
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. XX, 202X 1

Estimating Uncertainty in Neural Networks for
Cardiac MRI Segmentation: A Benchmark Study

Matthew Ng, Fumin Guo, Labonny Biswas, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Graham
Wright

Abstract—Objective: Convolutional neural networks (CNNs)
have demonstrated promise in automated cardiac magnetic
resonance image segmentation. However, when using CNNs in
a large real-world dataset, it is important to quantify segmen-
tation uncertainty and identify segmentations which could be
problematic. In this work, we performed a systematic study of
Bayesian and non-Bayesian methods for estimating uncertainty
in segmentation neural networks.

Methods: We evaluated Bayes by Backprop, Monte Carlo
Dropout, Deep Ensembles, and Stochastic Segmentation Net-
works in terms of segmentation accuracy, probability calibra-
tion, uncertainty on out-of-distribution images, and segmentation
quality control.

Results: We observed that Deep Ensembles outperformed the
other methods except for images with heavy noise and blurring
distortions. We showed that Bayes by Backprop is more robust
to noise distortions while Stochastic Segmentation Networks
are more resistant to blurring distortions. For segmentation
quality control, we showed that segmentation uncertainty is
correlated with segmentation accuracy for all the methods. With
the incorporation of uncertainty estimates, we were able to reduce
the percentage of poor segmentation to 5% by flagging 31–
48% of the most uncertain segmentations for manual review,
substantially lower than random review without using neural
network uncertainty (reviewing 75–78% of all images).

Conclusion: This work provides a comprehensive evaluation of
uncertainty estimation methods and showed that Deep Ensembles
outperformed other methods in most cases.

Significance: Neural network uncertainty measures can help
identify potentially inaccurate segmentations and alert users for
manual review.

Index Terms—Cardiac MRI segmentation, segmentation qual-
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I. INTRODUCTION

CARDIAC magnetic resonance imaging (MRI) is the
gold standard for evaluating cardiac function due to

its excellent soft tissue contrast, high spatial and temporal
resolution, and non-ionizing radiation [1]. Segmentation of
cardiac structures such as the left ventricle cavity, left ventricle
myocardium, and right ventricle cavity is required as a first
step to quantify clinically relevant imaging biomarkers, such
as the left ventricle ejection fraction and myocardial mass.
Recently, convolutional neural networks (CNNs) have demon-
strated promise for automatic cardiac MR image segmentation
[2], [3] and may facilitate the development of efficient cardiac
MR image processing pipelines for research and clinical use.
However, when using a CNN in an automated image analy-
sis pipeline, it is important to automatically identify which
segmentations are problematic and require further manual
inspection. This may improve workflow efficiency by focusing
only on problematic cases, avoiding the review of all images
and reducing errors in downstream analysis.

This problem has been referred to as segmentation quality
control and is closely related to the task of anomaly detection
or out-of-distribution detection [4]. While there are several
approaches to this problem (e.g., using a dedicated quality
control module [5]), in this work, we focus on the approach of
using predictive uncertainty estimates of a segmentation model
to solve this problem. The main idea here is that segmentation
outputs with low uncertainty are likely correct while those with
high uncertainty are likely problematic. While several studies
have attempted to estimate CNN segmentation uncertainty,
most of them used Monte Carlo (MC) Dropout or Deep En-
sembles. However, there are some limitations associated with
these methods, which motivates us to explore other algorithms.
For example, when using a fixed dropout rate in MC Dropout,
the model uncertainty does not decrease when training data
is increased. This is potentially problematic since model un-
certainty should approach zero in the limit of infinite training
data [6]. For Deep Ensembles, it is not clear why this method
generates well-calibrated uncertainty estimates. While Deep
Ensembles was shown to learn diverse functions [7], recent
work [8] has shown that ensemble diversity does not explain
the improved uncertainty estimates on out-of-distribution data.
In addition, in previous studies, evaluation of these algorithms
was mostly limited to correlations between the predictive
uncertainty and segmentation accuracy or metrics measuring
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how uncertainty can be used to improve segmentation [9], [10],
[11]. There is a need to have a proper benchmark and metrics
to evaluate uncertainty from different methods. In this work,
we performed a systematic evaluation of several Bayesian and
non-Bayesian approaches for uncertainty estimation. In par-
ticular, we evaluated Bayes by Backprop, MC Dropout, Deep
Ensembles, and Stochastic Segmentation Networks based on
segmentation accuracy, probability calibration, uncertainty on
out-of-distribution datasets, and finally, we demonstrated the
utility of these methods for segmentation quality control.

A. Uncertainty in Neural Networks

Uncertainty is usually classified into epistemic uncertainty
or aleatoric uncertainty [12]. Epistemic or model uncertainty
is uncertainty in model parameters due to a finite amount
of data. In contrast, aleatoric or data-dependent uncertainty
is uncertainty due to the data itself and cannot be reduced
even with more data. This distinction can be useful when
thinking about sources of uncertainty; however, it is difficult to
distinguish these two types in practice. Instead, we can think
about modelling uncertainties in neural networks by learning
a distribution of neural network weights or by learning a
distribution of neural network outputs for each individual input
[12]. Uncertainty from both types of models can be used and
compared for downstream tasks.

Bayesian neural networks (BNNs) provide a theoretical
framework for generating well-calibrated uncertainty estimates
[13]. In BNNs, we are interested in learning the poste-
rior distribution of the neural network weights instead of
a maximum likelihood or maximum-a-posteriori estimate.
A challenge in learning BNNs is that integration over the
posterior is intractable in high dimensional space. As such,
inference techniques such as stochastic variational inference
are commonly used as approximation. Examples include vari-
ational dropout [14], MC Dropout [15], Bayes by Backprop
[16], multiplicative normalizing flows [17], and Flipout [18].
Non-Bayesian methods for estimating uncertainty in neural
networks include bootstrapping [19], Deep Ensembles [20],
and Resampling Uncertainty Estimation [21]. These methods
estimate changes to the neural network when it is trained on
different samples from the same training distribution. Note that
in Bayesian methods, uncertainty is learned during training
and is tightly coupled to the model structure. In non-Bayesian
methods, uncertainty is learned during training or estimated
after training. Another approach to uncertainty estimation is to
directly learn a distribution of neural network outputs (and/or
intermediate feature maps) instead of the weights. This is
usually achieved by parameterizing the output distribution and
learning the parameters during training as shown in [12].

B. Related Studies

The majority of investigations of BNNs used MC Dropout
to approximate the posterior distribution of the weights and
exploration of ways to evaluate the quality of uncertainty
has been limited. Previous studies [9], [10], and [22] used
MC Dropout for brain structure, brain tumour, and brain
tumour cavity segmentation. These studies reported positive

correlations between segmentation accuracy and uncertainty
measures. Nair et al. [23] compared different uncertainty mea-
sures in brain lesion segmentation and showed that uncertainty
measures can be used to improve lesion detection accuracy.
Sander et al. [11] applied MC Dropout for cardiac MRI
segmentation and showed that training a CNN using a Brier
loss or cross-entropy loss produced well-calibrated pixel-wise
segmentation uncertainty, and correcting uncertain pixels can
improve segmentation results consistently. Devries et al. [24]
used MC Dropout and non-Bayesian methods to generate skin
lesion segmentation and segmentation uncertainty maps, which
were then entered into another neural network to predict the
Jaccard index of the segmentation. Hann et al. [25] estimated
the quality of aortic MRI segmentation using an ensemble
of neural networks and demonstrated improved segmentation
accuracy with the use of these segmentation quality estimates.
More recently, Jungo et al. [26] compared MC Dropout,
Deep Ensembles, and auxiliary networks for predicting pixel-
wise segmentation errors for two medical image segmentation
tasks. In addition to segmentation probability calibration,
they examined the overlap between segmentation uncertainty
and errors, and the fraction of images which would benefit
from uncertainty-guided segmentation correction. In a follow-
up study [27], the authors compared different aggregation
methods for uncertainty measures and their performance for
segmentation failure detection. Similarly, Mehrtash et al. [28]
compared MC Dropout and Deep Ensembles for CNNs trained
with different loss functions in terms of probability cali-
bration and correlation between segmentation accuracy and
uncertainty measures. However, these studies did not evaluate
other Bayesian methods such as Bayes by Backprop and the
performance of these methods on out-of-distribution datasets
is unknown. Other methods such as Probabilistic U-net [29],
PHiSeg [30], and Stochastic Segmentation Networks [31] esti-
mate uncertainty by directly predicting a distribution of neural
network outputs. These methods have been applied to brain
and lung tumour segmentation and have shown to produce
diverse outputs matching inter-observer manual segmentation
variability. [32] presented a framework for segmentation qual-
ity control of cardiac T1 maps using the evidence lower bound
scores from PHiSeg and a separate quality control neural
network. While this showed great sensitivity and specificity
for detecting poor segmentations, it is not clear how other
algorithms would compare with PHiSeg for this task.

