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Abstract— Wrist-worn consumer sleep technologies (CST) that 
contain accelerometers (ACC) and photoplethysmography (PPG) 
are increasingly common and hold great potential to function as 
out-of-clinic (OOC) sleep monitoring systems. However, very few 
validation studies exist because raw data from CSTs are rarely 
made accessible for external use. We present a deep neural 
network (DNN) with a strong temporal core, inspired by U-Net, 
that can process multivariate time series inputs with different 
dimensionality to predict sleep stages (wake, light-, deep-, and 
REM sleep) using ACC and PPG signals from nocturnal 
recordings. The DNN was trained and tested on 3 internal datasets, 
comprising raw data both from clinical and wrist-worn devices 
from 301 recordings (PSG-PPG: 266, Wrist-worn PPG: 35). 
External validation was performed on a hold-out test dataset 
containing 35 recordings comprising only raw data from a wrist-
worn CST. An accuracy=0.71±0.09, 0.76±0.07, 0.73±0.06, and 
κ=0.58±0.13, 0.64±0.09, 0.59±0.09 was achieved on the internal test 
sets. Our experiments show that spectral preprocessing yields 
superior performance when compared to surrogate-, feature-, raw 
data-based preparation. Combining both modalities produce the 
overall best performance, although PPG proved to be the most 
impactful and was the only modality capable of detecting REM 
sleep well. Including ACC improved model precision to wake and 
sleep metric estimation. Increasing input segment size improved 
performance consistently; the best performance was achieved 
using 1024 epochs (~8.5 hrs.). An accuracy=0.69±0.13 and 
κ=0.58±0.18 was achieved on the hold-out test dataset, proving the 
generalizability and robustness of our approach to raw data 
collected with a wrist-worn CST.  

Index Terms— mHealth, deep learning, wrist actigraphy, sleep 
stage classification, consumer sleep technologies. 

I. INTRODUCTION 

rist-worn consumer sleep technologies (CST) that use 
accelerometers (ACC) and photo-plethysmography 

(PPG) to estimate sleep are increasingly common and hold great 
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potential to function as inexpensive and convenient out-of-
clinic (OOC) sleep monitoring systems [1]. Unfortunately, data 
from CSTs often rely on proprietary algorithms and raw data 
are rarely accessible for external use. Hence, there is an unmet 
need to validate raw sensor data from wrist-worn CSTs against 
gold-standard polysomnography (PSG) recordings [2].  
 Wrist-worn ACC, commonly known as actigraphy, measures 
physical activity and has been used to identify rest/activity in 
ambulatory settings as an alternative to PSG. Using actigraphy, 
sleep is simply defined as the absence of physical activity and 
is traditionally identified using threshold-based algorithms such 
as the Cole-Kripke algorithm [3]. Actigraphy based algorithms 
perform reasonably well to detect sleep but the fundamental 
limitation is that the coarse sampling rate of most actigraphy 
devices makes it difficult to capture motionless wakefulness; 
consequently such algorithms often overestimate sleep [4]. 
Recent studies have shown that wrist actigraphy sampled with 
high resolution captures motion with much finer detail and 
enables identification of breathing [5] and even heart rate [6]. 
Therefore, high resolution actigraphy has the potential to 
improve the detection of motionless wakefulness and may even 
enable classification of sleep stages. Sundararajan et al. recently 
presented a random forest classifier, utilizing 36 features 
extracted from nocturnal high resolution, triaxial ACC 
recordings, that significantly improved sleep-wake detection 
when compared to the Cole-Kripke algorithm [7]. However, 
they concluded that complete sleep stage classification was 
challenging due to the absence of discriminative features. 

PPG measures the peripheral pulse wave, and through 
identification of inter-beat-intervals enables analysis of pulse 
rate variability (PRV), a comparable surrogate of heart rate 
variability that maps changes in the autonomic nervous system 
[8]. These autonomic changes have proven discriminative in 
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sleep research for the detection of sleep stages [9], [10], cortical 
arousals [11], [12], and sleep apnea [13]. Common for most 
classification algorithms that use pulse or heart rate signals is 
that they build on a sequence of preprocessing steps to extract 
the HRV/PRV signal, e.g., pulse detection, ectopic beat 
detection, pulse interpolation, and in turn require preparation 
and extraction of hand-crafted features [14]–[21]. 

In general, feature-based approaches carry the risk of 
cumulating errors and are constricted to engineered features 
that are not guaranteed to be optimal for the classification task. 
Contrarily, deep learning (DL)-based algorithms are data-
driven systems that can learn feature representations directly 
from raw data and thus do have these restrictions. Korkalainen 
et al. recently reported promising sleep stage classification 
performance using a deep neural network (DNN) trained on raw 
PSG-based PPG signals [22]. However, DL based systems 
usually require large amounts of diverse data to generalize well 
[23]. This constitutes a problem since big datasets with diverse 
data from wrist-worn consumer devices do not exist, yet. 
Furthermore, data from wrist-worn devices are more prone to 
noise and data loss, and signal quality varies considerably 
between devices when compared to data from clinical 
equipment collected in a controlled environment [2]. Hence, 
until large datasets with diverse data exist, there is an unmet 
need to evaluate the tradeoffs of different preprocessing 
frameworks on signals from wrist-worn devices.  

Sleep is segmented into 30 s epochs and is scored into 5 
distinct classes, namely: wake (W), N1, N2, N3, and rapid eye 
movement (REM) sleep, according to scoring guidelines 
provided by standardization organizations, e.g., American 
Academy of Sleep Medicine (AASM)[24]. N1, N2, and N3 
constitute non-REM (NREM) sleep, and can be subdivided into 
light sleep (N1 and N2) and deep sleep (N3). Sleep is a dynamic 
process with a cyclic pattern that cycles through NREM and 
REM sleep with a period of approximately 90-110 minutes. The 
most recent and best performing sleep stage classification 
algorithms are temporal models that are either based on 
recurrent frameworks, e.g., long-short term memory (LSTM) 
[9], [19], [25] and gated recurrent units (GRU) [22], [26] or 
convolutional neural network (CNN) architectures, e.g., dilated 
convolutions [27] and the residual U-Net architecture [28]. 
While there is consensus that including contextual information 
from neighboring epochs increase performance, the segment 
size that these temporal models are trained on vary considerably 
between studies; from minutes [26], [28], to hours[22], and to 
the entire recording length [27]. An optimal input segment size 
for sleep stage classification remains to be established.  

