arXiv:2203.08648v1 [cs.RO] 16 Mar 2022

Artificial Intelligence Enables Real-Time and Intuitive
Control of Prostheses via Nerve Interface

Diu Khue Luu*!, Anh Tuan Nguyen*"5, Ming Jiang?, Markus W. Drealan!, Jian Xu!,
Tong Wu'!, Wing-kin Tam'®, Wenfeng Zhao!, Brian Z. H. Lim', Cynthia K. Overstreet?,
Qi Zhao?, Jonathan Cheng?, Edward W. Keefer*®, Zhi Yang!'?®

* Co-first authors

! Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA

2 Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
3 Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
4 Nerves Incorporated, Dallas, TX, USA

® Fasikl Incorporated, Minneapolis, MN, USA

Correspondence: D. K. Luu (Email: luu00009@umn.edu) and A. T. Nguyen (Email:
nguy2833Qumn.edu)

Abstract

Objective: The next generation prosthetic hand that moves and feels like a real hand re-
quires a robust neural interconnection between the human minds and machines. Methods: Here
we present a neuroprosthetic system to demonstrate that principle by employing an artificial
intelligence (AI) agent to translate the amputee’s movement intent through a peripheral nerve
interface. The AI agent is designed based on the recurrent neural network (RNN) and could
simultaneously decode six degree-of-freedom (DOF) from multichannel nerve data in real-time.
The decoder’s performance is characterized in motor decoding experiments with three human
amputees. Results: First, we show the AI agent enables amputees to intuitively control a
prosthetic hand with individual finger and wrist movements up to 97-98% accuracy. Second,
we demonstrate the Al agent’s real-time performance by measuring the reaction time and in-
formation throughput in a hand gesture matching task. Third, we investigate the Al agent’s
long-term uses and show the decoder’s robust predictive performance over a 16-month implant
duration. Conclusion € significance: Our study demonstrates the potential of Al-enabled nerve
technology, underling the next generation of dexterous and intuitive prosthetic hands.

Keywords: artificial intelligence, deep learning, information throughput, information transfer
rate, peripheral nerve, motor decoding, neural decoder, neuroprosthesis, reaction time

1 Introduction

The number of upper-limb amputees in the U.S. has been escalating during the past few decades.
From a population of 541,000 in the year 2005, the amputee population is expected to exceed 1
million by the year 2050 [1]. While many upper-limb prostheses with individually motorized joints
and fingers have become commercially available, limitations of the control scheme have not enabled
significant improvements of amputee’s well-being. Numerous advanced motor decoders are being
developed to fulfill this missing link. There are several approaches that can be generally categorized



based on the inputs signals: myoelectric-based (electromyography, EMG), brain/cortical recording,
and peripheral nerve (electroneurography, ENG).

EMG-based system is the most popular approach because it is noninvasive, relatively easy to
obtain, and has been proven to hold useful information for motor decoding [2-4]. EMG prosthesis
control has a long history dated back to the 1960s [5,/6]. In recent years, advances in machine
learning have further pushed the accuracy boundary of EMG-based motor decoders. The current
state-of-the-art for an offline classification task is using support-vector machine (SVM) to decode
EMG signals, which yields an accuracy up to 99% for a 4-class problem [7]. However, [§] shows
that good offline decoding outcomes do not necessarily translate to real-time performance. In [9],
decoding EMG signals with multilayer perceptron (MLP) yields an accuracy of only 82% for a 12-
class problem on transradial amputees. Furthermore, a significant limitation of most commercial
EMG-based control is that amputees must learn to contract their residual muscles in predefined
patterns to map into different hand or wrist motions. This control scheme is inherently unnatural
and requires much user training. EMG signals are also susceptible to electrode repositioning and
motion artifacts [10].

A direct neural interface that decodes true movement intents from the brain or peripheral nerve
signals promises an intuitive solution for prosthesis control, yet they come with their own set of
challenges. Although a brain implant offers the most comprehensive human-machine interconnec-
tion, it is invasive and carries significant risks of neural tissue damage in long-term uses |[11-13].
On the other hand, a peripheral nerve interface like one reported in our previous work [14-16] and
others |17-26] is less invasive while still providing sufficient motor control signals with simultaneous
somatosensory neuro-feedback. These interfaces aim to enable intuitive prosthesis control purely
by thoughts and achieve a natural user experience, which is crucial for the amputee to take full
advantage of near-anatomic prosthetic hands like the LUKE Arm [27,28] with at least 10 degrees
of freedom (DOF) of movement. Decoding motor intent from the peripheral nerves without input
from the residual muscles also allows the system to be used by a larger population of amputees with
various amputation levels. Despite the promises, one of the major challenges for materializing this
technology into clinical prostheses is that the interface generates a large amount of high-dimensional
data, which must be efficiently translated to prosthesis movements in real-time.

