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Deep Multi-Branch Two-Stage Regression
Network for Accurate Energy Expenditure

Estimation With ECG and IMU Data
Zhiqiang Ni , Tongde Wu, Tao Wang, Fangmin Sun , Member, IEEE, and Ye Li , Senior Member, IEEE

Abstract—Objective: Energy Expenditure (EE) estima-
tion plays an important role in objectively evaluating phys-
ical activity and its impact on human health. EE during
activity can be affected by many factors, including activity
intensity, individual physical and physiological character-
istics, environment, etc. However, current studies only use
very limited information, such as heart rate and step count,
to estimate EE, which leads to a low estimation accuracy.
Methods: In this study, we proposed a deep multi-branch
two-stage regression network (DMTRN) to effectively fuse
a variety of related information including motion informa-
tion, physiological characteristics, and human physical in-
formation, which significantly improved the EE estimation
accuracy. The proposed DMTRN consists of two main mod-
ules: a multi-branch convolutional neural network mod-
ule which is used to extract multi-scale context features
from electrocardiogram (ECG) and inertial measurement
unit (IMU) data, and a two-stage regression module which
aggregated the extracted multi-scale context features con-
taining the physiological and motion information and the
anthropometric features to accurately estimate EE. Results:
Experiments performed on 33 participants show that our
proposed method is more accurate and the average root
mean square error (RMSE) is reduced by 22.8% compared
with previous works. Conclusion: The EE estimation accu-
racy was improved by the proposed DMTRN model with a
well-designed network structure and new input signal ECG.

Manuscript received 24 December 2021; revised 17 February 2022;
accepted 26 March 2022. Date of publication 30 March 2022; date of
current version 20 September 2022. This work was supported in part by
Strategic Priority CAS Project under Grant XDB38040200, in part by the
National Natural Science Foundation of China under Grants 62073310
and 61902388, in part by the Basic Research Project of Guangdong
Province under Grant 2021A1515011838, in part by the Joint Fund of
NSFC and Shenzhen under Grant U1913210, in part by the Foundation
of National Key Laboratory of Human Factors Engineering under Grant
6142222180502, and in part by the National Key R&D Program of China
under Grant 2018YFB1307005. (Corresponding authors: Ye Li; Fangmin
Sun.)

Zhiqiang Ni is with the Joint Engineering Research Center for Health
Big Data Intelligent Analysis Technology, Shenzhen Institute of Ad-
vanced Technology, Chinese Academy of Sciences, China, and also with
the University of Chinese Academy of Sciences, China.

Tongde Wu is with the AMSU (Shenzhen) New Technology Company
Ltd, China.

Tao Wang is with the China Astronaut Research and Training Center,
China.

Fangmin Sun and Ye Li are with the Joint Engineering Research
Center for Health Big Data Intelligent Analysis Technology, Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shen-
zhen 518055, China (e-mail: fm.sun@siat.ac.cn; ye.li@siat.ac.cn).

Digital Object Identifier 10.1109/TBME.2022.3163429

Significance: This study verified that ECG was much more
effective than HR for EE estimation and cast light on EE
estimation using the deep learning method.

Index Terms—Convolutional neural network, electrocar-
diogram, energy expenditure estimation, inertial measure-
ment unit, two-stage regression.

I. INTRODUCTION

NOWADAYS, with the improvement of human living stan-
dards, more and more chronic diseases, including obesity,

diabetes, hyperlipidemia, cardiovascular disease, caused by en-
ergy metabolism imbalance have become the focus of world-
wide concern [1]. Active health management including scientific
control of dietary energy intake and physical activity energy
expenditure, provides an effective way for chronic diseases pre-
vention and rehabilitation [2]. As the human body is a complex
time-varying and nonlinear system, EE during physical activity
can be affected by many factors, including activity intensity,
individual physiological and psychological state, environment
(e.g., temperature, humidity, barometric pressure, etc.), and
anthropometric features (e.g., height, weight, age, etc.), which
make real-time and accurate EE estimation a challenging study.