In this paper, we present a flexible DNN with a strong 
temporal core, inspired by U-Net [28]–[30], to capture long-
term dependencies. The model was trained to classify sleep 
stages (wake, light sleep, deep sleep, and REM sleep) using 
PPG and ACC recordings. Using this model, we investigated 
the impact of preprocessing across different datasets. We 
compare performance of different modality combinations to 
assess the modality importance, both in terms of overall 
performance, and with respect to sleep metrics, and related the 

performance to State-of-the-art (SOTA) works. Finally, we 
evaluated the importance of input segment size. A preliminary 
version of this work has been reported [31].  

II. MATERIAL AND METHODS 

A conceptual visualization of the proposed DNN is presented 
in Fig. 1. It consists of three key modules. Firstly, a 
conformation module serves to prepare the input segments to 
conform with the subsequent temporal module. Secondly, the 
prepared segments are processed into feature maps in a 
temporal module inspired by U-Net [29], modified to operate 
on time series inputs instead of images, similarly to DeepSleep 
[30] and U-Sleep [28], which serves to enhance the propagation 
of temporal information across the entire input segment. Lastly, 
a segment classifier module, inspired by U-Sleep [28], serves 
to segment and classify the feature maps into sleep stage vectors 
that constitute the output predictions of the model.  

A. Deep neural network architecture 

The complete architecture of the proposed DNN will be 
presented in the following. Please refer to the supplementary 
material for a layer-based version of the model.  

Let 𝐗( ) ∈ ℝ × × , 𝑠 = {1, . . . , 𝑆} denote the 𝑠-th time 
series segment where 𝑇 , 𝐹 , and 𝐶  are the temporal, spatial, and 
channel dimensions, respectively. The conformation module, 
𝜑 : 𝐗( ) → 𝐗 ∈ ℝ × × , where 𝐶 = ∑ 𝐶  and 𝑇 = 2 (⌈ ⌉) 
and 𝐹 = 2 (⌈ ⌉), performs concatenation, reshaping, and 
zero-padding of the input. ⌈∙⌉ denotes the ceil operator. Input 
segments are concatenated along the channel axis, thus their 
spatial-temporal dimensions must match. Then they are 
reshaped into a 3D vector and finally zero-padded to ensure that 
the spatial-temporal dimensions are a power of 2, such that 
output dimensions remain integers during up- and down-
sampling throughout the temporal module.  

The temporal module 𝜑 : 𝐗 → ℝ × ×  consists of an 
encoder 𝜑  and a decoder 𝜑 , each of which consists of 𝑀 
blocks. This module can adapt to both one- and two-
dimensional inputs by changing kernel size and stride of the 
convolutional layers, as denoted in the following by (2D)/(1D). 

The encoder, 𝜑 : 𝐗 → ℝ / , / , /
 serves to learn 

feature representations from the segment at different scales by 
reducing the spatial-temporal resolution and increasing the 
feature dimension incrementally. Each block 𝑚 in the encoder 
𝜑 , has the same, simple composition that consists of a 2D 
convolutional layer with 2( )/ 𝐶  filters of size (𝐾, 3)/
(𝐾, 1), a Gaussian Error Linear Unit (GELU) activation 
function [32], a batch-normalization normalization layer [33], 
and a second 2D convolutional layer with 2 / 𝐶  filters of 
shape (2, 2)/(2,1) and with stride: (2, 2)/(2,1). Thus, the 
number of feature maps increase with a factor of √2, and the 
spatial-temporal resolution is reduced by a factor of 2 with each 
block 𝑚. 𝐶  and K were found by experimentation. Finally, the 
output from 𝜑  is processed by a similar block without spatial-
temporal reduction before it is processed by the decoder.  
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The decoder, 𝜑 : ℝ / , / , /
→ ℝ × ×  serves 

to merge and process the feature representations from the 
encoder at each resolution to enhance tractability throughout 
the network and to reshape the segment to its original temporal 
resolution. Each block 𝑚 in the decoder 𝜑  consists of a 
transposed convolutional layer with kernel- and stride of size 
(2, 2)/(2,1) that performs spatial-temporal up-sampling 
(nearest neighbor) and a convolutional operation on the input. 
The up-sampled feature map is concatenated with the feature 
map that has the corresponding temporal resolution originating 
from the encoder. Finally, the concatenated feature maps are 
processed by a similar block to that of the encoder (See Fig. 1).  

The classification module 𝜑 : ℝ × × → ℝ × , where 𝑇 is 
the number of sleep epochs, serves to segment and classify the 
feature maps into sleep stage vectors. It is inspired by the 
segment classifier proposed by Perslev, et al. [28]. The feature 
maps are cropped to remove the zeros that were padded in the 
conformation module and reshaped into a 2D vector. The 2D 
vector is segmented by a temporal average pool operator that 
reduces the temporal axis to match the desired temporal output 
resolution of 30 s, i.e., 1 sleep epoch. A (1,1) convolution with 
GELU activation is applied before and after the average pool 
operator to increase flexibility. Finally, the softmax function, 
which treats the sleep stage classes as mutually exclusive, 
calculates the probability function over all classes for each 
timestep. These predictions can be further processed into a 

single representative class label for each timestep to obtain a 
hypnogram: argmax: ℝ × → ℝ ×  (See Fig 1.).  

B. Loss function 

Let 𝐗( ), 𝑠 = {1, 2} denote two time series segments of ACC 
and PPG, respectively. Then, let 𝑓: 𝐗( ) → 𝐏 ∈ ℝ ×  be the 
proposed DNN that takes 𝐗( ) as input and outputs 4 class 
predictions for each output timestep: 𝑡 = {1, . . . , 𝑇}, such that 
the probability of sleep stage 𝑘, at timestep 𝑡, is given by 𝑃 =
exp(𝑍 ) / ∑ exp (𝑍 ) , 𝑘 ∈ {1, . . . ,4}, where 𝐙 is the output 
from the layer before the softmax layer. Let 𝐘 ∈ {0,1} ×  be the 
corresponding one-hot encoded target vector. The objective is 
to estimate the parameters of 𝑓, found through optimization, 
that minimizes the loss function, given by the balanced 
categorical cross-entropy:  

 

ℒ(𝐏, 𝐘) = −
1

𝐵𝑇

1 − 𝛽

1 − 𝛽
𝑌 log (𝑃 )

𝑇

  