Artificial intelligence (AI) based on deep learning has emerged as the most prominent approach
to leverage this challenge [15,29-35]. Our previous works [1535] demonstrate that AI neural
decoders based on the convolutional neural network (CNN) and recurrent neural network (RNN)
architecture excel over other machine learning techniques, including SVM, random forest (RF),
and MLP in both classification and regression tasks. Furthermore, we show that a deep learning
AT can be efficiently deployed on a portable, self-contained system thanks to advances in edge
computing [36].

Here we focus on characterizing the motor decoding performance of an Al agent based on the
RNN architecture. This is done through multiple motor decoding experiments with three human
amputees who receive microelectrodes implants from 6 to 16 months. First, we show the Al agent
can simultaneously decode the subject’s motor intents with six DOF, including individual fingers
flexing and wrist pronation. The prediction accuracy ranges from 85-93% with one subject to
97-98% with another. Second, we design a hand gesture matching task derived from the mental
chronometry test to quantify the AI agent’s real-time response [37,38]. The task measures the
time taken for the subject to compose a targeted gesture in random order. The results show a
median reaction time of 0.81 sec, corresponding to an information throughput of 6.09 bps (365.4
bpm) at 99% accuracy. Third, we study the AI agent’s long-term use by evaluating the prediction
performance at various time points over a 16-month implantation duration. We show that the nerve
data’s signal-to-noise (SNR), reaction time, and information throughput remain robust throughout



the course of the experiment, while the Al agent only requires fine-tuning every few months. In
fact, the best motor decoding performance is observed in the last experiment session before the
explant surgery.

The rest of the manuscript is organized as follows. Section [2] describes the human subjects,
the AI neural decoder, and the experiment setup. Section [3| presents the experiment results and
findings. Section 4| provides discussions about the results and future directions. Section [5|concludes
the paper.

2 Methods

2.1 Human subjects and experiment protocol

The human experiment is a part of the clinical trial DExterous Hand Control Through Fascicular
Targeting (DEFT) identifier No. NCTO299416qII7 which is sponsored by the DARPA Biological
Technologies Office as part of the Hand Proprioception and Touch Interfaces (HAPTIX) program.

The human experiment protocols are reviewed and approved by the Institutional Review Board
(IRB) at the University of Minnesota (UMN) and the University of Texas Southwestern Medi-
cal Center (UTSW). The amputees voluntarily participate in our study and are informed of the
methods, aims, benefits, and potential risks of the experiments before signing the Informed Con-
sent. Patient safety and data privacy are overseen by the Data and Safety Monitoring Committee
(DSMC) at UTSW. The implantation, initial testing, and post-operative care are performed at
UTSW by Dr. Cheng and Dr. Keefer, while motor decoding experiments are performed at UMN
by Dr. Yang’s lab. The clinical team travels with the subject in each experiment session. The sub-
jects also complete the Publicity Agreements where they agree to be publicly identified, including
showing their face.

Table 1: Summary of human subjects

Subiect Age & Amputation Time since No. of implanted Implantation
) gender P amputation FAST-LIFE arrays duration
Partial, intact thumb, 2 ulnar,
NB 21/M left hand, non-dominant 9 months 30 active sites 172 days
Transradial, right hand, 2 median, 2 ulnar,
s 32M dominant 4 years 60 active sites 363 days
SF 46/M Transradial, left hand, | 14 years (partial) 2 median, 2 ulnar, 1st: 94 days
non-dominant 10 years (trans.) 60 active sites 2nd: 484 days

Table [I] summarizes the three human amputees, who belong to a subset of a larger study de-
scribed in [39-41], aiming to create a robust nerve interface with both recording and stimulation
capabilities. Each subject receive 2-4 fascicle-specific targeting of longitudinal intrafascicular elec-
trodes (FAST-LIFE) microelectrode implants targeting individual fascicles in the median and ulnar
nerve for a span of 3 to 16 months. The electrode configuration and implant duration depend on
the current IRB protocol and the individual subject’s physiology during the study.