C. Contributions

In this work, we performed a systematic study of Bayesian
and non-Bayesian neural networks for estimating uncertainty
in the context of cardiac MRI segmentation. Our contributions
are summarized as follows:

1) We compared MC Dropout and Deep Ensembles with
Bayes by Backprop, which is a more theoretically jus-
tified algorithm for learning uncertainty in BNNs. We
performed a comprehensive evaluation of these algo-
rithms in terms of segmentation accuracy, probability
calibration, uncertainty on out-of-distribution datasets,
and segmentation quality control.
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2) We evaluated MC Dropout, Deep Ensembles, Bayes by
Backprop, and Stochastic Segmentation Networks on car-
diac MRI datasets with various degrees of noise, blurring,
and stretching distortions to mimic complex clinical sce-
narios and to investigate the relationships between image
distortions and neural network uncertainty estimates. We
showed that Bayes by Backprop is more robust to noise
distortions while Stochastic Segmentation Networks are
more resistant to blurring distortions.

3) We introduced a novel area-under-the-curve metric for
quantifying algorithm performance on segmentation qual-
ity control. We showed that with the use of Deep
Ensemble uncertainty estimates, 31–48% of the most
uncertain segmentations need to be reviewed to reduce the
percentage of poor segmentations to 5%, whereas ∼80%
of the results need to be reviewed when neural network
uncertainty measures are not used.

We hope this work will serve as a benchmark for evaluating
uncertainty in cardiac MRI segmentation and inspire further
work on uncertainty estimation in medical image segmenta-
tion.

II. METHODS

A. Bayesian Neural Networks

Given a dataset of N images X = {xi}, i ∈ [1, N ], and
the corresponding manual segmentation Y = {yi} with C
classes, we fit a neural network parameterized by weights w to
perform segmentation. In BNNs, we are interested in learning
the posterior distribution of the weights p(w|X,Y), instead of
a maximum likelihood or maximum-a-posteriori estimate. This
posterior distribution represents uncertainty in the weights,
which could be propagated to calculate uncertainty in the
predictions [33]. In addition, BNNs have been shown to be
able to improve the generalizability of neural networks [33].

A challenge in learning BNNs is that calculating the pos-
terior is intractable due to the high dimensionality of the
weights. Variational inference [34] is a scalable technique
that aims to learn an approximate posterior distribution of
the weights q(w) by minimizing the Kullback-Leibler (KL)
divergence between the approximate and true posterior. This is
equivalent to maximizing the evidence lower bound as follows:

arg max
q(w)

Eq(w)[log p(Y|X,w)]− λ · KL[q(w)||p(w)] , (1)

where Eq(w)[·] denotes expectation over the approximate
posterior q(w), log p(Y|X,w) is the log-likelihood of the
training data with given weights w, p(w) represents the prior
distribution of w, and KL[·] is the KL divergence between two
probability distributions weighted by a hyperparameter λ > 0.

State-of-the-art segmentation neural networks such as the
U-net formulate image segmentation as a pixel classification
problem. For each pixel xi,j in image xi, i ∈ [1, N ], j ∈ Ω,
the neural network generates a prediction ŷi,j with probability
p(ŷi,j = c), c ∈ [0, C − 1], through softmax activation of the
features in the last layer. Assuming pixels are independent
from each other, the log-likelihood of the training data in Eq.

(1) is given by:

log p(Y|X,w) =
N∑

i=1

∑

j∈Ω

C−1∑

c=0

[yi,j = c] · log p(ŷi,j = c) ,

where yi,j is the manual label for pixel j in image xi and [] is
the indicator function. In this setting, the log-likelihood is also
the negative cross entropy between the manual segmentation
and algorithm prediction. The prediction ŷ of a test image x
is generated by marginalizing out the weights of the neural
network, i.e.,

p(ŷ|x) = Eq(w)[p(ŷ|x,w)] , (2)

where p(ŷ|x,w) denotes the prediction of an image x given
network weights w. In the following sections, we introduce
methods for estimating an approximate posterior q(w) for the
weights of a BNN.

1) Bayes by Backprop: One way to parameterize the ap-
proximate posterior q(w) is to use a fully factorized Gaus-
sian. In a fully factorized Gaussian, each weight w in w
is independent from others and follows its own Gaussian
distribution with mean µ and standard deviation σ. To ensure
σ > 0 and training stability, σ is parameterized by a real
number ρ, i.e., σ = softplus(ρ) = ln(1 + eρ). The prior
distribution p(w) is usually chosen as a fully factorized
Gaussian with mean µpriorI and covariance σpriorI, i.e.,
p(w) = N (µpriorI, σpriorI), where I represents an identity
matrix. Gradient updates can be performed using the “reparam-
eterization trick”. The training procedure is known as Bayes
by Backprop (BBB) [16] and is briefly described below:
(1) For each weight w, sample ε ∼ N (0, 1) and set w =

µ+ softplus(ρ) · ε.
(2) Calculate the loss based on Eq. (1), i.e.,
− log p(Y|X,w) + λ · KL[q(w)||N (µpriorI, σpriorI)] .

(3) Update µ and ρ through gradient descent.
After training, each weight w can be sampled fromN (µ, σ),

which is then used to generate the segmentation predictions
following Eq. (2).

2) MC Dropout: MC Dropout (MCD) [15] is another
commonly used method for learning BNNs because it is
straightforward to implement and does not require additional
parameters or weights. MCD can be interpreted as choosing
the approximate posterior distribution q(w) to be a mixture
of two Gaussians with minimal variances, e.g., one at 0 and
the other at the weight w. Dropout is applied during training
and testing to sample weights from q(w). In this method, the
dropout rate is a hyperparameter chosen empirically based on
a validation dataset. The dropout rate defines the amount of
uncertainty in the weights and is fixed throughout network
training and testing.

B. Deep Ensembles

In addition to BNNs, we characterized and evaluated un-
certainty estimates using an ensemble of neural networks, i.e.,
Deep Ensembles [20]. Deep Ensembles consist of multiple
neural networks trained using the same data (or different
subsets of the same data) with different random initializations.
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Combining these models in an ensemble has been shown
to produce well-calibrated probabilities in computer vision
tasks and the variability between the model predictions can
be used to calculate predictive uncertainty. This non-Bayesian
method was inspired by the idea of bootstrapping, where
stochasticity in the sampling of the training data and training
algorithm define model uncertainty. This approach differs from
Bayesian methods since it does not require approximation of
the posterior distribution of the weights.

C. Stochastic Segmentation Networks

Another method for uncertainty estimation involves predict-
ing a distribution over the neural network logits before trans-
forming them into probabilities. Since standard segmentation
neural networks output pixelwise logits, a simple method is
to assume a Gaussian distribution of the logits and that each
pixel is independent from others, i.e., for each image x, the
neural network predicts logits η ∼ N (µ(x),Σ(x)), where
µ(x) ∈ R|Ω|C is the mean logit and Σ(x) ∈ R|Ω|C×|Ω|C is
a diagonal covariance matrix [12]. Stochastic Segmentation
Networks (SSNs) [31] improved this method by using a low
rank multivariate normal distribution on the pixelwise logits
to model the dependencies between pixels in an image. In
particular, SSNs use Σ(x) = PPT +D, where P ∈ R|Ω|C×R
is a low rank matrix and D ∈ R|Ω|C×|Ω|C is a diagonal matrix.

D. Algorithm Evaluation

We evaluated the uncertainty estimation algorithms based on
three aspects: (1) segmentation accuracy and probability cali-
bration; (2) uncertainty on out-of-distribution datasets; and (3)
application of uncertainty estimates for segmentation quality
control. The purposes of these evaluations are as follows:

(1) We show that BNNs can provide segmentation accura-
cies that are similar to or higher than plain or point
estimate neural networks. In addition, predicted seg-
mentation probabilities should be well-calibrated, i.e., a
pixel with predicted probability of 60% belonging to
the myocardium is 60% myocardium according to some
ground truth. From a frequentist perspective, this means
that out of all predictions with 60% probability, 60% of
the predictions are correct.

(2) We measure segmentation uncertainty on out-of-
distribution data to validate that the uncertainty mea-
sures perform as expected, i.e., uncertainty should in-
crease when test datasets substantially differ from training
datasets.

(3) We expect uncertainty measures to be useful in iden-
tifying problematic segmentations that require manual
editing.

We used the following metrics for these evaluations:
1) Segmentation Accuracy: We calculated the algorithm

segmentation accuracy using Dice similarity coefficient, av-
erage symmetric surface distance (ASSD), and Hausdorff
distance (HD), as previously described [2].

2) Probability Calibration: These metrics measure how
closely the neural network segmentation probabilities match
the manual segmentation probabilities on a per-pixel basis.

Following the notation in Sec. II-A, let ŷj and yj denote
the prediction and manual label of pixel j in a given image,
j ∈ Ω, respectively. We use p(ŷj = c) to denote the average
per-pixel probability from the samples of the neural network,
i.e., p(ŷj = c) = Eq(w)[p(ŷj = c|w)]. Negative log-likelihood
(NLL) measures how well the learned model fits the observed
(testing) data and is calculated as follows:

NLL =
∑

j∈Ω

C−1∑

c=0

[yj = c] · log p(ŷj = c) .

Note that NLL is sensitive to tail probabilities; that is, a model
that generates low probability for the correct class is heavily
penalized.

Brier score (BS) [35] is a proper scoring rule used to mea-
sure probability calibration. It measures the mean squared error
between the predicted and manual segmentation probabilities:

BS =
∑

j∈Ω

C−1∑

c=0

[p(ŷj = c)− p(yj = c)]2 .