Although traditional clinical EE measuring methods, includ-
ing direct calorimetry [3] and indirect calorimetry [4], have high
accuracy, the large size, complex operation, and high cost make
them unsuitable for EE measurement under free-living con-
ditions. With the development of microelectronic technology,
Micro Electro Mechanical Systems (MEMS) technology and
computer technology, wearable devices with powerful sensing
and computing functions have been widely used for health and
activity monitoring.

However, the EE provided by most commercial wearable
devices was computed from heart rate, step count, and an-
thropometric features. As the information contained in the dis-
crete features is limited, the accuracy of the EE provided by
commercial wearable devices is not accurate enough for some
applications such as rehabilitation exercise after a heart attack
[5] or heart surgery or professional sports training [6]. Besides,
a systematic review [7] on the validity and reliability of com-
mercial wearables in measuring energy expenditure published in
2020 concluded that the EE estimation function of the studied
commercial wearable devices including Fitbit, Garmin, Polar,
Apple Watch, Samsung, etc. were not reliable. Therefore, the
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goal of our research is to propose a new EE estimation method
to improve the accuracy of EE estimation through designing new
algorithms.

Numerous efforts have been done to improve the accuracy of
EE estimation [8]–[24]. However, as most of the existing EE
estimation methods were based on machine learning algorithms
which need to manually design and select features, their EE
estimation accuracy was still unsatisfactory. As the hand-crafted
features used for machine learning algorithms are highly de-
pendent on the professional knowledge of the researchers and
cannot fully reflect the effective information contained in the
raw signal, deep learning algorithms which can automatically
extract deep features without any professional knowledge were
then proposed for EE estimation [19], [20], [27].

Convolutional neural network (CNN) as one of the most
widely used deep learning architecture has been proved to be
an effective method to process time series signals in various
applications including activity recognition [22], computer aided
diagnosis [25], gait analysis [26], etc. The recent studies [19],
[20] also proved the promising performance of CNN for EE
estimation.

Motion signals collected by IMU sensors and HR calculated
from ECG signals were the most used parameters for current
EE estimation methods [13]. However, HR contains limited
information compared with the raw ECG signal, which leads
to a lower EE estimation accuracy of the current HR-based EE
estimation methods. With the development of deep learning al-
gorithms, comprehensive and deep-level features of ECG signals
can be learned and extracted automatically.

Based on the research state and application requirement of EE
estimation methods, we explored the feasibility of improving the
EE estimation accuracy for application scenarios like clinical
rehabilitation exercises and professional sports training moni-
toring by fusing multiple information. The main contributions
of this study are summarized as follows:

1) Proposed a deep multi-branch CNN for automatic multi-
scale feature extraction. The proposed feature extractor
integrated with multiple CNN branches with different ker-
nel sizes, by which multi-scale information was extracted
from the input ECG and inertial signals.

2) Proposed a novel two-stage regression method to accu-
rately predict EE. A soft label based ordinal regression
method was first designed to realize a coarse-grained
estimation of EE, then a linear regression method was
implemented to further optimize the EE estimation output
from the first stage.

3) To the best of our knowledge, this is the first work to make
use of raw ECG signals instead of HR for high-accuracy
EE estimation.

4) The experiments were performed to study the contribution
of different input signals to the EE estimation model and
verified that the raw ECG signal could contribute more
to the performance improvement of the EE estimation in
comparison with HR.

The rest of this paper is organized as follows: EE estimation
related studies were first reviewed in Section II; The proposed
DMTRN model was introduced in Section III; The designed

performance evaluation experiments and corresponding test re-
sults were introduced and analyzed in Section IV; Performance
discussion of the proposed model was given in Section V;
Finally, Section VI concluded the whole paper.

II. RELATED WORKS

In recent years, with the increasing application requirements
of accurate EE estimation, many works have been done to
improve EE estimation performance.

Motion signals collected by IMU sensors were first used for
EE estimation. The earliest attempting works were proposed by
Montoye et al [8] and Chen et al [9], in their studies, acceleration
signals of a single fixed sensor were used to estimate EE through
a linear regression model. Considering the EE level varies with
physical activities, multiple regression models were more suit-
able for EE estimation. Choi et al. [10] proposed a multiple linear
regression method to estimate EE during walking and running
respectively. Crouter et al. [11] proposed a two-regression model
to improve the EE estimation accuracy by recognizing physical
activities firstly.