In particular, Subject NB has two implants in the ulnar nerve, while Subject CS and SF have
four implants in both the median and ulnar nerve. Subject NB’s participation was interrupted
due to an unrelated motorcycle incident, thus the microelectrodes were explanted early for safety
reasons. Subject CS and SF participated in the full experiment duration. Especially, Subject

"https://clinicaltrials.gov/ct2/show/NCT02994160
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SF volunteered for two separate implant courses. After the first course of 3 months, all four
microelectrode arrays were explanted from the Subject SF’s arm according to the existing IRB
protocol. However, Subject SF reported positive experiences with the clinical study’s outcomes
and voluntarily participated in an additional implant course. About a year later, a subsequent IRB
modification was made, and Subject SF had four new microelectrode arrays implanted. His second
course ultimately lasted for 16 months, which allows us to characterize the long-term performance
of the proposed nerve interface and motor decoder. The results reported in Section III. B, C,
including Figure [6] [7] [§] and Table [4 are derived from Subject SF’s second course.

2.2 Deep learning-based Al neural decoder
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Figure 1: (A) Overview of the Al neural decoder and signal processing paradigm. Nerve data are
acquired from the subject’s amputated arm by Neuronix neural interface chips, followed by feature
extraction. The deep learning Al then uses feature data to predict the subject’s intent of moving
several DOF simultaneously. The predictions are mapped to movements of a virtual hand or a
prosthetic hand in real-time. (B) Design of the deep learning AI based on the recurrent neural
network (RNN) architecture.

Figure (A) shows the overview of the AI and signal processing paradigm. Nerve data are
acquired with our Scorpius neuromodulation system powered by high-performance Neuronix neural
interface chips with both neural recorders and stimulators. The Scorpius device and Neuronix chips
specifications are detailed in . Up to 16 channels are recorded, which belong to a subset of the
active sites. Most channels are from the nerve fascicle with the majority of motor fibers. We select



sites that have high SNR and strong voluntary compound action potentials (vCAP) activities during
finger flexing. The signal’s strength Py and SNR are estimated as follow:

Pag = 10logo(1/nX, V[i]?) (1)
[SNR] = }DdB7 ﬂex/IDdB7 rest (2)

Raw nerve signals are acquired at 10 kHz sampling rate, downsampled to 5kHz, and then filtered
in the bandwidth of 25-600 Hz. The chosen bandwidth contains most of the motor control signal’s
power, comprising primarily of vCAP.

We then perform feature extraction on the filtered signals with a 100 msec sliding window and
20 msec step. 14 features are extracted from each channel as detailed in [35,36]. They include zero
crossing (ZC), slope sign changes (SSC), waveform length (WL), Wilson amplitude (WA), mean
absolute (MAB), mean square (MSQ), root mean square (RMS), V-order 3 (V3), log detector
(LD), difference absolute standard deviation (DABS), maximum fractal length (MFL), myopulse
percentage rate (MPR), mean absolute value slope (MAVS), and weighted mean absolute (WMA).

At any given time, the past 1 sec of nerve data is used by the Al agent to predict the current
motor intents. A 2D data representation with dimensions [16 channels] x [14 features| x [50
time-series] = [224 x 50] is compiled as the input to the deep learning Al agent. The AI agent
simultaneously classifies the movement of 6 DOF: 5 for individual finger flexing and 1 for wrist
pronation. Each DOF is assigned class-0 for “resting” or class-1 for “flexing”. Depending on the
hardware capability, the prediction rate (frame per second) can be set from 5-50 Hz. The prediction
output is mapped to the movement of either a virtual hand (MuJoCo, mujoco.org) or a physical
prosthetic hand with individually actuated fingers. The prosthetic hand typically has a slower
response than the virtual hand due to mechanical constraints.

Figure [IB) shows deep learning AI's design based on the RNN architecture. The model is
implemented in the PyTorch framework (pytorch.org) and utilizes standard layers, including
convolution, gated recurrent units (GRU), linear/fully-connected, rectified linear unit (ReLU),
batch normalization, 50% dropout, and sigmoid. In total, the model consists of 1.6 million trainable
parameters. This design is relatively shallow because the model must be able to be deployed in a
portable edge computing device like the NVIDIA Jetson Nano [36].

We use the Adam optimizer [43] for training the model with the default parameters 51 = 0.99,
Ba = 0.999, weight decay regularization L, = 107>, mini-batch of 64, initial learning rate of
10~*, and maximum number of epoch of 5. The learning rate is reduced by a factor of 10 when
the training loss stops improving for two consecutive epochs. The final activation function is the
sigmoid function. Therefore, the predicted probabilities for each DOF fall in the range [0, 1]. We
choose a threshold of 0.5 for all DOF's to classify whether a DOF is flexing. Throughout the course
of the experiment, the model could be fine-tuned by adding new data for training without altering
its architecture regarding the hidden layers’ types, numbers, sequences, and activation functions.
Model training, validation, fine-tuning and online motor decoding experiments are performed on a
desktop PC with an Intel Core i7-8086K CPU and an NVIDIA GTX 1080Ti GPU.