A Brier score of 0 indicates that the model is perfectly
calibrated.

3) Predictive Uncertainty Measures: Predictive uncertainty
can be calculated from neural network predictions to indicate
the degree of uncertainty of the outputs. This can be calculated
per pixel or per structure/class.

a) Pixelwise Uncertainty Measures: Pixelwise uncer-
tainty measures are calculated per pixel and averaged across
all pixels in an image if an image-level measure is required. In
this work, we used multi-class predictive entropy and multi-
class mutual information as suggested to be superior in [36]:

• Multi-class Predictive Entropy measures the spread of
probabilities across all the classes in the mean prediction,
i.e.,

∑

j∈Ω

C−1∑

c=0

[−p (ŷj = c) log p (ŷj = c)] .

• Multi-class Mutual Information (MI) measures how dif-
ferent each sample is from the mean prediction and is
calculated as:

Eq(w)


∑

j∈Ω

C−1∑

c=0

p (ŷj = c|w) log p (ŷj = c|w)−

∑

j∈Ω

C−1∑

c=0

p (ŷj = c) log p (ŷj = c)


 ,

where p (ŷj = c|w) denotes the prediction given a set of
weights w. MI is high if there are samples with both high
and low confidence, and is low if all samples have low
confidence or high confidence.
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b) Structural Uncertainty Measures: We define two
structural uncertainty measures, which quantify how different
the prediction samples are for each structure in terms of Dice
and ASSD.
• DiceWithinSamples (DiceWS) = 1

T

∑T
i=1 Dice(S̄, Si)

• ASSDWithinSamples (ASSDWS) = 1
T

∑T
i=1 ASSD(S̄, Si) ,

where S̄ is the mean of the T segmentation predictions
Si, i ∈ [1, T ]. We expect structural uncertainty measures
to better align with common segmentation accuracy metrics
because of their global image-level focus.

E. Datasets

1) UK BioBank (UKBB): The UKBB dataset [37] consists
of 4845 healthy volunteers. For each subject, 2D cine cardiac
MR images were acquired on a 1.5T Siemens scanner using
a bSSFP sequence under breath-hold conditions with ECG-
gating (pixel size = 1.8-2.3 mm, slice thickness = 8 mm, num-
ber of slices = ∼10, number of phases = ∼50). Manual seg-
mentation of the left ventricle blood pool (LV), left ventricle
myocardium (Myo), and right ventricle (RV) was performed
on the end-diastolic (ED) and end-systolic (ES) phases by one
of eight observers followed by random checks by an expert to
ensure segmentation quality and consistency. The dataset was
randomly split into 4173, 103, and 569 subjects for training,
validation, and testing, respectively. We have permission to
use the UKBB dataset through UK Biobank’s generic RTB
approval from the NHS North West REC.

2) Automated Cardiac Diagnosis Challenge (ACDC): The
ACDC dataset [3] consists of 100 patients with one of five
conditions: normal, myocardial infarction, dilated cardiomy-
opathy, hypertrophic cardiomyopathy, and abnormal right ven-
tricle. 2D cine MR images were acquired using a bSSFP
sequence on a 1.5T/3T Siemens scanner (pixel size = 0.7-
1.9 mm, slice thickness = 5-10 mm, number of slices = 6-
18, number of phases = 28-40). Manual segmentation was
performed at ED and ES phases with approval by two experts.
This dataset was used for testing only.

F. Training Details

We used a plain 2D U-net [38] for BBB, MCD, Deep
Ensembles, and SSN. The plain U-net consisted of 10 layers
with 3×3 filters and 2 layers with 1×1 convolutions followed
by a softmax layer. The number of filters ranged from 32 to
512 from the top to the bottom layers.

For BBB, we experimented with different standard devi-
ations of the prior distributions: σprior = 0.1 or 1.0 and
different weights for the KL term: λ = 0.1, 1.0, 10, 30. These
are commonly used hyperparameters in the literature [39],
[16], [40]. For MCD, we added dropout on all layers or only
on the middle layers of the U-net with different dropout rates:
0.5, 0.3, and 0.1. These settings effectively tuned the amount
of uncertainty in the model. For both BBB and MCD, the final
prediction was obtained by averaging the softmax probabilities
of T=50 samples. For Deep Ensembles, we trained 10 plain U-
net models separately using all the training data with different
random initializations and averaged the softmax probabilities

of the 10 models. For SSN, we used a rank of 10 for the
multivariate normal distribution of the logits, as suggested in
[31]. More training details can be found in Supplementary
Material Section I.

III. EXPERIMENTS AND RESULTS

To select the hyperparameters for each method, we chose
the models with the lowest NLL on the validation dataset
since NLL is directly related to segmentation accuracy and
probability calibration. For BBB, λ = 10 and σprior = 0.1
achieved the best NLL on the validation dataset. For MCD,
adding dropout in the middle layers with a dropout rate of 0.1
(MCD-0.1) performed the best. We also reported results for
MC Dropout with a dropout rate of 0.5 in the middle layers
(MCD-0.5), which is commonly used in the literature.

A. Segmentation Accuracy and Probability Calibration

As shown in Table I, Deep Ensembles performed the
best in terms of segmentation accuracy and probability cal-
ibration. This was followed by BBB and MCD-0.1, which
were comparable to the plain U-net. MCD-0.5 performed
slightly worse than the other models. The differences of these
methods compared to the plain U-net were small but mostly
statistically significant except for some metrics between plain
U-net and MCD-0.1 (Table I). These results indicate that
Bayesian approaches or Deep Ensembles can yield similar,
if not better, segmentation results compared to a plain U-net
while providing uncertainty estimates at the same time. The
tradeoff is that Deep Ensembles and BBB use more memory
and computation time compared to a plain U-net.

Examples of predicted segmentation from all methods are
shown in Supplementary Figure S1.

B. Uncertainty on Distorted Images

In order to validate uncertainty measures as indicators of
“out-of-distribution” datasets, we applied the trained models
to carefully generated test images with various magnitudes of
distortions, including:
• adding Rician noise, as found in MR images [41], with

magnitudes ranging from 0.05 to 0.10 (on normalized
images with intensities ranging from 0 to 1),

• Gaussian blurring with a standard deviation of 1–4 pixels,
• deforming or stretching around LV, Myo, and RV.
Note that these distortions were not applied as part of

data augmentation during training and these images were not
seen by the neural networks. As such, we expected decreased
segmentation accuracy and increased predictive uncertainty in
images with greater magnitudes of distortions. Figure 1 shows
examples of distorted images.

1) Trends with Increasing Distortions: Figure 2 and Sup-
plementary Table S1 show that the segmentation accuracy
decreased as the magnitude of the distortions (noise, Gaussian
blur, stretch) was increased. This is expected since these types
of distortions were not seen during training and increasing the
magnitude of the distortions results in greater differences with
the original training datasets.
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TABLE I
SEGMENTATION ACCURACY AND PROBABILITY CALIBRATION OF THE PLAIN U-NET, U-NET WITH MC DROPOUT, BBB, DEEP ENSEMBLE, OR SSN ON

N=1138 IMAGES FROM UKBB. ↑ INDICATES HIGHER IS BETTER. ↓ INDICATES LOWER IS BETTER. FORMAT: MEAN (STANDARD DEVIATION).

Dice ↑ ASSD (mm) ↓ HD (mm) ↓ NLL ↓ BS ↓

LV Myo RV LV Myo RV LV Myo RV (×10−2) (×10−3)

Plain U-net .941(.038) .882(.031) .907(.043) 1.01(.38) 1.02(.43) 1.61(.69) 2.98(0.99) 3.83(1.39) 6.53(2.67) 1.11(.38) 1.67(.54)

BBB .942(.037)∗ .883(.030)∗ .908(.043)∗ 1.00(.36)∗ 1.00(.30)∗ 1.60(.70)∗ 2.96(0.96)∗ 3.80(1.23)† 6.39(2.59)∗ 1.10(.35)∗ 1.66(.53)∗

MCD-0.1 .941(.037)∗ .882(.030)† .907(.043)∗ 1.00(.36)∗ 1.01(.31)† 1.61(.70)† 2.97(0.97)† 3.82(1.24)† 6.49(2.59)† 1.10(.36)∗ 1.66(.53)∗

MCD-0.5 .940(.038)∗ .879(.030)∗ .906(.043)∗ 1.03(.38)∗ 1.04(.31)∗ 1.64(.69)∗ 3.05(1.03)∗ 3.95(1.29)∗ 6.64(2.61)∗ 1.13(.35)∗ 1.70(.53)∗

Ensemble .943(.037)∗ .885(.030)∗ .909(.043)∗ 0.98(.36)∗ 0.98(.29)∗ 1.57(.72)∗ 2.90(0.93)∗ 3.68(1.20)∗ 6.26(2.56)∗ 1.07(.35)∗ 1.63(.52)∗

SSN .940(.037)∗ .882(.030)† .903(.043)∗ 1.03(.39)∗ 1.03(.32)∗ 1.65(.67)∗ 3.08(1.10)∗ 3.90(1.29)∗ 6.64(2.55)∗ 1.15(.33)∗ 1.73(.50)∗

* statistically different compared to the Plain U-net (Wilcoxon signed-rank test, p < 0.05, N = 1138 images).
† not statistically different compared to the Plain U-net (Wilcoxon signed-rank test, p > 0.05, N = 1138 images).