With the further understanding of the factors affecting EE,
physiological parameters including HR, heart rate variability
(HRV) were fused with motion signals to estimate EE. Charlot et
al. [12] improved the accuracy of EE estimation during running
by using the anthropometric parameters, HR, and running speed
as the model input. Brage et al. [13] used HR and acceleration
signals to predict EE. Their findings suggested EE estimation
performance using both acceleration and HR outperforms that
using either of the parameters. To reduce the effect of the
inter-individual physiological differences on EE estimation ac-
curacy, Altini et al. [14] proposed an HR normalization method
and used the normalized HR, activity intensity, anthropometric
characteristics to estimate EE.

Moreover, study [15] further suggested that ECG can provide
additional information for better prediction of EE. They not
only calculated heart rate from ECG but also calculated various
indicators of heart rate variability (HRV) as predictors. The
results showed that adding the HRV to the input parameters can
improve the EE estimation accuracy. Inspired by their results,
we speculate that in addition to HR and HRV, there is still other
more valuable information in raw ECG signals. As a result, the
raw ECG signals were taken as the input of the proposed EE
estimation model.

In terms of algorithms, more and more machine learning non-
linear models were explored for EE estimation recently with the
development of artificial intelligence technology. Staudenmayer
et al. [16] proposed two artificial neural networks (ANN) for
physical activity recognition and EE estimation respectively.
Catal et al. [17] combined the boosted decision tree regression
(BDTR) algorithm and the median aggregation algorithm to im-
prove the EE estimation accuracy. Cvetković et al. [18] proposed
a real-time activity monitoring and EE estimation algorithm
with a smartphone and a wristband using the random forest
(RF) algorithm which took the variations of sensors’ location
and orientation into considerations. However, as the manually
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TABLE I
PARTICIPANTS STATISTICAL CHARACTERISTICS

designed and selected features contain very limited information,
the machine learning model has low EE estimation accuracy.

Zhu et al. [19] were the first who proposed a deep learning
method for EE estimation, raw acceleration signals were input
to a CNN to estimate EE without any feature extraction and
selection steps. Their experimental results showed that the CNN
achieved a significant improvement in EE estimation perfor-
mance compared to the activity-specific linear regression model
and the ANN model. Also, the long short-term memory network
[27] has also been applied in EE estimation. Nevertheless, the
performances of these models still have room for improvement
due to the simple network architecture and using simple HR as
physiological state input.

According to the review of the previous related studies, it
can be inferred that there may be more deep features in the
raw ECG signals related to EE other than HR and HRV. Based
on this hypothesis, we developed a deep learning architecture
named DMTRN which used the raw ECG and 6-axis inertial
signals for accurate EE estimation. Through ablation experi-
ments, we verified the effectiveness of the raw ECG signal for EE
estimation. Besides, the superior performance of the proposed
DMTRN method was also verified through comparative studies
with previous works.

III. MATERIALS AND METHODS

A. Data Collection

A total of 33 healthy participants were recruited to participate
in the experiments, the statistical anthropometric characteristics
of all participants were summarized in Table I. During the
experiment, the room temperature was maintained between 25
degrees Celsius and 26 degrees Celsius. The participants were
asked to do a modified Bruce treadmill test [28] to collect their
EE data at different activity intensity levels ranging from rest
to the individual’s maximum activity intensity. The experiment
process was shown in Table II, it started with a 5-minute pre-rest,
during which the participants were asked to stand still on the
treadmill. Then follows the exercise stage, during this stage, the
participants began to run at a speed of 3 km/h, and the speed in-
creases to the next preset value every 5 minutes until reaches the
maximum preset speed (11.6 km/h), and the participants would
run at this maximum preset speed until they were physically
exhausted. It was not necessary to reach the maximum speed
during the exercise stage and the exercise can be terminated at
any time when the HR of the participant reached the maximum
HR or the participant signaled that he was exhausted. After
the exercise stage, a 3-minute recovery stage and a 3-minute
post-rest stage followed.