 

(1) 

Where ℒ is the mean loss for the given batch, 𝑇 is the output 
segment length, i.e., number of 30 s sleep epochs, 𝑛  is the 
number of samples of class 𝑘 in batch 𝑏, and 𝛽=0.999. 
𝐘 log (𝐏 ) is the categorical cross entropy that induce 
exponential penalty to the loss function the further away the 

prediction 𝐏 is from the target 𝐘.  is a balancing factor 

included to account for the class imbalance that naturally exists 
for sleep stage classification. It is based on the idea that as the 

Fig. 1. Conceptual representation of the proposed deep neural network (DNN) in an example recording. Two time-aligned spectrograms: 𝑿  ∈ ℝ ×  and 
𝑿  ∈ ℝ × , are firstly concatenated, reshaped, and zero-padded to conform to the subsequent temporal module. Then the segments are processed in the 
deep convolutional neural network, inspired by U-Net [28]–[30] that consists of 𝑀 encoder and decoder blocks. Finally, the output is segmented into sleep epochs 
of 30 s duration and classified into 4 classes: wake, light sleep, deep sleep. The classification module is inspired by the segment classifier from U-Sleep [28]. The

argmax of the model predictions, 𝑷sleep stages, 𝑎𝑟𝑔𝑚𝑎𝑥: ℝ × → ℝ × , is presented along with the ground truth, 𝒀sleep stages, hypnogram for comparison. Periods 
with data loss are labeled with mask. 𝑀: Number of encoder and decoder blocks in U-net; 𝑇: number of sleep epochs; 𝑁: duration in seconds of the recording;
GELU: Gaussian Error Linear Unit activation function [32]; conv: convolution; convTranspose: transposed convolutional; batch norm: batch normalization [33]; 
STFT: Short Time Fourier Transform; ACC: Accelerometry; PPG: Photoplethysmography. 
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number of samples for a given class increase, the additional 
benefit of additional data points will diminish [34].  

C. Data 

Data used in our experiments come from the Stanford 
Technological Analytics and Genomic in Sleep (STAGES) 
study, the Traumatic Brain Injury (TBI) study, and from the 
Amazfit Health (Health) study. Demographic and sleep related 
information are presented in Table I. Inclusion criteria is shown 
in supplementary material.  

1) The Stanford Technological Analytics and Genomics in 
Sleep (STAGES) study 

Participants for this study were patients referred to the 
Stanford Sleep Center in Redwood City for PSG examination 
whom upon request agreed to participate in the study. All 
procedures were pre-approved by the Stanford University 
Institutional Review Board (IRB #36071). Participants were 
equipped with a low-cost wrist-worn device, the Amazfit Arc 
(Huami, Inc.), for collection of ACC and PPG while undergoing 
in lab nocturnal PSG recording. A customized application was 
developed in collaboration with Huami, Inc. for the collection 
of raw sensor data from the Amazfit Arc device. It records tri-
axial acceleration data at 25 Hz with 12-bit resolution at a 
dynamic range of ±8𝑔 and optic data also at 25 Hz with its PPG 
sensor. Data were transferred in real time from the device to a 
smartphone via Bluetooth throughout the recording and finally 
uploaded to a cloud storage when the recording ended. A 
timestamp was saved along with the raw sensor data every 
second throughout the recording to ensure that data from the 
device and PSG could be synchronized. The associated sleep 
stage and sleep related event scorings were scored according to 
the 2007 AASM criteria [24]. Of the 323 participants, data from 
201 participants were lost due to a practical problem that was 
mitigated in a subsequent update of the application. Of the 
remaining 122 recordings, 42 were excluded as they were 
shorter than 4 hours and a further 45 were excluded because the 
PPG was so noisy that there was no distinct heart rate 
throughout the recording. Two datasets were defined with the 
data from the remaining 35 complete recordings: STAGES Arc, 

which contains ACC and PPG from the Arc device and 
STAGES PSG, which contains ACC from the Arc device and 
PPG from the overlapping PSG recording.  

2) Traumatic Brain Injury (TBI) study 

Nocturnal PSG and overlapping ACC recordings from 271 
participants involved in a study of sleep disordered breathing in 
patients undergoing rehabilitation from a traumatic brain injury 
[35] were also included. The study extent and scope is described 
elsewhere [35]. Of these, 12 were excluded because they were 
missing either ACC or PPG signals, and further 28 were 
excluded because they had unstable sample frequency. Tri-axial 
acceleration data were recorded with a GT3X actigraph 
(Actigraph Corp, Pensacola FL) at 100 Hz with 12-bit 
resolution at a dynamic range of ±6𝑔. Data and timestamps 
were extracted from the device after the recording and was 
synchronized to the PSG. The finger-probe PPG signal was 
extracted from the overlapping PSG recording. The associated 
sleep stage and sleep related event scorings were scored 
according to the 2007 AASM criteria [24]. 

3) Amazfit Health (Health) study 

Participants for this study were recruited as outlined for the 
STAGES study. All procedures for this study were approved by 
Stanford University IRB #55476. Participants were equipped 
with a wrist-worn CST, the Amazfit Health (Huami, Inc.), that 
similarly to Amazfit Arc records tri-axial acceleration data at 
25 Hz with 12-bit resolution at a dynamic range of ±8𝑔 but 
collects optical data at 50 Hz with its PPG sensor. The practical 
setup for the Health study and the further data collection 
follows the procedure described above for the STAGES study. 
Of the 54 participants that were recruited for this study, 14 were 
excluded due to a Bluetooth instability problem, and further 5 
were excluded because their recordings were shorter than 4 
hours. A total of 35 complete recordings were included and 
used as a hold-out test set. 

D. Initial preprocessing  

Data from all datasets were processed using the following 
initial preprocessing steps. Both ACC and PPG were resampled 
to a uniform time series with a sampling rate of 32 Hz. Signals 

TABLE I  
DATA COHORT OVERVIEW WITH DEMOGRAPHIC AND SLEEP RELATED INFORMATION.  