In addition, we also utilize a stochastic approach to further optimize the Al agent’s performance.
Because the neural decoding problem is not convex, every time the model is trained with a random
initial seed, it would converge to a different local minimum. By retraining it numerous times with
different random seeds and only keeping the solution with the best overall accuracy across all
DOF, we increase the chance to obtain the global minimum. Each training iteration takes about
30-60 sec to complete depending on the dataset’s size. Our experiments are several months apart.
Before any experiment, we first train the AI agent with old data for a few hours and evaluate
the model’s persistence in real-time motor decoding experiments. We then record new nerve data,
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Figure 2: (A) Overview of the experiment setup with both neural recording and stimulation ca-
pabilities. (Blue path) The motor decoding dataset is obtained via a mirrored bilateral paradigm.
Nerve data and ground-truth movements are simultaneously acquired from the injured and able
hand, respectively. All signal processing, neural decoding, and real-time displaying are done on a
desktop PC. Movement predictions can be mapped to a prosthetic hand or a virtual hand. (Orange
path) The setup also includes components like touch sensors and neurostimulators for somatosen-
sory restoration as detailed in . (C) Photos of three subjects in an experiment session.



retrain the model for a few minutes, and repeat the real-time experiments to measure the up-to-date
performances.

2.3 Motor decoding experiment setup

Figure A, B) show an overview of the experiment setup and photos of three subjects in a ses-
sion. The system has both neural recording and stimulation capabilities for motor decoding and
somatosensation feedback. Data acquisition, real-time processing, decoding, display, and storage
are made with a desktop PC. The dataset is obtained via a mirrored bilateral paradigm. In each
experiment session, the subject repeatedly makes a hand gesture 10 times with both hands. Nerve
data are acquired from the injured/phantom hand with the Scorpius nerve interface, while ground-
truth labels are simultaneously captured from the able hand with a data glove. The same setup
without the data glove is used for real-time motor decoding. The Al agent’s prediction can be both
mapped to the virtual hand and sent to the prosthetic hand by Bluetooth. The setup also includes
components like touch sensors and neurostimulators for somatosensory restoration experiments as
detailed in [16}41].

Table 2: Summary of motor decoding datasets

No. of Training | Testing | No. of No. of

Subject channels | samples | samples DOF gestures*
NB 8 174,782 19,419 5 10
CS 16 112,667 17,525 6 8
SF 16 241,511 20,087 6 11

*Gestures include resting.

Table [2| summarizes typical motor decoding datasets collected in one day. They are the par-
ticular sets that would be used for evaluating classification performance in Section We collect
similar datasets on different days a few months apart to characterize the nerve interface’s long-
term persistence. Each nerve dataset is specific to each subject. The list of gestures includes rest-
ing (000000), individual fingers flexing (10000, 010000,...) and various combinations like fist/grip
(111110), pinch (110000), etc. that are repeated in an alternate order. We record as many sessions
as time permits. The last recording session, which contains the most up-to-date nerve data, is
always used for validation while the remaining are used for training. The data collection requires
approximately 1-2 h but could take longer with intermittent breaks.

The classification performance is evaluated using standard metrics including sensitivity /true
positive rate (TPR), specificity/true negative rate (TNR), and balanced accuracy derived from
true-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) as follows:

[TPR/sensitivity] = TP/(TP + FN) (3)
[TNR /specificity] = TN/(TN + FP) (4)
[Balanced accuracy] = (TPR 4+ TNR)/2 (5)
[Prediction error] = 1 — [Balanced accuracy] (6)

2.4 Hand gesture matching task

Figure (A) shows a schematic of the hand gesture matching task derived from the mental chronom-
etry test. It is designed to measure the end-to-end reaction time and information throughput of the
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Figure 3: (A) Schematic of the hand gesture matching task to measure the end-to-end reaction
time (mental chronometry) and the information throughput of the entire nerve interface and motor
decoding. In each trial, the subject is shown a random hand gesture, which he attempts to match
with the AI neural decoder running in real-time. (B) Photo of Subject SF performing the task.
Real-time nerve data and current AI’s prediction can be seen on the monitor.



entire nerve interface and motor decoding. Figure B) shows a photo of Subject SF performing
the matching task with the nerve data and virtual hands visible on the monitor. The left virtual
hand is the real-time Al agent’s prediction that is always running. The right hand is the targeted
gesture that needs to be matched.