In addition, we observed that the predictive uncertainty
increased (i.e., higher predictive entropy, mutual information,
ASSDWS, and lower DiceWS) with increasing magnitude of
distortions but this decreased after a certain threshold, as
shown in Figure 2. This was the case for Deep Ensembles,
BBB, MCD, and SSN on images with noise and blurring
distortions but not with stretching. For example, for BBB, the
median predictive entropy for images with slight, moderate,
and large additional noise was 1.66× 10−2, 1.95× 10−2, and
1.23×10−2, respectively. Similarly, the median ASSDWS was
0.40, 3.40, and 0.71 mm for images with slight, moderate, and
large amount of blurring, respectively (Supplementary Table
S3). Figure 1 and Supplementary Figures S2-S4 show exam-
ples of segmentation predictions and uncertainty (predictive
entropy, mutual information) for all the methods on images
with increasing noise, blurring, and stretching.

While the increasing predictive uncertainty associated with
increasing magnitude of distortions was expected, the decrease
in predictive uncertainty after a threshold in cases of noise
and blurring distortions is surprising. Specifically, for images
that were highly distorted, all pixels were classified as back-
ground with low uncertainty (Figure 1, bottom row). Although
this seems correct when only given the labeling choices of
background, LV, Myo, and RV, we argue that the distorted
pixels are markedly different from the background pixels in
the training images and therefore, should have high uncertainty
nonetheless. This is a limitation of all the uncertainty models
tested and may be improved using more expressive posteriors.

Another observation is that the uncertainty measures began
to fail/decrease when dramatic segmentation errors occurred,
as shown in Figure 2. This suggests that other heuristics or
algorithms such as those presented in [42] can be used to
complement the uncertainty measures when trying to detect
inaccurate segmentations. For example, segmentation with a
non-circular LV blood pool or a blood volume < 50 mL is
highly problematic and may indicate poor segmentation.

2) Comparison between Deep Ensembles, BBB, MC
Dropout, and SSN: In terms of segmentation accuracy and
probability calibration, BBB was more robust to noise dis-
tortions compared to the other methods. Specifically, BBB
showed higher Dice and lower ASSD for LV, lower NLL and
BS on images with greater noise distortions (Figure 1, rows
3-5 and Supplementary Tables S1 and S2, degree of distortion
= 2, 3, 4). SSN showed higher segmentation accuracy in
cases of greater blurring while Deep Ensembles showed higher
segmentation accuracy with stretching distortions compared

to the other methods (Figure 2 and Supplementary Table S1,
degree of distortion = 3, 4). In the greatest noise, blurring, and
stretching distortions tested, BBB, SSN, and Deep Ensembles
had statistically higher segmentation accuracy and probability
calibration, respectively, when compared to other methods
(Supplementary Tables S1 and S2).

C. Uncertainty on Dataset Shift

To further validate the uncertainty measures, we applied the
models trained on the UKBB dataset to a distinctly different
ACDC dataset. We expect decreased segmentation accuracy
and increased predictive uncertainty on the ACDC test dataset
compared to the UKBB test dataset, due to the presence of
cardiac pathologies on the ACDC dataset and slightly different
acquisition parameters.

As shown in Figure 3, we observed decreased segmentation
accuracy and increased predictive uncertainty compared to the
UKBB test dataset. In terms of segmentation accuracy and
probability calibration, the methods from the best to the worst
are: Deep Ensembles, BBB, MCD-0.1, SSN, Plain U-net, and
MCD-0.5, as shown in Figure 3 and Supplementary Table S4.
While most metrics are statistically different, some metrics
between the following pairs are not statistically different: Deep
Ensembles vs BBB, MCD-0.1 vs SSN, SSN vs Plain U-net,
and Plain U-net vs MCD-0.5. Supplementary Table S5 shows
detailed results of the pairwise significance tests.

D. Correlations between Uncertainty and Segmentation Accu-
racy

To demonstrate the potential utility of uncertainty measures,
we evaluated the Spearman rank correlation between uncer-
tainty measures and segmentation accuracy. We used the rank
correlation instead of linear correlation to reduce the effects of
a potential non-linear relationship between the two quantities.

Supplementary Figure S5 shows that the uncertainty mea-
sure with the strongest correlation with ASSD was ASSDWS
(Spearman correlation between 0.58 and 0.69) in the case
of training and testing on the UKBB dataset (UKBB →
UKBB). This is not surprising since the ASSDWS calculation
was similar to ASSD. Similar observations were obtained for
training on the UKBB dataset and testing on the ACDC dataset
(UKBB → ACDC) although the correlations were slightly
lower (Spearman correlation between 0.44 and 0.66). These
correlations suggest that the ASSDWS uncertainty measure is
useful in predicting the segmentation quality when manual
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Fig. 1. Segmentation predictive entropy on images with increasing noise, blurring, and stretching. BBB showed the highest uncertainty on images with heavy
noise (last two rows) while SSN showed the highest uncertainty on images with heaving blurring (last two rows); Deep Ensembles showed slightly higher
uncertainty on images with heavy stretching compared to other methods. Reproduced with permission of UK Biobank ©.
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Fig. 2. Segmentation accuracy (ASSD LV), uncertainty measures (ASSDWS LV, entropy), and probability calibration (Brier score) on images with increasing
magnitude of noise, blurring, and stretching using a plain U-net, U-net with BBB, MC Dropout, Deep Ensemble, and SSN.

segmentation is not available. Other uncertainty measures such
as MI or DiceWS may correlate better with other segmentation
quality metrics such as pixelwise accuracy or Dice (not
explored in this work). They could also potentially be used
as inputs to segmentation algorithms to improve segmentation
performance.

Figure 4 shows representative segmentation results, poste-

rior prediction samples, and the structural uncertainty mea-
sures for RV. The images with poor segmentation (toward the
right side) had greater uncertainty as measured by DiceWS
and ASSDWS. Note that posterior prediction samples are not
related to inter- or intra-observer variability but rather show
what the network has learned from given data.
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Fig. 3. Segmentation accuracy, predictive uncertainty, and probability
calibration of models trained on the UKBB training dataset and tested on
the UKBB and ACDC datasets.

E. Uncertainty for Segmentation Quality Control

In this section, we explored the use of predictive uncertainty
estimates to flag potentially problematic segmentations that
require manual review. We view this task as a classification
problem and we aim to use uncertainty measures to classify
segmentations as either good or poor.

While the common segmentation accuracy metrics (Dice,
ASSD, HD) may not always correlate with true segmenta-
tion quality [3], there are no good alternatives to quantify
segmentation quality. Having experts to manually determine
whether an automated segmentation is good or not for a large
dataset is time consuming and adds observer noise. Instead,
we used thresholds on segmentation accuracies to achieve this.
Based on our experience and discussions with our clinical
collaborators, we believe that contour or surface distance is
more indicative of inaccurate segmentations. As such, for
each method, the predicted segmentation was considered as
poor when the ASSD between the prediction and manual
segmentation is greater than the ASSD between manual ob-
servers. We used inter-observer ASSD of 1.17 mm for LV,
1.19 mm for Myo, and 1.88 mm for RV, based on a recent
relatively large-scale study [2]. We then evaluated how well
the ASSDWS uncertainty measure could identify potentially
poor segmentation.

To utilize the ASSDWS uncertainty measure, a threshold can
be set such that any segmentation with uncertainty above the
threshold is flagged for manual review. This would hopefully
result in a decreased number of poor segmentation in the
dataset. Figure 5 shows the fraction of images with poor
segmentation remaining in the dataset and the fraction of
images flagged for manual correction when the uncertainty
thresholds were varied, i.e., (positives - true positives) vs (true
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Fig. 4. A scatter plot showing the relationship between ASSD and ASSDWS
using BBB. Images with manual and predicted segmentations, and posterior
segmentation samples illustrate varying ASSD and ASSDWS. Reproduced by
kind permission of UK Biobank ©.

positives + false positives), where positive represents poor
segmentation. As we decreased the uncertainty threshold (top
left to bottom right in Figure 5), we flagged more images
for manual correction and the number of images with poor
segmentation was decreased. The first point on the curves
corresponds to a threshold where none of the images are
reviewed while the last point indicates that all the images are
reviewed. This is similar to a receiver operating curve with the
consideration that the total number of positives or images with
poor predicted segmentation is different for each method. This
allows for comparison between all the uncertainty estimation
methods. In particular, a curve that is closer to the bottom left
corner or has smaller area under the curve (AUC) indicates
that the algorithm provides better initial segmentation and/or
its uncertainty is a good indicator of segmentation accuracy.
Figure 5 shows that all the methods performed similarly for
detecting poor LV, Myo, and RV segmentation with Deep
Ensembles having slightly lower AUC than the others.

The thresholds of the uncertainty measures for flagging
images for manual review can be adjusted depending on
the application. This approach provides a way to identify
images to review and may result in substantial time savings.
For example, using the ASSDWS uncertainty measure for the
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Fig. 5. Fraction of images with poor segmentation remaining (based on a threshold of ASSD between predicted and ground truth segmentation) after flagging
images for manual correction using ASSDWS for BBB, MC Dropout, Deep Ensembles, and SSN. Dotted black lines indicate flagging images for manual
correction randomly. Shaded area shows the ideal region where all images flagged for manual correction directly reduce the number of poor segmentations.