TABLE II
INFORMATION OF THE MODIFIED BRUCE TREADMILL TEST

Fig. 1. The scenario of the data collection experiment.

The scenario of the data collection experiment is shown
in Fig. 1. The participants were asked to wear 12-lead ECG
sensors (GE Medical System Information Technologies, INC,
Cardiac Testing System) on their body and an IMU (Inertial
Measurement Unit) sensor (Shimmer, Shimmer3 IMU unit) on
their waist. An indirect calorimeter (MasterScreen CPX, Jaeger,
Germany) with a mask worn on the participant’s face was used to
collect the reference EE. Considering the high quality of signal
in lead v3 of 12 leads, we decided to use v3-lead ECG as the
input ECG data. The sampling rate of the indirect calorimeter,
IMU sensor, and ECG sensor were 0.2 Hz, 100 Hz, and 200 Hz
respectively. Each participant participated in at least 1 session
and at most 3 sessions (with the interval of 1 week) data acqui-
sition experiments. Each session lasts about 30 minutes, and a
total of 60 sessions were collected.

The study was approved by the Institutional Review Board of
Shenzhen Institute of Advanced Technology, Chinese Academy
of Sciences. All participants signed the written informed consent
before the experiments.

B. Preprocessing

Firstly, interpolation was used to deal with some missing data.
Then some filters were used to eliminate noise from the collected
data. For IMU data, a Butterworth low-pass filter with a 10 Hz
cutoff frequency and a Wiener filter [28] with a window size of 1
second were used. For ECG data, a low-pass filter with a cutoff
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Fig. 2. Illustration of the network architecture. The network consists of a feature extractor and a two-stage regression module. The Convs
components in the feature extractor module are branches with different kernel size. The two multi-branch CNNs of feature extractor module extract
motion features and ECG features from IMU data and ECG data. The two-stage regression module generates the final EE based on the extracted
features and the anthropometric features.

frequency of 50 Hz, and a nine-level wavelet decomposition
were used.

Next, to reduce the effects of inertial sensor position changes
on the EE estimation performance, the magnitude vectors of
accelerometer and gyroscope signals were calculated using
methods proposed by [29] and were used as the IMU data input
combined with the 6-axis raw signals.

Previous studies [24] showed that the longer the sliding win-
dow used, the smaller the EE estimation error. Besides, accord-
ing to the test results we found that the EE of the human body
fluctuates little in one minute indicating and 1-minute window
has been used in [21], [30], [31]. In order to balance the real-time
and the accuracy of the model, our study adopted the 1-minute
sliding window. Therefore, a 1-minute sliding window without
overlap was applied on IMU data, ECG data, and reference EE
data respectively for data segmentation. After the segmentation,
IMU input vectors with a size of 6000×8, ECG input vectors
with a size of 12000×1, and reference EE vectors with a size
of 12×1 were obtained. The IMU input vectors and the ECG
input vectors were directly fed into the IMU CNN branch and
ECG CNN branch of the proposed model respectively, and the
corresponding average values of the EE reference vectors were
used for the final EE reference labels.

Moreover, five anthropometric features including sex, age,
height, weight, and waistline, were also inputted into the pro-
posed model after standardization and one-hot encoding.

C. Proposed Method

The architecture of the proposed network model DMTRN is
shown in Fig. 2, and the pseudo-code describing the process
of the algorithm is shown in Algorithm 1. In this section, the

Algorithm 1: DMTRN for EE Estimation.
Input: training data(XECG, XIMU, XANT, yi) and testing

data (X’ECG , X’IMU, X’ANT)
Output: the final predicted EE ŷ’ for testing data
# Training phase
1: Initialize hyperparameter K and λ

2: Initialize feature extractor’s weights Wextract and
two-stage regression’s weights W1, b1, W2, b2

3: Initialize maximum iterated epochs N
4: for k = 1 → N do
5: Load XECG, XIMU, XANT, yi
6: Calculate soft label vector yi based on Eq. (1) and