In each trial, the subject is shown a random hand gesture with an audio cue. The subject
attempts to compose the desired gesture from the resting position with the AI decoder running
in real-time, producing a movement prediction every 100 msec (10 Hz). The subject is allowed to
repeat the movement multiple times until the target is matched. A success is registered at the first
occurrence of the prediction outcome, where all 6 DOF must match the target. The reaction time
is calculated from the moment a new target is shown till a successful match is achieved. We choose
a cut-off of 3 sec, where a trial is considered unsuccessful if it fails to reach the target. The resulted
reaction time and success rate reflect the end-to-end responsiveness of the entire nerve interface and
AT decoder from the amputee’s point of view in real-world uses. It includes information processing
time of both the human mind and machine:

[Reaction time] = [Sensory acquisition (human)]

+ [Cortical processing (human)] .

+ [Nerve data processing (machine)] @
+ [Motor decoding (machine)]

Furthermore, the experiment allows calculating the information throughput, also known as the
information transfer rate (ITR), of the nerve decoding system as follows:

[Info. per trial]

(8)

[Info. thoughput] = [Success rate| x [Reaction time]

The amount of information per trial is computed using Shannon’s entropy formula [42]. Subject
SF is asked to match 9 targeted hand gestures, including resting, individual finger flex, fist, index
pinch, and wrist pronation that are randomly assigned in each trial. The calculation includes the
resting gesture even though no finger is moving because resting is a conscious selection by the
user and must be accurately decoded by the AI agent. Resting accounts for 50% of the AI agent
prediction outcomes in the dataset. The remaining outcomes are randomly distributed among
the other eight different hand gestures in a fair chance. Each trial in the matching task always
includes two conscious gestures: resting at the beginning and one of the other gestures at the end.
Subsequently, the information per trial in a matching task with resting and eight other gestures is:

[Info. per trial

=2 [*prest 10g2 (prest) -8 Dother 10g2 (pother)]
2. [-05 - 10gy(0.5) — 8 - (0.5/8) - log,(0.5/8)]
= 5 bits

3 Results

3.1 Dexterous and intuitive decoding of motor intents

The input data segment’s length should be long enough to provide adequate information for accurate
decoding outcomes while maintaining the motor decoder’s low complexity and high practicality.
The deep learning Al motor decoder takes the 1 sec segment of the past data to predict motor
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Figure 4: (A) Impact of input data length on the prediction accuracy. The results suggest that
decoding 1 sec of past nerve data optimally balances accuracy, complexity, and practicality. (B)
Real-time prediction outcomes with different input data lengths. The results indicate that there is
no significant time latency when using a longer segment of past data to decode hand movements.

intention at any point in time. Figure (A) shows analysis on the impact of input data length on
the prediction accuracy, which is done with a subset of Subject CS’s dataset. The results confirm a
negative nonlinear correlation between the input data length and the prediction errors. The motor
decoder reaches its optimal accuracy at 1 sec input data length. Doubling the input length to 2
sec does not necessarily improve the prediction errors, yet it requires much more computational
power from the decoder. Interestingly, Figure A) shows that wrist prediction is highly accurate
regardless of the data length. It is consistent with our observation that nerve activities during
the wrist pronation have exceptionally high SNR and distinctly appear on specific channels of the
median nerve. Thus, the data pattern of the wrist pronation is very different from those of the
finger flexes.

To help amputees achieve dexterous and intuitive control of prosthetic arms, besides high accu-
racy, the Al neural decoder must ensure low prediction latency while performing real-time decoding
of motor intent. In contrast to the strong correlation between the input data length and the pre-
diction error, there is no association between the former and the time latency. Figure (B) shows
that the increase of the input data length from 0.2 sec to 2 sec causes no significant time latency
on the hand movement decoding. Therefore, it justifies the use of 1 sec past data input trials.

Figure [p| shows the motor intent classification outcomes of all three subjects. The subjects
undergo several experiment sessions, each last a few days. The outcomes in Table [3| and Figure
are from the last experiment session, in which training data are from the first day, and validation
data are from the last day of the session. The subjects repeat a hand gesture 10 times in each
data segment. However, each subject performs a slightly different set of hand gestures. They are
individual finger flexing, fist, index pinch, middle pinch, and tripod pinch for Subject NB; individual
finger flexing, fist, and wrist pronation for Subject CS; and lastly, individual finger flexing, fist,
index pinch, pointing, horn, and wrist pronation, respectively in the order illustrated in Figure
(A, B, C). Nevertheless, for comparison, they can be broken down into the individual performance
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Figure 5: (A, B, C) Classification results from motor decoding experiments with three subjects.
The subjects repeat a hand gesture 10 times in each data segment. The Al neural decoder produces
a prediction for 6 DOF every 20 msec using the past 1 sec of nerve data.
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Table 3: Summary of the classification performance metrics