Deep Ensembles method, 48%, 38%, and 31% of the images
required manual review in order to reduce the number of
images with poor LV, Myo, or RV segmentation to 5% of
the test dataset, respectively (Figure 5). In contrast, without
using uncertainty measures and assuming no other information
about the images is used, approximately 75% of the images
need to be reviewed to achieve this goal. Furthermore, using
the ASSDWS uncertainty measure resulted in more time sav-
ings compared to a naive approach based on slice position.
Specifically, since the segmentation is usually worse at the
base and/or apex, a naive approach for segmentation quality
control is to first review all the most basal and apical slices,
followed by the second-most basal and apical slices, and so
on. We refer to this approach as using the slice position as a
heuristic for segmentation quality control. As shown in Figure
5, using uncertainty measures is more advantageous than this
naive approach as evidenced by a lower AUC and a smaller
number of images to review to have 5% poor segmentation
remaining. For example, for Myo, AUC for ASSDWS was
0.052 for Deep Ensembles and 0.080 for the slice position
heuristic method; 38% of the total images require review
when using the ASSDWS uncertainty measure compared to
59% when using the slice position heuristic. For a dataset of
10,000 subjects each with 10 slices and manual segmentation
of 30 seconds per structure per slice [2], using the ASSDWS
uncertainty measure results in ∼940 hours of time savings
compared to reviewing the images randomly, and ∼580 hours
of time savings compared to using the slice position heuristic.

IV. DISCUSSION

A. BBB vs MC Dropout vs Deep Ensembles vs SSN

In this work, we evaluated and compared different Bayesian
and non-Bayesian methods for estimating uncertainty in neural
networks for cardiac MRI segmentation. Here, we discuss the
similarities and differences about how uncertainty is learned
in these methods, what was learned after training, and relate
these differences to the quality of the predictive uncertainties
on out-of-distribution images.

While uncertainty in neural network parameters is learned
automatically in BBB, this can be tuned by changing the

dropout rate in MCD. For the UKBB dataset, a small dropout
rate of 0.1 in the middle layers performed better than the
other MCD models in terms of segmentation accuracy and
probability calibration. This is different from other studies
which commonly used a dropout rate of 0.5 [43], [39] and
may be because of the large amount of relatively uniform
training data (i.e., images acquired following the same MR
protocol in mainly healthy volunteers and labelled following
the same guidelines). The dropout rate hyperparameters for
MCD obtained through grid search correspond to the weight
uncertainties learned by BBB to some extent. Figure 6 shows
that the standard deviation of the weights learned by BBB is
lower in the early layers and higher in the middle layers of the
U-net. This is similar to MCD with no dropout in the early
layers and with dropout on the middle layers. Having greater
dropout rate in middle layers is common in other studies [39].
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Fig. 6. Histogram of the standard deviations of weights in the early and
middle layers learned by BBB.

The effect of using different dropout rate in MCD is shown
in the experiments with dataset shift (Figure 3, Supplemen-
tary Tables S4 and S6, MCD-0.1 vs MCD-0.5). A dropout
rate of 0.1 yielded higher segmentation accuracy but lower
uncertainty whereas a dropout rate of 0.5 resulted in lower
segmentation accuracy but higher predictive uncertainty. BBB
was able to mitigate this issue by learning a mean and standard
deviation for each weight, resulting in comparable or higher
segmentation accuracy with moderate predictive uncertainties
between MCD-0.1 and MCD-0.5 (Figure 3).

In Deep Ensembles, the uncertainty in the weights is not
learned or tuned but instead stems from the random initializa-
tion of the weights and stochasticity of the training procedure.
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Each model in the ensemble would learn a local minimum,
which are combined to form a prediction and uncertainty
estimate. Deep Ensembles outperformed BBB in terms of
segmentation accuracy and probability calibration in most
cases. This may be because the approximate posterior learned
by BBB covered only one (or a few) mode(s) of the true
posterior and a small neighbourhood around each mode, as
opposed to multiple local modes in Deep Ensembles. Based
on our observations, the histogram of the weights learned
by each member in Deep Ensembles was very similar to
each other. Techniques such as canonical correlation analysis
may be used to compare the learned feature maps between
different members of the ensemble to better understand model
uncertainty [44].

The segmentation accuracy and uncertainty measures on
images with increasing noise and blurring distortions pro-
vide some insights into the different algorithms tested. BBB
outperformed the other methods in cases of noise distortions
probably because the Gaussian distribution of the weights is
complementary to the noise applied on the images (i.e., a
Gaussian multiplied by an approximately-Gaussian distribu-
tion results in a Gaussian distribution). SSN outperformed the
other methods in cases of blurring distortions since blurring
is localized to a small region around each pixel and SSN
models the distribution between pixels. Stretching distortions
are complicated structural variations and in this case, Deep
Ensembles performed the best by relying on weights from
several local minima to model uncertainty. While these simple
perturbations (noise, blurring, and stretching distortions) may
not be realistic, they did highlight cases where BBB or
SSN or Deep Ensembles are better than others. We tested
these algorithms on the ACDC dataset for a more realistic
comparison of the different algorithms.

Bayesian approaches and Deep Ensembles can be used to
improve segmentation accuracy on slightly shifted datasets
compared to the plain U-net (Supplementary Tables S4 and S5
show that there is a significant difference between the plain
U-net and BBB/Deep Ensembles). While the segmentation
accuracies on the ACDC test dataset using the models trained
on UKBB dataset are lower than that obtained by training and
testing on the ACDC dataset [3], the algorithms employed
in this work may be combined with other techniques that
are specifically designed to solve this problem, e.g., style
augmentation or domain adversarial training [45], [46].

B. Pixelwise and Structural Uncertainty Measures

We introduced pixelwise and structural uncertainty mea-
sures to quantify the predictive uncertainty, and demonstrated
the utility of these metrics for segmentation quality control.
Both pixelwise and structural uncertainty measures can be used
depending on the application. As the segmentation problem
was formulated as pixel classification, pixelwise uncertainty
measures are straightforward to obtain. These allow users to
visualize which pixels and which areas are potentially prob-
lematic (Figure 1). However, segmentation is often performed
at the image-level slice by slice. Therefore, image-level uncer-
tainty measures for determining problematic segmentation are

also required. Accordingly, we showed that structural uncer-
tainty measures were correlated with segmentation accuracy
such as ASSD.

Other studies such as [36] evaluated uncertainty maps by
comparing uncertainty and correctness at the per-pixel level.
In contrast, we evaluated per-image uncertainty measures as a
predictor of image-level segmentation quality, which is more
reflective of the real-world scenario.

It is important to note that the predictive uncertainty mea-
sures reflect the neural network uncertainty, which is different
from human uncertainty. An example is the image with heavy
noise in the last row in Figure 1. It is expected that human
observers can manually segment this image with low observer
variability; however, since this image is very different from the
training data, the neural networks were not able to generate a
reasonable segmentation and yielded high predictive entropy
and mutual information for the entire cardiac structure.

C. Segmentation Quality Control

We showed that the uncertainty measures have moderate
to good correlations with segmentation accuracy. This could
have been negatively affected by manual segmentation noise.
Framing segmentation quality control as a binary classification
problem instead of evaluating the correlations or predicting
the segmentation accuracy alleviates the issue of noise in
manual segmentation. In this regard, we defined poor seg-
mentation using a threshold on ASSD between the predicted
and manual segmentation. This definition was adopted based
on discussions with our clinical collaborators; however, it can
be modified depending on the application. For example, other
segmentation accuracy metrics such as Hausdorff distance or
misclassification area can be used and the framework for
evaluating uncertainty measures developed in this work may
be applied directly.

Other studies of segmentation quality control include di-
rectly predicting segmentation accuracy or comparing the
predicted segmentation to a reference database. Alba et al.
[47] trained a random forest classifier to predict a binary label
of correct or incorrect segmentation. The examples of correct
segmentation were generated using the manual delineation
while the incorrect segmentations were obtained by deforming
or translating the manual segmentations. Robinson et al. [48]
used a 3D residual network to directly predict the Dice of a
segmentation from an image-segmentation pair. The network
was trained and tested on a dataset created using a random
forest segmentation algorithm. Ruijsink et al. [42] trained a
CNN for detecting images with artefacts or incorrect planning
and then excluded these from the segmentation pipeline. [42]
and [49] also trained classification models to predict whether
a segmentation is good or poor. These classifiers are agnos-
tic to how the segmentation was generated. However, these
approaches depend on training with expected segmentation
failures, which may be challenging to incorporate during
training. In contrast, our approach used uncertainty measures
to detect poor segmentation and is more explainable with-
out these issues. Instead of using a learning algorithm to
determine segmentation quality, we used model uncertainty
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which emerges intrinsically during algorithm training. A slight
limitation of our approach is that sampling during the testing
phase required up to 50x more computation time compared
to a single prediction but this may be accelerated through
parallelization.