Eq. (2)
7: Extracted features X based on Eq. (3) through the

feature extractor
8: Calculate predicted EE ŷ and ŷ in two stages based

on Eq. (4)
9: Update the weights of DMTRN with the total loss

function of Eq. (7)
10: end for
# Testing phase
11: Load X’ECG , X’IMU, X’AN

12: Load the trained weights of DMTRN
13: Calculate the final predicted EE ŷ’ based on Eq. (3)

and Eq. (4)

proposed EE estimation method was introduced in detail. Firstly,
the overall structure of the feature extractor for automatic feature
extraction was introduced. Then, how to embed the two-stage
regression module into a deep regression model was explained.
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TABLE III
THE ARCHITECTURE AND PARAMETERS OF THE BRANCH WITH

KERNEL SIZE K

1) Feature Extractor: Two multi-branch CNNs were de-
signed for motion and ECG features extraction respectively.
Each multi-branch convolutional neural network contains three
branches, and each branch employs convolutional kernels of
different sizes. Since convolutional kernels of different sizes can
capture information of different time scales, the multi-scale con-
text features can be extracted through our proposed multi-branch
CNNs.

The architecture and parameters of the specific branch with
kernel size k are shown in Table III. The branch for ECG
feature extraction consists of 8 convolution layers and 5 pooling
layers, while the branch for motion feature extraction consists
of 10 convolution layers and 6 pooling layers. For motion
features extraction, the kernel sizes of the three branches were
3, 5, and 7, respectively; the kernel sizes of the three branches
for ECG feature extraction were set 5, 7, and 9 respectively.
ReLU [32] was used as the activation function, and batch
normalization [33] was used to alleviate the problem of in-
ternal covariate migration and speed up the training process
after each convolution layer, dropout layer [34] was added
to prevent overfitting. At each layer, multiple feature maps
were generated according to the specified number of filters and
subsequently were fed into the next layer, deep-level features
were finally learned from the feature extractor by cascading the
layers.

Furthermore, we combined deep-level features extracted
by the multi-branch CNNs with the anthropometric features
through a feed forward neural network (FNN) containing a hid-
den layer with 128 neural units, which improves the generaliza-
tion ability of the model for estimating EE of different subjects.

2) Two-Stage Regression: The essence of ordinal regres-
sion [35] is to transform an ordinal regression task into a multi-
class classification task through label discretization. With the
increasing development and improvement of deep learning tech-
niques, ordinal regression is attracting more and more attention
and has been successfully applied in age estimation [36], depth
estimation [37], head pose estimation [38], etc. combined with
CNN.

For the first stage regression, ordinal regression was used
to estimate a coarse-grained EE. The uniform discretization
method was used to quantize a continuous EE value into a
discrete value.

When a continuous EE interval [a, b] is divided into K equal
parts, the discrete rank is defined as:

ri =

⌊
(K − 1)(yi − a)

b− a

⌋
(1)

where yi is the value of the i-th sample of reference EE, ri is the
corresponding discretization result, and �� is a down rounding
function.

The discrete interval value ri of reference EE was then en-
coded as a soft label vector yi [39] with the dimension of 1×K.
The j-th element in the vector is defined as

yij =
e−φ(ri,rj)∑K
k=1 e

−φ(ri,rk)
∀ rj ∈ [r1, r2, . . . , rK ] (2)

where φ(ri, rj) is an absolute distance between a particular
reference discrete value ri and the discrete rank rj.

Let X denote the features from the feature extractor,

X = Φ(XECG, XIMU , XANT ,Wextract) (3)

where XECG refers to ECG data, XIMU refers to IMU data, XANT

refers to anthropometric data, Φ refers to the learned mapping
from the feature extractor and Wextract refers to the weights in
the feature extractor.

As can be seen from Fig. 2, the mapping from the features X
to the final prediction of EE ŷ can be divided into two stages: the
first stage predicted EE discrete distribution ŷ, and the second
stage predicted EE continuous value ŷ. In detail, the whole
process can be expressed as Eq. (4):

ŷ = g(W1,X) + b1

ŷ = W2σ(ŷ) + b2 (4)

where W1, b1, and W2, b2 are learned weights in the two
regression stages respectively, g is the mapping in the first
regression stage, and σ is the activation function ReLU.