Parameter TBI STAGES PSG STAGES Arc Health p-value 
ACC source GT3X actigraph (100 Hz) Amazfit Arc (25 Hz) Amazfit Health (25 Hz)  
PPG source PSG (100 Hz) PSG (128 Hz) Amazfit Arc (25 Hz) Amazfit Health (50 Hz)  
Participants (Train/test) 231 (185/46) 35 (18/17) 35 (0/35)  
Gender, % male 81.4 45.7 40.0 <0.001 

Age, 
𝝁±𝝈

𝐲𝐞𝐚𝐫𝐬
 38.4±20.6 38.3±13.6 36.2±13.6 0.800 

 

BMI, 
𝝁±𝝈

𝐤𝐠/𝐦𝟐
  26.2±5.2 29.3±8.5 28.6±7.8 0.005 

Wake, % 24.3±17.2 29.5±12.5 16.9±6.3 0.089 
REM, % 14.5±8.6 13.5±6.1 10.8±4.8 0.034 
Light, % 41.5±15.3 44.5±9.9 42.5±12.4 0.589 
Deep, % 19.4±12.0 12.3±7.6 14.8±10.4 <0.001 
AHI, 𝝁 ± 𝝈 
(none, mild, moderate, severe) 

17.6±20.2 
(72, 78, 39, 41) 

13.1±10.6 
(11,11, 8, 5) 

16.0±24.0 
(9, 17, 4, 5) 0.552 

ArI, 𝝁 ± 𝝈 
(none, mild, moderate, severe) 

21.1±15.2 
(3, 98, 86, 44) 

16.2±10.9 
(4, 14, 14, 3) 

12.2±10.1 
(7, 21, 5, 2) 0.002 

All sleep values come from the PSG recording associated with the participants. Statistical comparison of the gender fraction was made with chi-square test; all 
other statistical comparisons were made with one-way analysis of variance. None: AHI<5; mild: 5≤AHI<15; moderate: 15≤AHI<30, severe: 30≤AHI; µ: mean; σ: 
standard deviation; BMI: Body mass index; PSG: Polysomnography; AHI: Apnea-Hypopnea Index; ArI: Arousal Index; STAGES: Stanford Technological 
Analytics and Genomics in Sleep study; TBI: Traumatic Brain Injury study; Health: Amazfit Health study; ACC: Accelerometry; PPG: Photoplethysmography 
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with a sampling rate higher than 32 Hz were lowpass filtered 
before down-sampling to guard against aliasing using a 
Chebyshev filter with a cutoff frequency of 12 Hz and a 
passband ripple of 0.05 dB. Signals with a sampling rate lower 
than 32 Hz were interpolated using piecewise cubic Hermite 
Interpolation polynomial (PCHIP). Periods with data loss were 
labeled as mask. Data loss affected a total of 1.3%, 7.4%, 9.7%, 
and 5.3% of the recording time for the TBI, STAGES PSG, 
STAGES Arc, and Health datasets, respectively. Further 
preprocessing is presented in the experimental section.  

E. Evaluation 

Each dataset was partitioned into a training and a test set as 
reported in Table I. The training set was further portioned into 
a training (70 %) and a evaluation set (30 %). Experiments that 
influence parameter choice are reported on the evaluation 
dataset, e.g., model optimization and hyperparameter tuning. 
The remaining experiments are reported on the test set.  

The proposed model was trained with an online learning 
procedure, where, for the training set, segments were prepared 
in pseudo-class-balanced batches governed by the following 
sampling procedure. Firstly, a class was uniformly sampled 
from the class set {W, L, D, R}. Then, a segment with size 𝑇 
and starting point max(0, 𝐷 − 𝑇), where 𝐷  is the duration in 
epochs of recording 𝑟, was randomly sampled iteratively until 
it satisfied the condition of containing at least 1 epoch with the 
selected class. Segments from the evaluation- and test set were 
sampled in an ordered manner, such that each sleep epoch from 
each recording was evaluated only once.  

Input segment sizes ranging from 1 to 1024 epochs (30 s to 
~8.5 hrs.) were tested in the experimental section. Recordings 
that were shorter than the required input segment size were 
zero-padded. The extended part was in turn masked in the loss 
function and did not influence model parameter learning. The 
output predictions from an entire recording were formed by 
concatenating its corresponding predicted subsegments. 

The loss presented in (1) was calculated for each batch and 
was minimized using ADAM [36] optimizer with a learning 
rate of 10 , 𝛽 = 0.9, 𝛽 = 0.999, 𝜖 = 10 , which in turn 
was divided by a factor of √10 every time the performance of 
the evaluation set did not improve for more than 10 training 

epochs (i.e., a complete iteration through the training set). 
Epochs with more than 50% missing data were masked in the 
loss function and did not influence model parameter learning. 
The learning procedure was stopped when the evaluation 
performance did not improve over the course of 25 epochs; the 
model with the highest performance on the evaluation set was 
saved. All weights and biases of the network were initialized 
using Kaiming normal initialization [37]. The proposed model 
was built with Python 3.6.8, and the DNN was implemented in 
Keras 2.6.0 and Tensorflow 2.6.2.  

F. Performance metrics 

The ACC and PPG modalities were collected with different 
devices with different technical specifications for each dataset 
(See Table I). Therefore, performance was computed separately 
for each dataset. Sleep stage prediction constitutes a class 
imbalanced classification problem; thus, optimizing after 
overall accuracy will bias the result toward the most common 
sleep stage. To account for this, the performance of the 
experiments was evaluated with respect to multiple 
performance metrics, hereunder 𝐹1-score, accuracy, and 
Cohen’s 𝜅. 𝐹1-score was computed for each class separately, 
and accuracy and Cohen’s 𝜅 was computed across all classes.  

For each participant, the following sleep metrics were 
considered [38]: total sleep time (TST), sleep onset latency 
(SOL), wake after sleep onset (WASO), and sleep efficiency 
(SE). Performance with respect to each sleep metric is reported 

as root mean squared error, 𝑅𝑀𝑆𝐸 = (∑ (y − y ) /𝑅)
/

, 
where y  and y  refer to the target and the predicted sleep 
metric, respectively, 𝑟 ∈ [1, . . , 𝑅] where 𝑅 is the number of 
recordings.  

III. EXPERIMENTS 

A. Deep neural network parameter tuning  

Multiple experiments were performed to identify the set of 
parameters for the proposed DNN that produced the best overall 
performance on the evaluation set. Specifically, the following 
parameters were found through grid search: kernel size 𝐾 = 16 
and filter width 𝐶 = 16. Please refer to the supplementary 
material for a complete overview of the conducted experiments. 