Additionally, some studies estimate the “similarity” of the
test image and/or predicted segmentation with respect to the
training data as a proxy for segmentation quality. For example,
Gonzalez and Mukhopadhyay [50] used scores from a self-
supervised task to detect out-of-distribution test images (which
can then be assumed to have poor segmentation results). Galati
and Zuluaga [51] trained a convolutional autoencoder to recon-
struct segmentation maps. Then, the predicted segmentation is
fed into the autoencoder and segmentation quality measures
are calculated based on the predicted segmentation and re-
constructed prediction. These generative modelling approaches
represent a promising line of work and are quite different
from the discriminative approaches used in this work. One
advantage of [50] is that the algorithm does not require ground
truth segmentation for training. However, in both approaches,
the prediction of the segmentation itself is decoupled from the
prediction of segmentation quality.

Finally, another approach for segmentation quality control is
using a modified version of Reverse Classification Accuracy
to predict the accuracy of an image-segmentation pair [52].
This approach requires a reference database with manual
segmentation. Each reference image is registered to the test
image and the associated manual segmentations are warped
accordingly to generate potential segmentations of the test
image. Segmentation quality is estimated by comparing the
potential segmentations and algorithm segmentation. A limi-
tation of this approach is that it requires long time to predict
the segmentation quality, mainly due to the registration steps.

V. CONCLUSIONS

In this work, we compared Bayesian and non-Bayesian
methods, namely BBB, MCD, Deep Ensembles, and SSN for
segmentation accuracy, probability calibration, and uncertainty
estimates in the context of cardiac MRI segmentation in
cases of various distortions. We found that Deep Ensembles
performed better in terms of segmentation accuracy and prob-
ability calibration on in-distribution and out-of-distribution
datasets; BBB outperformed the other methods on images with
noise distortions while SSN outperformed the others on images
with blurring distortions. We showed that ASSDWS uncertainty
measure was strongly correlated with the segmentation accu-
racy; using uncertainty measures can result in substantial time
savings by reducing the number of images that needs manual
review for segmentation quality control.
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C. Alberola-López, and G. Fichtinger, Eds. Springer, 2018, pp. 664–
672.

[10] A. Jungo, R. Meier, E. Ermis, E. Herrmann, and M. Reyes, “Uncertainty-
driven sanity check: Application to postoperative brain tumor cavity
segmentation,” in Medical Imaging with Deep Learning, 2018.

[11] J. Sander, B. D. de Vos, J. M. Wolterink, and I. Išgum, “Towards
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[47] X. Albà, K. Lekadir, M. Pereañez, P. Medrano-Gracia, A. A. Young,
and A. F. Frangi, “Automatic initialization and quality control of large-
scale cardiac mri segmentations,” Medical image analysis, vol. 43, pp.
129–141, 2018.

[48] R. Robinson, O. Oktay, W. Bai, V. V. Valindria, M. M. Sanghvi,
N. Aung, J. M. Paiva, F. Zemrak, K. Fung, E. Lukaschuk, A. M. Lee,
V. Carapella, Y. J. Kim, B. Kainz, S. K. Piechnik, S. Neubauer, S. E.
Petersen, C. Page, D. Rueckert, and B. Glocker, “Real-time prediction
of segmentation quality,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention, A. F. Frangi, J. A.
Schnabel, C. Davatzikos, C. Alberola-López, and G. Fichtinger, Eds.
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I. TRAINING DETAILS

For preprocessing, the input images were cropped to 160×160 pixels from the center of the original images. The cropped
images were normalized by subtracting the mean and dividing by the variance of the entire training dataset. All the experiments
were repeated 5 times (except for Deep Ensembles) and the resulting metrics were averaged. Data augmentation was performed,
including random rotation (-60 to 60 degrees), translation (-60 to 60 pixels), and scaling (0.7 to 1.3 times). These models were
trained using an Adam optimizer for 50 epochs. The initial learning rate was set to 1e-4, which was decayed to 1e-5 after 30
epochs.

All the experiments were performed on an Nvidia P100 GPU with 12GB of memory. SSN, MCD and BBB required
approximately 20, 35 and 47 hours for training, respectively. For these methods, generating 50 prediction samples during
testing required 1.5 seconds for each 2D image. The Deep Ensembles method consisted of 10 copies of the plain U-net and
was trained in parallel separately. Each plain U-net required ∼12 hours for training and ∼0.1 seconds for prediction of a 2D
image. Calculation of the predictive entropy, mutual information, DiceWS, and ASSDWS required approximately 0.05, 0.15,
0.15, and 0.4 seconds per image, respectively.
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Fig. S1. Example segmentation results using the U-net with Deep Ensembles, BBB, MC Dropout (MCD), and SSN. Red = LV, green = Myo, blue = RV.
Yellow arrows show area of inaccurate segmentation. Note that all methods have similar results. Reproduced by kind permission of UK Biobank ©.
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Fig. S2. Segmentation predictions and pixelwise uncertainty (mutual information) on images with increasing noise. Segmentation accuracy decreases while
predictive uncertainty increases with more noise. Reproduced by kind permission of UK Biobank ©.
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Fig. S3. Segmentation predictions and pixelwise uncertainty (mutual information) on images with increasing blur. Segmentation accuracy decreases while
predictive uncertainty increases with more blurring. Reproduced by kind permission of UK Biobank ©.
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Fig. S4. Segmentation predictions and pixelwise uncertainty (mutual information) on images with increasing stretch. Segmentation accuracy decreases while
predictive uncertainty increases with more stretching. Reproduced by kind permission of UK Biobank ©.
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Fig. S5. Spearman correlations between segmentation accuracy (ASSD) and uncertainty measures (entropy, mutual information, DiceWS, ASSDWS) on the
UKBB and ACDC datasets. Each point represents one run.
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TABLE S1
SEGMENTATION ACCURACY ON IMAGES WITH INCREASING NOISE, BLURRING, AND STRETCHING DISTORTIONS. FORMAT: MEDIAN25-75TH PERCENTILE

Degree of Distortion

0 1 2 3 4

N
oi

se

Pixelwise Accuracy

Plain U-net .9960.9944−.9973 .9841.9716−.9926 .9749.9599−.9887 .9686.9525−.9862 .9648.9464−.9854
∗

BBB .9960.9944−.9973 .9929.9888−.9956 .9905.9833−.9947 .9862.9754−.9932 .9735.9593−.9883

MCD-0.5 .9959.9942−.9972 .9807.9673−.9913 .9729.9582−.9879 .9678.9514−.9859 .9647.9461−.9854
∗

MCD-0.1 .9960.9944−.9973 .9852.9743−.9932 .9767.9627−.9889 .9700.9542−.9864 .9649.9467−.9854
∗

Ensemble .9961.9945−.9973 .9873.9717−.9941 .9754.9568−.9910 .9679.9495−.9871 .9645.9456−.9854
∗

SSN .9960.9943−.9972 .9811.9683−.9916 .9725.9574−.9878 .9675.9506−.9858 .9648.9460−.9854
∗

Dice LV

Plain U-net .963.932−.981 .653.194−.900 .224.010−.714 .031.000−.357 .000.000−.001
∗

BBB .964.934−.982 .947.863−.976 .927.701−.972 .828.307−.961 .162.000−.753

MCD-0.5 .963.933−.981 .657.081−.944 .235.000−.762 .000.000−.452 .000.000−.000
∗

MCD-0.1 .963.934−.982 .714.271−.951 .356.000−.753 .024.000−.529 .000.000−.000
∗

Ensemble .965.936−.983 .873.000−.970 .000.000−.937 .000.000−.000 .000.000−.000
∗

SSN .963.929−.981 .501.157−.911 .171.000−.643 .041.000−.247 .000.000−.000
∗

ASSD LV

Plain U-net 0.770.47−1.15 8.511.79−19.14 19.248.03−31.70 28.3714.20−39.34 34.8519.52−45.93
∗

BBB 0.760.45−1.14 1.070.61−2.05 1.420.69−4.40 2.710.88−13.65 19.444.20−33.37

MCD-0.5 0.780.47−1.16 8.991.23−21.06 18.195.02−31.04 27.2212.21−37.95 34.6319.59−45.52
∗

MCD-0.1 0.770.46−1.15 8.111.10−15.77 15.237.73−28.31 25.1111.62−37.28 34.3219.19−45.60
∗

Ensemble 0.740.43−1.12 2.300.73−22.35 20.491.36−38.93 32.7510.46−45.01 35.4519.79−47.01
∗

SSN 0.780.47−1.17 11.091.81−22.62 21.957.17−31.65 28.7415.31−38.76 34.4919.82−45.70
∗

G
au

ss
ia

n
B

lu
r

Pixelwise Accuracy

Plain U-net .9960.9944−.9973 .9910.9868−.9942 .9842.9759−.9913 .9732.9609−.9878 .9664.9494−.9856
†

BBB .9960.9944−.9973 .9922.9889−.9948 .9864.9779−.9921 .9726.9583−.9876 .9656.9465−.9855
†

MCD-0.5 .9959.9942−.9972 .9894.9829−.9936 .9779.9637−.9904 .9676.9491−.9869 .9647.9456−.9854
†

MCD-0.1 .9960.9944−.9973 .9915.9873−.9945 .9847.9747−.9917 .9713.9563−.9875 .9652.9461−.9854
†

Ensemble .9961.9945−.9973 .9923.9887−.9950 .9871.9780−.9926 .9730.9580−.9881 .9655.9460−.9855
†