Subject NB Subject CS Subject SF
DOF/joint | Balanced o o Balanced o o Balanced o o
aco. (%) | TPROA) | TNR (%) | 00000 | TPR(%) | TNR (%) | 0T | TPR(%) | TNR (%)
Thumb (F1) 85.2 80.4 90.0 97.2 94.6 99.9 96.0 94.5 97.5
Index (F2) 85.7 771 94.2 98.1 96.5 99.6 97.7 96.1 99.4
Middle (F3) 84.8 75.3 94.2 98.4 96.9 99.9 95.8 92.5 99.1
Ring (F4) 93.0 87.6 98.5 98.0 96.3 99.7 97.3 95.0 99.5
Little (F5) 92.0 86.0 98.1 97.6 95.3 99.8 95.2 91.5 99.0
Wrist (F6) - - - 98.2 96.4 99.9 95.9 91.9 99.8
of the 6 DOF.

Each of Figure 5[ (A, B, C) is equally divided into three parts. The top one-third of the rows are
the ground truth of all DOF; the middle rows are the binary classification outcomes of each DOF
after applying a threshold to the predicted probabilities in the last one-third rows. Subject NB was
the first participant in this research and was not asked to perform the wrist pronation task. Data
from Subject NB are recorded from only eight channels on the ulnar nerve. In addition, because
Subject NB was explanted earlier than planned, we have less data for training and fine-tuning the
deep learning architectures. This explains the classification outcomes of Table

The hand gesture classification outcomes from Subject NB are distinctly different for the first
three and the last 2 DOF. The outcomes are significantly better for the ring and little fingers, which
is consistent with the fact that his data are from the ulnar nerve only. However, the outcomes of the
other three fingers are still good; the balanced accuracy, TPR, and TNR are up to 86.3%, 78.7%,
and 94.2%, respectively. Data from Subject CS and SF are recorded from 16 channels on both the
median and ulnar nerve, resulting in more equivalent and accurate outcomes across all DOF. They
are consistently above 90% for all metrics. Specifically, the balanced accuracy, TPR, and TNR of
Subject CS range from 97.2% to 98.4%, 94.6% to 96.9% and 99.6% to 99.9% in that order; those of
Subject SF are 93.4% to 97.9%, 86.8% to 96.1%, and 97.3% to 100%. Although Subject CS shows
slightly better decoding outcomes than Subject SF in terms of the three metrics above, Subject SF
performs more hand gestures, including tricky ones such as index pinch, pointing, and horn.

3.2 Real-time and high-bandwidth transfer of motor information

After demonstrating that the trained Al agent can achieve high validation accuracy with low time
latency on data recorded several days apart, we further test the Al agent’s efficiency on the real-
time hand matching task described in Section to measure the end-to-end reaction time and
information throughput of the nerve interface and motor decoder.

Figure[6| represents the predicted probability of each DOF gesture-wise in the time domain. The
red line is the median predicted probability of each DOF across all trials at every specific amount
of time since a targeted gesture is shown. As mentioned, a gesture is matched when all 6 DOF are
correctly predicted. Therefore, the reaction time of every gesture is the maximum reaction time of
all DOF. For example, after 1.04 sec, the majority of the pinch trials reach the target in which the
thumb and index fingers already flex, and the others stay resting.

Table [ presents the success rate and the reaction time of all hand gestures, the two key factors
to infer the information throughput given the information per trial is calculated above. The success
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Figure 6: Prediction probability of individual DOF and hand gesture in the matching task. In most
of the trials, the AI neural decoder produces an accurate prediction in the subject’s first attempt
with a median reaction time of approximately 0.7-0.8 sec.
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Table 4: Summary of performance metrics of the matching task

Gesture Number of | Success rate | Median reaction | Mean reaction | Info. throughput
trials @3 sec (%) time (sec) Time (sec) (bps [bpm])
Thumb flex 38 100.0 0.75 0.77 6.67 [400.2]
Index flex 51 100.0 0.77 0.80 6.48 [388.8]
Middle flex 45 100.0 0.76 0.84 6.61 [396.6]
Ring flex 47 100.0 0.92 1.14 5.41[324.6]
Little flex 42 92.9 0.79 1.00 5.88 [352.8]
Index pinch 37 100.0 1.04 1.05 4.80 [288.0]
Fist/grip 49 100.0 0.83 0.92 6.03 [361.8]
Wrist pronation 48 98.1 0.74 0.84 6.71[402.6]
All gestures 357 99.2 0.81 0.92 6.09 [365.4]

rate, reaction time, and information throughput of all hand gestures are 99.2%, 0.81 sec, and 6.09
bps (365.4 bpm), respectively.