B. Impact of preprocessing framework 

The impact of preprocessing on each input modality was 
investigated by evaluating different preprocessing frameworks 
with an increasing number of processing steps. The parameters 
of the DNN were modified for each preprocessing framework 
to account for the discrepancies in input dimensionality. 
Specifically, the kernel size, 𝐾, the stride, L, and the filter 
width, 𝐶  of the convolutional layers, and the number of 
encoder and decoder blocks, 𝑀, change. Table II presents the 
model settings for each preprocessing framework. Please refer 
to supplementary material for a detailed presentation of each 
preprocessing framework.  

The following four frameworks were considered for the ACC 
modality: ACC low-res: 𝐗   ∈ ℝ / ×  is the 
Euclidian norm of the ACC signal, summarized within each 
sleep epoch. This corresponds to traditional actigraphy 
measurements such as those used as input to the Cole-Kripke 

TABLE II  
MODEL SETTINGS FOR PREPROCESSING FRAMEWORKS EXPERIMENT 

Input (𝑻𝒔, 𝑭𝒔, 𝑪𝒔) 𝑲 𝑳 𝑪𝑼 𝑴 𝑩 𝑻 
ACC low-res 𝑁

30
, 1,1  

(16,1) (2,1) 16 5 

2 1024 
ACC (32𝑁, 1,3) (16,1) (2,1) 6 15 

ACC STFT (𝑁, 64,1) (16,3) (2,2) 16 10 

ACC features [7] 𝑁

30
, 1,36  

(16,1) (2,1) 16 5 

PPG[22] (32𝑁, 1,1) (16,1) (2,1) 6 15 

2 1024 
PPG STFT (𝑁, 64,1) (16,3) (2,2) 16 10 
PPG surrogate [11] (4𝑁, 1,3) (16,1) (2,1) 16 12 
PPG features [14]–
[21]  

𝑁

30
, 1,294

(16,1) (2,1) 16 5 

Please refer to supplementary material for additional experiments. 𝑇 , 𝐹 , and 𝐶
for the input 𝑠, is the temporal, spatial, and channel dimensions, respectively. 
K: kernel size; L: stride; 𝐶 : Filter width of temporal module; M: Number of 
encoder and decoder blocks. B: Batch size; T: segment size in epochs. 
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algorithm [3]. ACC: 𝐗 ∈ ℝ ×  is the raw, normalized, 
triaxial ACC modality. Each directional vector was normalized 
to have a median of zero and an inter-quartile range (IQR) 
between -1 and 1. ACC STFT: 𝐗  ∈ ℝ ×  is the 
average of the Short Time Fourier Transformed (STFT) ACC 
signal of each directional vector using a Blackman window 
function with a duration of 10 s, with a 9 s overlap, and using 
128 sampling points to calculate the Fourier transform. 
Frequency content outside the range (0,16] Hz was removed to 
produce an output of size: ℝ × . ACC features: 𝐗  ∈
ℝ / ×  are the ACC features; following the procedure of 
Sundararajan et. al. the ACC vectors were processed into 3 
surrogate feature signals: 𝐗 , 𝐗 , and 𝐗 . 12 features 
were extracted from each of these 3 surrogate signals, yielding 
a total of 36 features per 30 s sleep epoch [7].  

 Four preprocessing frameworks were also evaluated for the 
PPG modality. The PPG signal, 𝐗 ∈ ℝ × , was initially 
bandpass filtered between with a passband frequency range of 
[0.1, 8] Hz. Then, an adaptive version of the IQR normalization 
method was implemented, to account for the amplitude 
variation that typically exists for the PPG modality; the median 
and quartiles were calculated for a sliding window of size 300 
s. Finally, outliers outside 20 times the IQR-range were clipped. 
PPG STFT: 𝐗  ∈ ℝ ×  is the STFT PPG signal using 
a Blackman window function with a duration of 10 s, with a 9 
s overlap, and using 512 sampling points to calculate the 
Fourier transform. Frequency content outside the range 
(0,4] 𝐻𝑧 was removed to produce the output with size: ℝ × . 
𝐗  ∈ ℝ ×  are the PPG surrogate signals [11] 
extracted from the PPG pulse peaks, which were found using 
adaptive pulse segmentation [39]. For each pulse peak, the 
amplitude modulation (AM), i.e., the peak amplitude, the 
frequency modulation (FM), i.e., duration interval between 
consecutive beats, and the baseline wander (BW), i.e., the 
combined FM and AM, were extracted. The PPG surrogate 
signals were interpolated using PCHIP and resampled to 4 Hz. 
𝐗  ∈ ℝ / ×  are the PPG features. Many of the 
features from the feature-based approaches overlap [14]–[21], 
therefore, it was chosen to implement the union of these 
features as one common approach. 98 features were extracted 
using the following segment sizes, centered over a given sleep 

epoch: 30 s, 150 s, and 270 s, creating a feature pool of 294 
features per 30 s sleep epoch (See supplementary material).  

The overall 𝜅 test performance is presented for each 
preprocessing framework in Fig. 2. These results show that for 
both modalities spectral preprocessing outperforms all other 
frameworks across all datasets, and in most cases significantly. 
A significant performance gain is found for high resolution 
ACC (ACC STFT) when compared to traditional, low-
resolution ACC for the TBI dataset and the hold-out test dataset.  

C. Benchmark 

The performance of the proposed approach is compared to 
SOTA works in Table III. Only those who report on 4 sleep 
stage classes were included. The performance for the proposed 
approach is presented for the three internal test sets and the 
hold-out test set for different modality combinations to allow 
comparison between works with different modality inputs. 

Overall, Table III shows that in most cases, the combined 
approach has the overall best performance across datasets. For 
the PPG modality, we observe that the model performs better 
on STAGES PSG (𝜅 = 0.58 ± 0.11) when compared to 
STAGES Arc (𝜅 = 0.51 ± 0.14). Data from these datasets 
came from simultaneous recordings from the same participants 
but using different PPG sensors. Furthermore, it was observed 
that the overall performance is equivalent for both the internal 
and the hold-out test sets that contain wrist-worn data: STAGES 
Arc (𝜅 = 0.59 ± 0.09) and Health (𝜅 = 0.58 ± 0.18), though 
the latter had more variation.  