SSN .9960.9943−.9972 .9907.9857−.9943 .9839.9743−.9920 .9748.9610−.9893 .9682.9496−.9867

Dice LV

Plain U-net .963.932−.981 .910.818−.959 .833.616−.931 .535.127−.780 .093.000−.349
†

BBB .964.934−.982 .936.869−.967 .883.659−.949 .466.000−.807 .000.000−.180
†

MCD-0.5 .963.933−.981 .922.829−.963 .726.191−.915 .066.000−.491 .000.000−.000
†

MCD-0.1 .964.934−.982 .928.838−.964 .864.549−.952 .356.000−.790 .000.000−.129
†

Ensemble .965.936−.983 .940.876−.970 .914.775−.964 .688.000−.928 .000.000−.000
†

SSN .963.929−.981 .921.831−.960 .884.744−.946 .726.192−.885 .146.000−.639

ASSD LV

Plain U-net 0.770.47−1.15 1.500.96−2.86 2.911.37−9.46 12.594.59−23.71 27.8813.87−39.61
†

BBB 0.760.45−1.14 1.260.80−2.01 2.061.13−5.93 13.613.03−27.63 32.3716.40−44.20
†

MCD-0.5 0.780.47−1.16 1.430.88−2.48 4.491.48−21.05 27.739.68−40.34 35.1119.08−46.65
†

MCD-0.1 0.760.46−1.15 1.350.86−2.31 2.221.12−9.11 14.703.25−31.19 33.2116.91−45.17
†

Ensemble 0.740.43−1.12 1.220.74−1.94 1.580.89−3.34 4.991.47−32.70 34.1711.37−46.57
†

SSN 0.780.47−1.17 1.410.92−2.37 1.991.18−3.96 4.491.99−16.66 21.575.50−37.39

St
re

tc
h

Pixelwise Accuracy

Plain U-net .9960.9944−.9973 .9921.9896−.9940 .9879.9820−.9925 .9841.9767−.9912 .9729.9645−.9852
§

BBB .9960.9944−.9973 .9918.9889−.9939 .9849.9767−.9916 .9793.9698−.9895 .9684.9577−.9834
§

MCD-0.5 .9959.9942−.9972 .9924.9897−.9942 .9887.9816−.9928 .9846.9757−.9913 .9720.9628−.9846
§

MCD-0.1 .9960.9944−.9973 .9922.9897−.9941 .9881.9817−.9926 .9837.9761−.9911 .9722.9638−.9845
§

Ensemble .9961.9945−.9973 .9925.9902−.9944 .9894.9826−.9933 .9857.9768−.9923 .9730.9638−.9864

SSN .9960.9943−.9972 .9919.9889−.9940 .9860.9794−.9920 .9813.9740−.9902 .9706.9626−.9834
§

Dice LV

Plain U-net .963.932−.981 .945.895−.969 .902.762−.963 .861.697−.955 .648.402−.838
§

BBB .964.934−.982 .946.886−.970 .856.644−.960 .778.541−.944 .530.210−.754
§

MCD-0.5 .963.933−.981 .949.900−.971 .916.739−.967 .862.654−.961 .626.358−.809
§

MCD-0.1 .964.934−.982 .948.898−.970 .907.742−.965 .853.658−.958 .615.343−.816
§

Ensemble .965.936−.983 .952.910−.972 .933.799−.969 .892.722−.967 .672.442−.859

SSN .963.929−.981 .944.876−.969 .867.670−.961 .805.598−.946 .568.295−.780
§

ASSD LV

Plain U-net 0.770.47−1.15 1.110.79−1.60 1.580.90−3.53 2.251.04−5.10 6.812.63−14.20
§

BBB 0.760.45−1.14 1.110.78−1.70 2.200.95−5.68 3.651.18−8.26 9.844.27−21.04
§

MCD-0.5 0.780.47−1.16 1.050.76−1.51 1.380.81−3.70 2.100.92−5.72 7.502.99−12.36
§

MCD-0.1 0.760.46−1.15 1.080.77−1.56 1.510.86−3.83 2.351.00−5.76 7.733.15−16.29
§

Ensemble 0.740.43−1.12 1.020.72−1.46 1.210.75−2.91 1.660.82−4.62 6.361.89−11.22

SSN 0.780.47−1.17 1.110.80−1.72 2.040.93−5.19 3.121.15−7.22 8.783.96−19.33
§

* statistically different compared to BBB (Wilcoxon signed-rank test, p < 0.05).
† statistically different compared to SSN (Wilcoxon signed-rank test, p < 0.05).
§ statistically different compared to Ensemble (Wilcoxon signed-rank test, p < 0.05).
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TABLE S2
PROBABILITY CALIBRATION ON IMAGES WITH INCREASING NOISE, BLURRING, OR STRETCHING DISTORTIONS. FORMAT:

MEDIAN25-75TH PERCENTILE

Degree of Distortion

0 1 2 3 4

N
oi

se

NLL (×10−2)

Plain U-net 0.940.66−1.32 8.532.68−19.45 20.377.63−38.49 32.6413.47−54.87 47.8519.72−73.98
∗

BBB 0.950.67−1.31 1.731.10−2.70 2.351.33−4.08 3.541.79−6.58 8.523.81−15.41

MCD-0.5 0.970.69−1.35 6.162.70−12.12 11.134.86−20.18 17.157.76−29.21 29.9113.40−45.40
∗

MCD-0.1 0.940.67−1.32 4.901.94−11.47 12.674.72−23.80 22.009.79−37.35 38.1616.56−59.05
∗

Ensemble 0.920.65−1.28 3.541.66−7.51 7.402.98−15.80 13.875.29−29.21 32.5912.42−55.13
∗

SSN 0.970.69−1.39 6.712.74−15.81 16.305.63−32.33 28.4911.37−48.30 46.8020.20−71.57
∗

Brier Score (×10−3)

Plain U-net 1.430.99−2.01 6.642.92−12.52 11.385.03−18.82 14.976.60−22.88 17.527.27−26.58
∗

BBB 1.431.00−2.00 2.551.62−4.00 3.441.94−5.93 5.042.51−9.03 10.454.72−16.48

MCD-0.5 1.471.02−2.06 7.533.42−13.17 11.285.11−17.95 14.386.43−21.71 17.137.24−25.99
∗

MCD-0.1 1.430.99−2.01 5.772.57−10.48 9.914.62−16.20 13.466.28−21.03 17.147.24−26.03
∗

Ensemble 1.400.96−1.96 4.992.30−10.45 9.573.83−17.19 13.905.78−21.92 17.377.26−26.34
∗

SSN 1.461.02−2.10 7.303.35−12.74 11.585.16−18.69 14.896.66−22.89 17.387.26−26.61
∗

G
au

ss
ia

n
B

lu
r NLL (×10−2)

Plain U-net 0.940.66−1.32 2.261.54−3.46 4.772.60−8.96 12.305.18−22.95 24.519.26−41.24
†

BBB 0.950.67−1.31 1.961.41−2.73 3.472.21−5.28 8.224.38−13.31 17.928.53−28.82
†

MCD-0.5 0.970.69−1.35 2.711.76−3.99 5.592.89−9.69 12.595.22−22.19 21.428.84−35.15
†

MCD-0.1 0.940.67−1.32 2.101.47−3.17 4.112.39−7.36 11.284.96−19.86 23.539.88−37.88
†

Ensemble 0.920.65−1.28 1.991.41−2.79 3.372.17−5.03 6.723.87−10.38 13.366.71−21.80
¶

SSN 0.970.70−1.39 2.281.53−3.45 3.932.14−6.49 7.123.19−13.22 12.944.85−25.22

Brier Score (×10−3)

Plain U-net 1.430.99−2.01 3.272.19−4.85 5.993.32−9.63 11.435.18−17.25 15.816.77−23.88
†

BBB 1.431.00−2.00 2.862.01−4.02 4.993.02−7.78 10.595.08−16.29 15.736.93−24.06
†

MCD-0.5 1.471.02−2.06 3.922.46−5.98 7.983.72−13.57 13.965.62−21.96 16.857.11−26.23
†

MCD-0.1 1.430.99−2.01 3.072.08−4.63 5.663.17−9.59 11.975.26−18.55 16.507.04−25.56
†

Ensemble 1.400.96−1.96 2.881.99−4.12 4.852.95−7.55 9.804.85−14.91 15.206.65−22.65
†

SSN 1.461.03−2.11 3.382.19−5.15 5.732.96−9.23 9.474.00−15.24 13.325.39−21.28

St
re

tc
h

NLL (×10−2)

Plain U-net 0.940.66−1.32 1.961.47−2.66 3.341.95−5.73 4.882.37−8.67 13.356.05−19.84
§

BBB 0.950.67−1.31 2.031.53−2.72 3.742.19−5.97 5.372.82−8.83 12.426.07−18.46
§

MCD-0.5 0.970.69−1.35 1.891.42−2.53 2.901.90−4.72 4.012.35−6.91 9.975.07−14.89
§

MCD-0.1 0.940.67−1.32 1.941.45−2.58 3.091.92−5.02 4.402.38−7.53 11.385.57−16.73
§

Ensemble 0.920.65−1.28 1.841.39−2.40 2.731.76−4.11 3.652.09−5.79 8.664.32−12.76

SSN 0.970.69−1.39 2.051.52−2.78 3.662.10−5.58 5.202.65−8.06 12.936.76−18.13
§

Brier Score (×10−3)