Furthermore, two losses are defined for the proposed
two-stage regression. The first loss is used to measure the
discrepancy between the predicted EE distribution and the
reference EE distribution, and finally controls the inter-
val classification accuracy of EE. We adopt KL-Divergence
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Fig. 3. Correlation (a) and Bland–Altman (b) plots comparing the estimated EE with reference EE.

(Eq. (5)) as the first loss function,

Lord =
1

N

N∑
i=1

K∑
j=1

yij log
yij

ŷij
(5)

where N is the total number of samples.
The second loss controls the prediction accuracy of the final

EE and L1 loss (Eq. (6)) was adopted in this study.

Lreg =
1

N

N∑
i=1

|yi − ŷi| (6)

During the training phase, both two losses of the two regres-
sion stages were merged through Eq. (7) into a total loss to train
the whole model,

L = λLord + Lreg (7)

where λ is the hyperparameter used to balance the contributions
of two losses to the model in the two stages.

IV. EXPERIMENTS AND RESULTS

Extensive experiments were performed to verify and evaluate
the proposed DMTRN for accurate EE estimation. Firstly, de-
tailed ablation studies on the collected dataset were performed to
verify the effectiveness of the two-stage regression module, the
multi-branch module, and the extracted features. Then the EE
estimation performance of our proposed model was compared
with previous studies.

A. Implementation Details

A 10-fold cross validation on the collected dataset was per-
formed to evaluate the performance of the proposed methods.
The average performance of the 10 iterations was used as the
final results. Root mean square error (RMSE), mean absolute

error (MAE) and mean absolute percentage error (MAPE) were
used to evaluate the performance of the model.

Data augmentation not only can effectively increase the num-
ber of samples and enhance the generalization ability of the
model but also can add random noise to the datasets and improve
the robustness of the model. Two data augmentation techniques
were used in this study to improve the model performance:1)
Multiply the amplitude of IMU data and ECG data with a
random scalar drawn from a Gaussian distribution with mean
1 and standard deviation 0.1 to change the amplitude randomly
[40]; 2) Swap the 3-axis of accelerometer data or gyroscope
data with random permutations and rotate them by a random
angle to simulate scenarios where inertial sensors were placed
on different body locations [40].

We used the deep learning framework PyTorch [41] to build
the proposed model. Adam optimizer [42] was used in the
training process. The maximum number of epochs was 50,
and the batch size was set to 64. The initial learning rate and
momentum were set to 0.001 and 0.9 respectively.

B. Overall Performance

The overall performance of our proposed DMTRN was pre-
sented by the Correlation analysis plots and the Bland–Altman
plots of the test results of the 10-fold cross validation in Fig. 3.
In the Correlation plot, most of the points were lie closely to the
red line, indicating a close correlation (R2 = 0.97) between the
estimated EE and the reference EE. In the Bland–Altman plot,
more than 95% of the points lie within the limit of agreement in
EE evaluation, suggesting a high EE estimation accuracy of our
proposed model.

C. Ablation Studies

1) Multi-Branch Module and Two-Stage Regression
Module: In order to evaluate the effect of the proposed
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Fig. 4. Evaluation of multi-branch and two-stage regression module.

TABLE IV
PERFORMANCE EVALUATION WHEN HYPERPARAMETER WAS SET TO

DIFFERENT VALUES

multi-branch module and two-stage regression module on the
EE estimation performance respectively, we set up three models
with different feature extraction and regression modules: (1)
Single-branch: neither of the proposed multi-branch module
nor the two-stage regression module was used in this model;
(2) Single-branch + two-stage: only the proposed two-stage
regression module was used in the model; (3) Multi-branch
+ two-stage: both the proposed multi-branch module and the
two-stage regression module were used.

As the results in Fig. 4 shown, the model with the two-stage
regression module yields a lower EE estimation RMSE than the
model without the two-stage regression module, which proved
the effectiveness of the proposed two-stage regression methods.
Besides, the performance of the model has been further improved
when substituted single-branch module with our proposed multi-
branch module, which verified that the features extracted by the
multi-branch CNNs have higher quality than those extracted by
the single-branch CNNs.

