly, Pham et al. [44], [16]
introduced lung sound classification systems for adventitious
sounds and respiratory diseases. In [44], they proposed various
deep learning architectures mainly based on CNNs and RNNs
using gammatone filtered spectrograms. They use a 80%-20%
dataset split, where data from one subject may exist in both
training and test set. An average ensemble of these systems
achieved 80% and 86% average score for the 4-class and 2-class
ALSC, respectively. The proposed CNN - mixture of expert
(MoE) model was suitable for the RDC task of 3 classes
and 2 classes with a performance of 90% and 91%, respec-
tively. In [16], they proposed a CNN-MoE neural network for
different feature types i.e. MFCCs, log-mel, gammatone filter
and constant-Q transform spectrogram. The gammatone filter
spectrogram was suggested for ALSC, while log-mel spectro-
grams worked better for the RDC task. The average score of
the 4-class ALSC task was 47% for the ICBHI official dataset
split. For 5-fold cross-validation with data of the same patient in
both sets, their performance was 78.6% and 84% for the ALSC
task of 4 classes and 2 classes, respectively. On the 3-class RDC
task they achieved 85% of average score on the ICBHI official
dataset split and 91% on 5-fold cross-validation.

Recently, CNN-based systems from diverse architectures i.e.
VGGNets, ResNets or their variations have been more and more
introduced. Ma et al. proposed a system used non-local block
ResNet with mixup data augmentation for STFT spectrograms
[41]. It was achieved an average score of 52.26% on the official
data split and 64.21% on 5-fold cross-validation. Yang et al. [42]
proposed a 4-class ALSC system combining the ResNet18
architecture with Squeeze-and-Excitation and spatial attention
blocks using STFT spectrogram features. They obtained 49.55%
of average score on the official ICBHI dataset split. Li et al. [43]
proposed a deep architecture integrating an attention mechanism
into the ResNet blocks for multi-channel spectrograms based on
Q-factor wavelet transform and short-time Fourier transform.
The performance for 4-class and 2-class ALSC is 53.9% and
61.42%, respectively.

Ordas et al. [49] proposed a CNN model for RDC using a
variational convolutional autoencoder for data augmentation to
balance the dataset. The achieved performance is 99.3% F-Score
for the 3-class RDC task and 99.0% F-Score for the 6-class
RDC task on the dataset split of 80% and 20% for training
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and test set, respectively. However, the systems were evaluated
on the augmented test set and the performances can not be
directly compared to the systems reported in Table VII. Shuvo et
al. [50] introduced their lightweight CNN model for detecting
respiratory diseases using hybrid scalogram-based features of
empirical mode decomposition and continuous wavelet trans-
form. The proposed system achieved 98.92% for the three-class
chronic classification task and 98.70% for the multi-class disease
classification task. Similarly, these results are evaluated on the
augmented test set.

Demir et al. proposed a 4-class ALSC system using pre-
trained models for STFT spectrograms converted into color
images. In the first approach [25], the pre-trained model was
used as feature extractor and combined to an SVM classifier.
In the second approach [25], the pre-trained model was fine-
tuned on the ICBHI dataset. They achieved 65.5% and 63.09%
of accuracy for 10-fold cross-validation, respectively. In [51],
they introduced a parallel pooling CNN model for deep feature
extraction. It is combined with a linear discriminant analysis
classifier and random subspace ensembles. The performance
of the proposed system was 71.5% for 10-fold cross-valuation.
However, the evaluation metrics are different.

Additionally, Gairola et al. [32] proposed a RespireNet model
based on ResNet34 and fully connected layers with a set of
techniques i.e. device specific fine-tuning, concatenation-based
augmentation, blank region clipping and smart padding to im-
prove the accuracy. The average score for the 4-class ALSC
task was 56.2% and 68.5% for the official ICBHI dataset split
and 5-fold cross-validation, respectively. They also evaluated the
proposed system for the ALSC task of two classes and obtained
77.0% accuracy on 5-fold cross-validation.

B. Lung Sound Classification on Our Multi-Channel
Dataset

In [20], Messner et al. introduced an event detection approach
with bidirectional gated recurrent neural networks (Bi-GRNNs)
using MFCCs to identify crackles in respiratory cycles. The
proposed system was evaluated on the first version of the multi-
channel lung sound dataset including 10 lung-healthy subjects
and 5 patients with IPF. The performance was an F-score of 72%
on 5-fold cross-validation.

In [13], a classification framework using lung sound signals
of all recording channels was introduced to identify healthy
and pathological breathing cycles. Lung sounds of one breath
cycle of all recording channels were first transformed into STFT
spectrograms. Then, the spectrogram were stacked into one
compact feature vector. These features were fed into a CNN-
RNN model for classification. Its score was 92% for 7-fold
cross-validation.

We proposed a multi-input CNN model based on transfer
learning for the detection of crackles and normal sounds on
the multi-channel lung sound classification dataset. In [35], the
multi-input CNN model shares the same network architecture
of the pre-trained CNN model trained on the ICBHI dataset for
respiratory cycles and their corresponding respiratory phases.
Our system achieved an F-score of 84.71% using 7-fold cross-
validation.

VI. CONCLUSION

We propose robust fine-tuning approaches to classify adven-
titious lung sounds and recognize respiratory diseases from lung
auscultation recordings using the ICBHI and our multi-channel
lung sound datasets. Transferred knowledge of pre-trained mod-
els from different ResNet architectures are exploited by vanilla
fine-tuning, co-tuning, stochastic normalization and the com-
bination of co-tuning and stochastic normalization techniques.
Furthermore, spectrum correction and flipping data augmenta-
tion are introduced to improve the robustness of our system.
Empirically, our proposed systems outperform almost all state-
of-the-art systems for adventitious lung sound and respiratory
disease classification. In particular, we obtain 58.29±0.24% and
64.74±0.05% average score for the 4- and 2-class adventitious
lung sound task, respectively. Similarly, for the 3- and 2-class
respiratory disease classification task, we obtain 92.72±1.30%
and 93.77±1.41% average score, respectively. In addition, we
also evaluate our adventitious lung sound classification approach
using co-tuning on our multi-channel lung sound dataset to de-
tect crackles using different pre-trained models of the ImageNet
and ICBHI dataset. The best co-tuning system for 2-class lung
sound classification achieves a better F-score (2.82%) compared
to our previous work using a multi-input convolutional neural
network. We also review state-of-the-art classification systems
for adventitious lung sounds and respiratory diseases using the
ICBHI dataset and our multi-channel lung sound dataset.
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