¢ Median reaction time = 0.81 sec

e Thumb flex
O Index flex
% Middle flex
e}
°,

Ring flex
Little flex
Pinch
Fist/grip
Pronation
== All gestures

Normalized distribution

Reaction time (sec)
Figure 7: Distribution of the reaction time across different gestures.

Figure [7] shows the reaction time distribution across each hand gesture; the red line is a pooled
distribution of all gestures. It is obtained by feeding the predicted probability of all DOF in all
trials to the kernel density estimator. The results show that the Al agent accurately predicts
Subject SF’s first attempt in the majority of trials, represented by the distribution’s primary peak
at 0.7-0.8 sec. The secondary peak at 1.4-1.6 sec of the ring flex and the little flex represents the
subject’s second attempt. As shown in Figure [0 there are several false-positive predictions of the
DOF F3, which is supposed to stay resting in both gestures. Furthermore, our analysis suggests
that most of the time latency is from the human side of Equation [7] because for every real-time
prediction outcome, the nerve data processing step takes less than 1 msec, and the motor decoding
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step requires only 10-20 msec. Nevertheless, this time latency is subject to the computer’s CPU
and GPU processing power. Running the decoder on an edge-computing device like the Jetson
Nano as shown in [36] could have significantly higher time latency.

3.3 Long-term deployment of a neuroprosthetic system

For it to be suitable for practical applications, the Al agent should maintain robust performance
over time. Therefore, we evaluate the agent stability by measuring its performance on Subject SF
who has the longest implantation course of 16 months, in terms of signal strength, signal-to-noise
ratio, reaction time, success rate, information throughput, and model persistence.

Figure|8| (A, B) shows no trend of deterioration in the signal strength and SNR on 16 electrodes
over the implantation duration. Moreover, thanks to the long implantation course of Subject SF,
the authors have more time to fine-tune and retrain the AI model, and the subject has time to
practice with the agent. Hence, there is a significant reduction in the reaction time from 1.23
sec to 0.81 sec and an improvement in the success rate from 86% to 99.1% for all gestures over
time (Figure 8§ (C, D)). In addition, the success rate converges, which leads to the more consistent
and accurate performance of all fingers. This outcome is consistent with that of able people who
also achieve a shorter reaction time with practice [38]. Consequently, it causes an increase in the
information throughput, which reaches 6.09 bps on the last experiment session before the explant
surgery (Figure |8 (E)).

In addition, although the prediction error of the AI agent tends to go up, it is not an ever-
increasing trend. As shown in Figure [§] (F), the prediction errors rise from 3.1% to 7.2% on day
152 to 4.6% to 20.2% on day 222 for 6 DOF, in which DOF F2 performs even better on day 222.
Hence, the accuracy reduction is 13% at most over 70 days. However, after the decoder is retrained,
the prediction errors go down to 3.0% to 7.8%, equivalent to those of day 152. Furthermore, the
reduction of the prediction accuracy on day 222 to day 459 is 13.1% top, comparable to that of
day 152 to day 222, considering the time gap is three times longer, which is 237 days. Retraining
the AI model on the last experiment session brings the prediction errors down to 2.3% to 4.8%;
those are even lower than the prediction errors of the first session. Thus, it reaffirms that there is
no deterioration in the AI agent’s long-term performance. In addition, if we set a threshold of 90%
accuracy, there are only DOF F4 and F5 underperforming after 70 days from day 152 to 222, which
means the Al agent only needs to be fine-tuned every few months to maintain satisfying decoding
outcomes.

4 Discussion

4.1 Hallmarks of robust prosthetic control

The results demonstrate that employing an Al neural decoder through a nerve interface has hall-
marks of robust prosthetic control. Numerous commercial prostheses use alternative muscle flexes
as command inputs. However, such prostheses require more intensive user training and do not yield
a natural user experience. The Al agent allows amputees to control prosthetic upper limbs with
their thoughts by decoding true motor intent. Moreover, the agent can result in dexterous hand
gestures by simultaneously decoding multiple DOF. Thus, with enough training data, the agent
can take full advantage of near-anatomic prostheses like the LUKE Arm, opening the amputees up
to a future of various hand movements, which is the necessary conditions for natural hand control.
In addition, it needs to produce the desired movements with minimal reaction lag and high accu-
racy. The hand matching task proves that this agent can deliver satisfying real-time performance
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Figure 8: (A, B) Changes in signal strength and SNR on different electrodes over the implantation
duration. (C, D, E) Reaction time, success rate, and information throughput tested at differ-
ent points over the implantation duration. (F) Evaluation of AI model persistence by training
the network with the dataset from one experiment and validating with the dataset from another
experiment a few months later.