Fig. 4 also illustrated the sensitivity of the proposed model
to the EE discretization intervals K in the first regression stage.
When K increases from 10 to 90, the EE estimation RMSE of our
model ranges from 0.71 kcal/min to 0.76 kcal/min, indicating
DMTRN’s good robustness to a long range of discrete EE
interval numbers. As too few discretizations intervals would
cause large quantization error of the first-stage regression, while
too large intervals would reduce the effects of the first-stage
regression, one can also see that the RMSE increased when K
was set smaller or larger than 50.

Further, we studied the effect of hyperparameter λ on the EE
estimation performance. The RMSE, MAE, and MAPE of EE

TABLE V
PERFORMANCE EVALUATION OF DIFFERENT INPUT DATA

estimation were evaluated when λ were set to 0.1, 1, 5, 10. The
test results listed in Table IV showed that the best performance
was achieved when λ = 1. Since λ adjusted the contributions of
the two regression tasks in the two stages, too small or too large
λ could break the balance of their contributions.

In the following experiments, the discretization interval K was
set to 50 and the hyperparameter λ was set to 1 if there was no
special declaration.

2) Input Data: Many parameters including anthropometric
data (ANT), inertial data (IMU), ECG data (ECG), heart rate
(HR) were considered to be related to EE. In this section, we
studied the effects of different input data on the proposed EE
estimation model. The test results were listed in Table V. First,
we can see from NO.1, 2, and 4 that using IMU or ECG alone as
the model input leads to inferior EE estimation performance to
the combination of ECG and IMU as the model input. Then, by
further adding ANT to the model input we can see form NO.6
that the anthropometric features are useful for EE estimation
performance improvement, although the improvement is not
very significant.

To compare the contribution of ECG and HR to the EE
estimation model, we deleted the ECG feature extractor module
from our DMTRN and used the manually calculated HR to
replace the extracted ECG features. The comparison results of
NO.3 & 4 and NO. 5 & 6 proved the superiority of ECG to HR
on EE estimation.

D. Comparison Studies

In order to verify the advantage of our proposed EE esti-
mation method, we compared our method with other machine
learning or deep learning algorithms including linear regression
(LR) [15], [43], boosted decision tree regression (BDTR) [17],
extreme gradient boosting (XGBoost) [21], random forest (RF)
[18], convolutional neural network (CNN) [19] and densely con-
nected convolutional network (DenseNet) [20] on our dataset.
For machine learning algorithms, anthropometric features, mo-
tion features designed by [18], and HRV features designed by
[15] were used to train the model with default parameters.

The test results were shown in Table VI, we can see from the
results that RF had the best performance among all the compared
algorithms. However, compared with the best algorithm, our
proposed DMTRN model reduced the EE estimation error by
22.8% in terms of RMSE respectively.

Aimed at further evaluating the superiority of the proposed
model, we also compared our method with other related studies.
For easy comparison of various methods, various EE units and
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TABLE VI
COMPARISON WITH OTHER MACHINE LEARNING OR DEEP LEARNING

ALGORITHMS ON OUR DATASET

Fig. 5. Visualization of the features learned mapped to ECG from
proposed model.

evaluation metrics were used. Comparison results of the input
data, method, and EE estimation performance were listed in
Table VII. Obviously, one great advantage of our model is that
it is based on ECG and IMU, while other studies are usually
based on HR and IMU. As the raw ECG signals contain more
EE related information and the proposed DMTRN model can
estimate EE more accurately. We can observe that the proposed
DMTRN model achieves state-of-the-art performance in terms
of RMSE, MAE, and MAPE compared with previous studies.

V. DISCUSSION

A. Feature Visualization

For a better understanding of the properties of the proposed
model, we visualized the learned features by mapping them to
the raw ECG signals using the guided backpropagation approach
[44]. As can be seen from Fig. 5, the contribution of every part
of the ECG signals to the final estimation of EE is presented in
different colors. The closer the color is to dark red, the greater the
signal contributes to the EE estimation model, while the closer
the color is to dark blue, the less.