All approaches that used both ACC and PPG were feature-
based [14]–[20]. The best performing of these, i.e., Wulterkens 
et al., reported similar performance to that of the proposed 
approached: 𝜅 = 0.62 ± 0.12 [19], while all other approaches 
had substantially lower performance. One feature-based 
approach reported a performance increase from 𝜅 = 0.55 to 
𝜅 = 0.65 by pretraining their classifier on features extracted 
from ECG [21]. Korkalainen et al., who presented the only DL 
approach trained on raw PSG-based PPG signals, reported a 
performance of 𝜅 = 0.54 [22]. Sundararajan et al. [7] presented 
a feature-based approach solely trained on high resolution ACC 
recording. They reported significantly lower performance when 
compared to the presented approach.  

 

  
Fig. 2 – Impact of preprocessing for preprocessing of ACC (left) and PPG (right) by datasets. Please refer to supplementary material for further performance metrics 
as well as detailed information about how each preprocessing framework was implemented and processed by the proposed deep neural network. Pairwise t-tests 
for the performance metrics were conducted using a Bonferroni corrected significance level. ns: not significant; *: 𝑝 < 0.05/6; **: 𝑝 < 0.01/6; ***: 𝑝 < 0.001/6; 
****: 𝑝 < 0.0001/6. ACC: Accelerometry; PPG: Photoplethysmography; STFT: Short time Fourier transform; STAGES: Stanford Technological Analytics and 
Genomics in Sleep study; TBI: Traumatic Brain Injury study. Health: Amazfit Health study. 
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D. Modality importance  

Fig. 3 presents confusion matrices with respect to each sleep 
stage class for each modality combination, across all datasets. 
While the overall performance across all sleep stages is better 
for the PPG based approach, Fig. 3 reveals that the ACC based 
approach produce less false positives to wake, Pr = 0.75, when 
compared to the PPG based approach, Pr = 0.66. The ACC 
based approach struggles to distinguish between the remaining 
sleep stages, and most significantly to identify REM sleep, 

where it performs with Pr = 0.36 and Re = 0.27. The 
combined approach proves to incorporates the best from the two 
modalities; it has the high performance from the PPG modality 
and the improved precision to wake from the ACC modality. 
Investigation of Table III elucidates that adding ACC improves 
the RMSE for almost all sleep metrics and improves 
performance with 8 percentage points for both CST-based 
datasets, i.e., STAGES Arc and Health.  

   
a) ACC STFT b) PPG STFT c) ACC+PPG STFT 

 

Fig. 3 – Confusion matrices showing epoch-by-epoch comparison of predicted and target classes shown for three different input modalities for all test datasets. 
Please refer to supplementary material for by-dataset confusion matrices. W: Wake; L: Light sleep (N1, N2); D: Deep sleep (N3); R: REM sleep (Rapid Eye 
Movement sleep); Pr: Precision; Re: Recall; f1: 𝐹1-score; ACC: Accelerometry; PPG: Photoplethysmography; STFT: Short time Fourier transform 
  

TABLE III  
OVERALL PERFORMANCE OF THE PROPOSED APPROACH ON INTERNAL- AND HOLD-OUT TEST SET, AND PERFORMANCE OF RELATED STATE-OF-THE-ART WORKS.  
Dataset 
train/test 

Input Model 
F1 

Accuracy Cohen’s 𝜿 
RMSE 

Wake Light Deep REM TST SOL WASO SE 
TBI 

185/46 
ACC STFT CNN 0.64±0.17 0.54±0.11 0.49±0.25 0.27±0.23 0.55±0.10 0.35±0.14 41.8 28.7 37.2 10.0 
PPG STFT CNN 0.71±0.14 0.63±0.16 0.70±0.24 0.71±0.24 0.71±0.11 0.58±0.16 49.5 23.7 37.1 10.5 
ACC+PPG STFT CNN 0.72±0.14 0.65±0.11 0.72±0.23 0.65±0.22 0.71±0.09 0.56±0.13 37.3 17.3 32.4 8.0 

STAGES 
PSG 
18/17 

ACC STFT CNN 0.81±0.10 0.66±0.08 0.42±0.26 0.18±0.18 0.61±0.09 0.38±0.16 31.7 57.7 53.7 7.5 
PPG STFT CNN 0.79±0.12 0.67±0.10 0.56±0.23 0.77±0.18 0.69±0.07 0.58±0.11 47.9 63.5 44.0 7.2 
ACC+PPG STFT CNN 0.81±0.09 0.76±0.07 0.68±0.26 0.79±0.19 0.76±0.07 0.64±0.09 37.0 41.2 28.8 5.7 

STAGES 
Arc 

18/17 

ACC STFT CNN 0.81±0.10 0.66±0.08 0.42±0.26 0.18±0.18 0.61±0.09 0.38±0.16 31.7 57.7 53.7 7.5 
PPG STFT CNN 0.76±0.14 0.74±0.09 0.45±0.29 0.65±0.22 0.68±0.10 0.51±0.14 70.7 52.1 66.6 13.8 
ACC+PPG STFT CNN 0.79±0.09 0.75±0.06 0.59±0.27 0.64±0.23 0.73±0.06 0.59±0.09 43.7 24.4 31.4 6.9 

Health 
0/35 

ACC STFT CNN 0.80±0.14 0.66±0.12 0.50±0.24 0.26±0.20 0.64±0.11 0.45±0.15 67.7 59.5 42.3 9.1 
PPG STFT CNN 0.76±0.15 0.67±0.13 0.54±0.26 0.51±0.26 0.68±0.13 0.50±0.19 61.1 68.2 61.8 12.7 
ACC+PPG STFT CNN 0.83±0.13 0.66±0.13 0.63±0.26 0.58±0.25 0.69±0.13 0.58±0.18 49.2 56.3 40.4 7.9 

134/24 ACC features [7] RF 0.55 0.57 0.21 0.12       
135/80 ACC+PPG 

features [14] 
BLD     0.59±0.09 0.42±0.12 34.3 10.2 25.3 7.4 

60/60 ACC+PPG 
features [15] 

LDC 0.70 0.71 0.62 0.67 0.69 0.52±0.14     

50/50 ACC+PPG 
features [17] 

LDC     0.77 0.58     

543/292 
 

ACC+PPG 
features [19] 

LSTM 0.73±0.17 0.78±0.10 0.69±0.24 0.74±0.18 0.76±0.07 0.62±0.12 34.3 25.3 40.6 6.7 

23/23 HR, sleep metric, 
demographic 
features [20] 

SVM+ 
XGB 

    0.73±0.12 0.43±0.21     

584,60/60 PPG features [21] 
(pretrain w. ECG) 