16



by producing highly accurate predicting outcomes of over 99% for all gestures and low latency of
about 0.81 sec, leading to a substantial amount of information throughput (365.4 bpm).

4.2 Toward bidirectional nerve interface

We aim to establish a neural interface that supports bidirectional communication between the
human mind and computer. The AI neural decoder reported in this manuscript complements our
previous works |16L|40L|41], in which we develop a neural stimulator and create distinct and reliable
sensory feedback for amputees by neural stimulators. In particular, [40] shows a prior part of
this clinical trial where the four amputees (three partial and one transradial) reported tactile and
cutaneous sensations during stimulation of sensory fascicles and deeper proprioceptive sensations
during stimulation of motor fascicles. These subjects experience different amputation lengths,
ranging from 9 months to over 20 years. Nevertheless, the neural stimulators successfully enable
sensory restoration from all subjects, including those with over 20 years of amputation. Putting
together, this manuscript and our previous works form the foundation to materialize a complete
closed-loop human-machine bidirectional communication.

However, many other factors need to be considered to achieve natural and accurate motor
control of a prosthetic hand, including finger extension, wrist extension, wrist supination, hand
movement directional prediction, and applied force estimation. By establishing a highly accurate
Al neural decoder, some of these factors, such as finger and wrist extension, can be accounted
for by extending the recorded datasets without needing a significant modification in the current
motor decoding system architecture. However, tackling the other factors requires much change from
our current system. Specifically, the wrist supination prediction task involves data recorded from
the radial nerve, which requires additional microelectrode implants. In addition, to address the
regression prediction of hand movements, including force and velocity estimation, we must redesign
the experimental paradigm and use a different method to collect input data and the ground truth.
These could be the new goal and addressed in our future works.

4.3 Mind control beyond prostheses

A highly accurate Al neural decoder enables a future of various exciting applications. In addition
to assisting amputees in their daily basic needs, such as intuitive control of prosthetic limbs, the
AT agent can help with entertainment. In the experiment shown in Figure [9] we bind the hand
gesture predictions to individual keystrokes on the computer, allowing Subject CS to play video
games with his thoughts. A similar setup can be used to control various devices and gadgets in
a real or virtual environment. Instead of sending the predicted movement intent to actuate the
prosthetic hand, the Al engine can wirelessly transmit the results to a remote controller to use a
computer, virtual reality, fly a drone, control a robot, and so on. Furthermore, the users are not
limited to amputees but anyone who receives the nerve interface implant. Hence, the proposed
nerve interface with an AI neural decoder allows people to manipulate remote objects using only
their thoughts in an actual “telekinesis” manner.

5 Conclusion

The purpose of this research is to prove the possibility of achieving intuitive real-time control
and robust long-term performance of a prosthetic hand via a neuroprosthetic system using an Al
agent to decode motor intent from the residual peripheral nerves. The AI neural decoder results
in highly accurate outcomes in balanced accuracy, TPR, TNR from all three subjects in all 6

17



Subject CS

Game: Far Cry —

Subject CS. Game: Raiden IV

Figure 9: We bind the hand gesture predictions to individual keystrokes on the computer, allowing
Subject CS to play video games with only his thoughts. A similar setup can be used to control
various devices and gadgets in a real or virtual environment.

DOF, enabling the subjects to freely control their fingers and wrists by thoughts rather than via
alternate muscle flexes. In addition, the hand matching test shows that the Al agent yields satisfying
performance in real-time with a very high success rate and short reaction time, which leads to high
information throughput across different gestures. Moreover, the neuroprosthetic system shows no
sign of deterioration. Over 16 months, the signal strength and SNR from Subject SF are stable. The
long implantation course and good signal quality allow the subject time to get used to the system.
Hence, the reaction time gradually goes down, causing an increase in the information throughput.
Furthermore, the decoding model performance is persistent over time. Without being retrained,
the model prediction accuracy is still above 90% for most DOF after 2 months and can go beyond
95% if retrained even after 7 months. These results promise a future generation of prosthetic hands
that can provide a natural user experience just like real hands.
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