First, it is obvious that the R wave of the ECG signal at-
tracts most of the attention, and its contribution is greater than
that of other parts. This can be explained by the fact that the
proposed deep learning model learned and extracted the HR
related features, which is closely related to the task of EE
estimation. Besides the R wave, the T wave also has a part

Fig. 6. EE tracking performance. Top: EE estimation results after the
first stage regression. Bottom: EE estimation results after the second
stage regression.

of the contribution to the model. This indicates that the model
not only learned the HR related information but also learned
morphological information near the T wave. Previous research
[45] has found that the amplitude of T wave decreased signifi-
cantly during exercise and increased significantly after exercise,
which probably represented the anoxic and anaerobic myocar-
dial metabolism. Therefore, the T wave plays an auxiliary role in
the EE estimation, which also explains why the raw ECG signal
is superior to HR in EE estimation.

B. The Tracking of Individual EE Changes

To evaluate the performance of the proposed model in tracking
the EE changes, we provided our model estimated EE and the
reference EE of one participant’s test session in Fig. 6. Fig. 6
showed the EE estimation results of the first stage regression and
the second stage regression respectively. By comparing the test
results shown in Fig. 6, we can observe that the EE estimated
value in the second stage was closer to the reference EE than
that in the first stage. It is exactly the purpose of our designed
two-stage regression module: in the first stage, a coarse-grained
prediction of EE to determine the range is made; in the second
stage, a further fine-grained prediction to determine the final
value is generated.

Moreover, the final EE estimation results shown in Fig. 6 after
the two-stage regression module demonstrated that the proposed
model can accurately track the large changes of an individual’s
EE, even in the case of poor ECG signal quality caused by motion
artifacts at a high speed.
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TABLE VII
COMPARISON WITH PREVIOUS STUDIES

ST = Skin temperature; GSR = Galvanic skin response; BVP = Blood volume pulse; FP = Foot pressure

TABLE VIII
THE COMPLEXITY OF THE PROPOSED MODEL

C. Complexity Analysis

As our DMTRN used a 1-D convolutional neural network
for EE estimation, it is lightweight and can be implemented
on mobile devices for real-time EE estimation. As shown in
Table VIII, the parameter amount and model size was not large,
which means low memory-consuming and the model can run
on mobile systems. Apart from parameter amount and model
size, the number of floating point operations (FLOPs) is also
important. [46] showed that current mobile systems on market
need about 154 ms to finish 569 MFlops when using MobileNet,
as our model need 472.71 MFlops to finish EE estimation, it can
be deduced that it would take less than 154 ms to finish EE
estimation.

D. Limitations

Although the proposed approach demonstrated the feasibility
of improving the accuracy of EE monitoring using inertial
sensors and ECG signals, some uncertainties remain. First, our
dataset was collected under a controlled laboratory environment.
Data preprocessing procedures were implemented before the
model’s development to reduce the noise and remove signals
with very poor quality. However, the signals collected in a
real environment feature more noise, which may influence the
stability of the proposed model. Second, the distribution of the
participants was narrow and the number of participants was
limited. Multiple factors such as diseases, age, and individual
differences may affect the EE variations, resulting in uncertainty
in the performance of the proposed model.

VI. CONCLUSION

In this paper, we proposed a DMTRN model for accurate
EE estimation using multiple sensor information. The multi-
branch CNN module and two-stage regression module were
developed to improve the EE estimation performance. The low

memory-consuming and the short inference time showed the
feasibility of the proposed model for real-time processing on
mobile systems. The experiments show that DMTRN obtains the
state-of-the-art performance, with the RMSE of 0.71 kcal/min,
reduced by 22.8% compared with traditional RF model respec-
tively. Besides, our study demonstrated that the raw ECG signals
contained more other EE related information in addition to HR
for the first time.

In future work, we will first transfer our model to wearable EE
estimation scenario where ECG and IMU data were collected
by wearable devices. and then we can improve the model’s
robustness and generality by enhancing the dataset through
collecting data from subjects with a large range of age when
doing different types of physical activities.
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