LSTM 0.71 0.75 0.73 0.80 0.76±0.08 0.65±0.11     

805/89 PPG (PSG) [22] CNN+ 
GRU 

0.74 0.67 0.54 0.71 0.69 0.54     

Three different input configurations were considered for the internal test sets and the hold-out test set. Best performing inputs are highlighted in bold font for each 
dataset. Performance metrics are reported by 𝐹1 score for each sleep stage, overall accuracy, and overall Cohen’s 𝜅, and root mean squared error (RMSE) for the 
following sleep metrics all reported in minutes: Total sleep time (TST); Sleep onset latency (SOL); Wake after sleep onset (WASO); Sleep efficiency (SE). Please 
refer to supplementary material for performance on additional sleep metrics. 𝐹1 score, accuracy, and Cohen’s 𝜅 performance is reported either as 𝜇 ± 𝜎 (average 
and standard deviation) across recordings or as a single value across all sleep epochs. ACC: Accelerometry, PPG: Photoplethysmography; STFT: Short time Fourier 
transform; HR: Heart rate; CNN: Convolutional neural network; RF: Random Forest; GRU: Gated recurrent unit; LSTM: Long-short term memory; BLD: Bayesian 
linear discriminant; LDC: Linear discriminant classifier. SVM: Support vector machine, XGB: gradient boosting decision tree; STAGES: Stanford Technological 
Analytics and Genomics in Sleep study; TBI: Traumatic Brain Injury study. Health: Amazfit Health study. 
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E. Impact of input segment size 

In this experiment, the importance of temporal modelling 
was assessed by training the proposed DNN for different input 
segment sizes. Five input segment sizes were tested with 
durations of 30 s, 240 s, 960 s, 7680 s, and 30720 s, which 
corresponds to 1, 8, 32, 256, and 1024 sleep epochs. Model 
settings for this experiment is presented in the Table IV. By 
design, the batch size, B, and the input segment size, T, have a 
reciprocal relationship, such that the number of sleep epochs 
evaluated in a batch is constant, i.e., 2048.  

Fig. 4 shows the 𝜅 test performance for the different input 
segment sizes, T, presented by sleep stage. This experiment 
shows that performance increases with input segment size 
across all sleep stages. The impact is mostly significant for 
smaller window sizes; though REM sleep drastically improve 
when input segment size is changed from 32 to 256 epochs; the 
latter corresponds to 128 minutes, i.e., more than a sleep cycle.    

IV. DISCUSSION 

The proposed DL-based approach achieved a participant 
averaged performance of 𝐴𝑐𝑐 = 0.71, 0.76, 0.73 and κ =
0.56, 0.64, 0.59 on the internal test sets, i.e., TBI, STAGES 
PSG, and STAGES Arc, respectively, and with 𝐴𝑐𝑐 = 0.69 and 
κ = 0.58 on the hold out test set, i.e., Health, when using both 
ACC and PPG as input, both processed with the STFT and with 
an input segment size of 1024 sleep epochs (~8.5 hrs.).  

 The impact of preprocessing was investigated by evaluating 
different preprocessing frameworks. It was shown that for both 
modalities STFT preprocessing achieved the highest 
performance, outperforming both low-resolution, raw [22], 
surrogate [11], and feature-based approaches [7], [14]–[21]. 
Spectral decomposition is likely to achieve great generalization 
because it enhances the quasiperiodic signals such as heart rate 
and breathing contained in the ACC and PPG modalities by 
dispersing noise across all frequencies. While raw signals are 
information-rich, they are also very noisy, especially from 
wrist-worn CSTs, and the morphology of the PPG pulse wave 
may vary based on sensor quality, sensor placement, skin 
thickness and skin tone. The datasets used in this study may not 
be diverse and large enough for the DNN model to work well 
on raw PPG and ACC signals. Data augmentation may partly 
address this limitation; however, this was not tested in this 
study. On the other hand, feature-based approaches are based 
on capturing the essence of the modalities and in turn to reduce 
the complexity of the signals. Here, information may 
unintentionally be removed during this process, as there is no 
guarantee that the chosen features are optimal for the 

classification task. Furthermore, feature-based approaches rely 
on a sequence of processing steps and risk culminating errors.  

SOTA comparison analysis showed that the proposed 
approach had similar performance to the best performing 
feature-based algorithms [19] but using less processing steps. 
Performance remained high for presented approach when 
applied to the hold test set, proving its generalizability to data 
collected with wrist-worn CSTs. Radha et al. presented a 
transfer learning approach that utilize nocturnal ECG-
recordings to improve sleep stage classification performance 
when applied to wrist-worn PPG recordings [21]. It is well 
established that performance increases with the amount of 
training data [26]; we are confident that adding more training 
data will improve performance of the presented approach.  

For the ACC modality, the presented approach proved to 
outperform the feature based approach, presented by 
Sundararajan et al. [7], across all sleep stages (See Table III). 
Furthermore, a significant performance gain was found for high 
resolution ACC (ACC STFT) when compared to traditional, 
low-resolution ACC for the TBI dataset and the hold-out test 
dataset (See Fig. 2). These results indicate that the high 
resolution ACC does capture discriminative bio signals, thereby 
addressing the fundamental limitation of coarsely sampled 
actigraphy that is incapable of capturing motionless wake [4].  

Investigation of signal modality importance showed that the 
combined approach had the overall best performance across 
datasets. The PPG modality had the most impact on 
performance and was the only modality capable of detecting 
REM sleep well. Our experiments showed that adding ACC 
made the model produce less false positives to wake. Since all 
sleep metrics included in Table III were based on sleep-wake 
behavior, this explains why adding ACC improved RMSE for 
almost all sleep metrics. ACC was found to have most impact 
on the overall performance for the datasets with wrist-worn 
CST data. The PPG sensor had more noise on these datasets, 
which could explain why ACC has more impact. 

We found that the model performed better on the PPG 
modality originating from the PSG (STAGES PSG) when 
compared to the modality originating from the wrist-worn CSTs 
(STAGES Arc). This finding was consistent across sleep stages, 
which indicates that the PPG modality from the wrist-worn CST 
is more prone to noise when compared to PPG modality from 

TABLE IV  
MODEL SETTINGS FOR THE INPUT SEGMENT SIZE EXPERIMENT 

Input (𝑻𝒔, 𝑭𝒔, 𝑪𝒔) 𝑲 𝑳 𝑪𝑼 𝑴 𝑩 𝑻 

ACC +  
PPG 
STFT 

(𝑁, 64,2) (16,3)  (2,2) 16 

10 2 1024 
8 8 256 
6 64 32 
5 256 8 
5 2048 1 

 𝑇 , 𝐹 , and 𝐶  for the input 𝑠, is the temporal, spatial, and channel 
dimensions, respectively. K: kernel size; L: stride; 𝐶 : Filter width of 
temporal module; M: Number of encoder and decoder blocks. B: Batch 
size; T: segment size in epochs. 
 

Fig. 4 – Input segment size importance. Performance as a function of input 
segment size for the combined approach (ACC+PPG STFT) with respect to 
sleep stages, across all datasets. 1 epoch is 30 s. Please refer to supplementary 
material for by-dataset performance. f1: 𝐹1-score ACC: Accelerometry; PPG: 
Photoplethysmography; STFT: Short time Fourier transform. 
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clinical grade equipment used in PSG recordings; a finding that 
was confirmed by visual inspection of the recordings.  

U-Net has previously been used for sleep stage classification 
but only applied to relatively short sleep segments (20 mins) 
[28]; thus this implementation does not utilize the full potential 
of the U-Net architecture. Our experiments showed that 
performance increased with input segment size. This indicates 
that long-term dependencies that exist in sleep, e.g., cyclic 
behavior of the sleep profile, may be leveraged to achieve 
higher performance. The largest input segment size of 1024 
epochs (~8.5 hrs.) did in many cases have global context, 
covering the entire recording. This fact introduces a bias, since 
the model is unintentionally informed about the beginning and 
end of the recording, where participants are always awake. 
Nevertheless, the finding that performance increase with input 
segment size still holds for the remaining segment sizes.  

It is widely recognized that large batch sizes may have 
adverse effects on model performance [40]. Experimentation 
using lower batch sizes for models with smaller input segment 
sizes showed no significant change in performance. Please refer 
to supplementary materials for these results.  

The autonomic and motoric changes found in the PPG and 
ACC modalities are quite simple in nature, but they have 
complex long-term dependencies. Therefore, the presented U-
Net type architecture was designed with a simple block 
structure but with a strong temporal core. Other, more complex 
block architectures could potentially improve performance 
further, but such were not explored. CNNs have the inductive 
bias of being translational invariant. This makes them 
especially useful for image recognition tasks, where the 
position of the object of interest is irrelevant. The same logic 
does not follow for spectrograms, as the position in a 
spectrogram has important meaning. Despite this, the presented 
CNN-based model proved to work well, which indicates that it 
is the relative changes of the bio-signals, rather than the 
absolute position, that is discriminatively important.  

The sampling rates for the different devices used in this study 
did not share a common denominator (See Table I). The re-
sampling rate of 32 Hz was chosen as it was the next higher 
power of 2 with respect to the smallest sampling rate of 25 Hz. 
This was operationally convenient as it minimized the number 
of zero-paddings an input segment required in the conformation 
module. up-sampling approximates the sequence through 
interpolation of the exiting data points, whereas down-sampling 
may unintentionally remove important information in the 
signal. Both procedures may negatively affect performance.  
STFT was the only spectral transformation that was evaluated. 
Other spectral decompositions with improved time and 
frequency resolution would be of interest to explore.  

The performance reported in this work is limited by the 
amount of data and the datasets used. For instance, the TBI 
cohort contains data from patients undergoing rehabilitation 
from traumatic brain injuries. Their brain status is likely to 
influence their sleep profile and motoric expression. 
Comparison between studies is difficult due to the difference in 
experimental design, device type and quality, patient health, 
etc. Ideally, the algorithms should be benchmarked on a large, 
standardized, dataset with raw wrist-worn CST data. However, 
such datasets do not exist, yet.  

A significant portion of the data from the CSTs were lost 
during data collection. Bluetooth fallouts were likely to happen 
during long recordings, e.g., during a participant’s bathroom 
visits, where the Bluetooth range limit got violated. Data loss 
caused by this could be avoided by choosing a CST with local 
storage that does not rely on a stable Bluetooth connection 
throughout the recording. Premature stopping was another 
likely cause of data loss, which could happen if the phone or 
device ran out of battery, was shut off, or if the App froze or 
was closed. Our study design required participants to start, stop, 
and upload data themselves after the recording, using an 
application on their phone. This design choice was necessary 
because the clinical coordinators were not present in the 
morning after the recording. We identified that the most 
significant cause of data loss was that data was never uploaded 
due to this problem, causing 62 % of the recordings to be 
excluded in the STAGES study. A procedural change mitigated 
this in the subsequent Health study, where participants were 
requested to assure that the data had been transferred in a 
follow-up phone interview. This successfully reduced the 
number of exclusions to 26 %. While most user errors can be 
mitigated by using simple and clear user guidelines, ultimately, 
limiting the number of requested user actions is preferable in 
the future. Finally, we found that the Amazfit Health device 
recorded with better signal quality compared to its predecessor, 
Amazfit Arc. 45 recordings were excluded due to low signals 
quality when using the latter compared to 0 for the former.  

The validation presented here was only performed using 
nocturnal recordings. Additional validation studies of sleep 
stage classification using 24-hour sleep recordings could be 
useful, specially to assess patients with hypersomnia disorders. 
Importantly however, EEG based sleep is currently not easily 
measurable over the entire day while individuals are mobile, 
thus comparison with the PSG gold standard would only be 
possible under conditions of 24-hour bedrest.  

V. CONCLUSION 

In this study we introduce a flexible DNN with a strong 
temporal core that can process multivariate time series inputs 
with different dimensionality to predict sleep stages using ACC 
and PPG signals. The proposed approach exhibits strong 
classification performance compared with feature-based 
approaches and approaches that input raw data. The model was 
designed with a strong temporal core to capture long-term 
dependencies, and it proved to increase performance with input 
segment size. It was established that combining both ACC and 
PPG result in equally or better performance when compared to 
each modality separately. The PPG modality had the most 
impact on performance and was the only modality capable of 
detecting REM sleep well, whereas ACC improved wake 
precision, thus improving sleep metric estimation. Performance 
remained high for the presented DNN when it was applied to 
the hold test set, proving its generalizability to data collected 
with a wrist-worn CST. We believe that the presented work 
establishes wrist-worn CSTs that measure ACC and PPG as 
potential OOC sleep monitoring systems, given raw data is 
accessible and provided data stable data collection is ensured.  
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