Plain U-net 1.430.99−2.01 2.862.17−3.76 4.482.75−6.92 6.103.26−9.35 11.586.20−15.56
§

BBB 1.431.00−2.00 2.962.23−3.97 5.413.09−8.38 7.583.90−11.45 13.127.03−17.91
§

MCD-0.5 1.471.02−2.06 2.772.10−3.69 4.132.70−6.59 5.623.29−9.01 11.246.25−15.14
§

MCD-0.1 1.430.99−2.01 2.822.15−3.71 4.342.74−6.71 5.973.31−9.18 11.526.40−15.33
§

Ensemble 1.400.96−1.96 2.702.05−3.50 3.902.52−6.08 5.262.94−8.34 10.675.49−14.49

SSN 1.461.02−2.10 2.972.21−4.02 5.092.97−7.44 6.893.66−9.73 12.116.92−15.61
§

* statistically different compared to BBB (Wilcoxon signed-rank test, p < 0.05).
† statistically different compared to SSN (Wilcoxon signed-rank test, p < 0.05).
¶ not statistically different compared to SSN (Wilcoxon signed-rank test, p > 0.05).
§ statistically different compared to Ensemble (Wilcoxon signed-rank test, p < 0.05).
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TABLE S3
PREDICTIVE UNCERTAINTY MEASURES ON IMAGES WITH INCREASING NOISE, BLURRING, OR STRETCHING DISTORTIONS. FOR EACH

ROW, THE BOLDED ITEM INDICATES THE DEGREE OF DISTORTION WITH THE HIGHEST UNCERTAINTY. FORMAT: MEDIAN25-75TH PERCENTILE

Degree of Distortion

0 1 2 3 4

N
oi

se

Pred Entropy (×10−2)

Plain U-net 1.030.76−1.32 1.100.29−1.72 0.470.10−1.32 0.130.04−0.60 0.020.01−0.05

BBB 1.110.82−1.43 1.660.99−2.34 1.850.93−2.67 1.950.72−2.91 1.230.33−2.65

MCD-0.5 1.100.82−1.43 2.131.12−3.09 1.650.90−2.77 1.110.69−1.96 0.510.35−0.75

MCD-0.1 1.060.79−1.36 1.500.49−2.18 1.000.22−1.95 0.400.11−1.31 0.080.05−0.22

Ensemble 1.050.78−1.35 1.740.42−3.05 0.880.16−2.79 0.220.05−1.35 0.030.01−0.07

SSN 1.130.87−1.52 1.660.71−2.70 0.970.41−2.04 0.480.21−1.04 0.080.02−0.22

MI (×10−3)

BBB 0.320.24−0.43 1.260.65−2.46 2.190.91−4.79 3.541.12−7.38 3.850.75−9.38

MCD-0.5 0.160.11−0.29 4.322.18−6.96 4.102.02−7.16 2.821.56−5.75 1.230.79−2.00

MCD-0.1 0.090.06−0.13 1.680.44−3.54 1.650.26−3.83 0.740.14−2.92 0.130.06−0.51

Ensemble 0.220.16−0.34 5.421.06−14.00 3.610.47−14.15 0.820.14−7.07 0.070.03−0.24

SSN 2.902.11−5.22 8.953.91−14.29 5.492.23−11.45 2.631.08−5.99 0.380.09−1.17

DiceWS LV

BBB .990.984−.994 .976.920−.990 .948.804−.984 .876.699−.972 .820.656−.980

MCD-0.5 .994.990−.997 .856.714−.964 .835.689−.956 .892.723−.976 .984.936−.996

MCD-0.1 .995.992−.997 .931.836−.990 .920.813−.996 .968.838−1.00 1.00.988−1.00

Ensemble .993.987−.996 .862.672−.987 .885.670−1.00 1.00.800−1.00 1.001.00−1.00

SSN .971.935−.984 .798.678−.902 .842.701−.942 .920.805−.980 .990.962−.998

ASSDWS LV

BBB 0.210.17−0.27 0.450.25−1.07 0.860.32−2.65 1.900.47−4.67 2.960.17−6.60

MCD-0.5 0.120.08−0.16 2.510.62−5.04 2.940.57−5.92 1.860.23−5.40 0.170.00−1.07

MCD-0.1 0.100.07−0.14 1.020.17−2.34 1.160.00−2.75 0.410.00−2.33 0.000.00−0.10

Ensemble 0.160.11−0.22 3.340.26−7.43 2.480.00−8.84 0.000.00−4.48 0.000.00−0.00

SSN 0.550.41−0.85 4.151.80−7.28 3.441.16−6.77 1.590.55−4.36 0.210.01−0.79

G
au

ss
ia

n
B

lu
r

Pred Entropy (×10−2)

Plain U-net 1.030.76−1.32 2.011.27−2.58 1.980.94−2.82 1.340.33−2.29 0.440.16−1.11

BBB 1.110.82−1.43 2.281.43−3.02 2.471.22−3.69 1.710.47−3.07 0.520.16−1.36

MCD-0.5 1.100.82−1.43 2.521.44−3.62 2.130.84−3.58 1.040.33−2.16 0.330.20−0.65

MCD-0.1 1.060.79−1.37 2.091.35−2.69 2.110.99−3.12 1.290.30−2.40 0.300.13−0.75

Ensemble 1.050.78−1.35 2.311.42−3.11 2.551.17−3.99 1.900.44−3.75 0.670.21−1.87

SSN 1.130.87−1.53 2.441.67−3.23 2.501.57−3.52 2.141.13−3.28 1.430.73−2.32

MI (×10−3)

BBB 0.320.24−0.43 1.640.83−2.90 3.631.39−6.82 3.711.07−8.27 1.550.36−4.11

MCD-0.5 0.160.11−0.29 3.101.34−5.50 4.031.20−8.87 2.390.57−5.93 0.640.33−1.64

MCD-0.1 0.090.06−0.13 0.810.37−1.66 1.430.51−2.89 1.090.26−2.68 0.280.09−0.81

Ensemble 0.220.16−0.34 2.551.09−5.37 5.461.62−11.59 5.130.92−14.59 2.010.41−7.38

SSN 2.902.10−5.21 9.746.29−15.59 11.897.25−17.71 10.905.85−17.76 7.923.84−12.95

DiceWS LV

BBB .990.984−.994 .979.958−.986 .944.840−.974 .816.688−.988 .9640.804−1.00

MCD-0.5 .994.990−.997 .972.891−.986 .878.708−.980 .911.732−1.00 1.000.972−1.00

MCD-0.1 .995.992−.997 .988.968−.993 .976.898−.990 .921.788−1.00 1.000.956−1.00

Ensemble .993.987−.996 .977.928−.987 .945.822−.979 .829.610−1.00 .9000.700−1.00

SSN .971.936−.984 .921.768−.952 .855.736−.909 .765.635−.876 .772.604−.938

ASSDWS LV

BBB 0.210.17−0.27 0.400.31−0.73 1.060.44−3.03 3.400.19−6.34 0.710.00−4.36

MCD-0.5 0.120.08−0.16 0.540.26−1.99 2.350.28−6.10 1.790.00−5.77 0.000.00−0.62

MCD-0.1 0.100.07−0.14 0.220.16−0.47 0.430.19−1.45 1.100.00−2.99 0.000.00−0.62

Ensemble 0.160.11−0.22 0.430.30−0.90 0.920.40−4.67 3.790.00−9.50 0.780.00−6.59

SSN 0.560.41−0.86 1.250.96−4.28 2.841.59−6.02 4.982.39−8.40 4.901.53−8.23

St
re

tc
h

Pred Entropy (×10−2)

Plain U-net 1.030.76−1.32 1.681.30−2.04 1.871.04−2.30 1.950.95−2.46 1.300.60−2.11

BBB 1.110.82−1.43 1.981.51−2.44 2.391.21−3.06 2.381.08−3.26 1.460.70−2.39

MCD-0.5 1.100.82−1.43 1.761.40−2.25 2.191.30−2.82 2.391.19−3.16 1.720.77−2.91

MCD-0.1 1.060.79−1.37 1.701.34−2.10 2.011.14−2.55 2.141.05−2.80 1.500.65−2.49

Ensemble 1.050.78−1.35 1.801.40−2.24 2.171.25−2.86 2.331.15−3.18 1.710.75−2.95

SSN 1.130.87−1.52 2.001.59−2.52 2.381.53−2.95 2.471.45−3.14 1.700.91−2.66

MI (×10−3)

BBB 0.320.24−0.43 1.030.60−1.81 2.481.02−4.88 2.921.10−5.68 2.250.80−4.71

MCD-0.5 0.160.11−0.29 0.870.42−1.76 2.571.02−5.18 3.491.35−6.94 3.641.14−7.55

MCD-0.1 0.090.06−0.13 0.360.19−0.72 1.100.40−2.21 1.440.50−2.85 1.440.43−3.20

Ensemble 0.230.16−0.34 0.910.50−1.67 2.501.01−5.22 3.261.24−6.78 3.621.19−7.93

SSN 2.892.11−5.23 6.874.54−10.97 9.936.70−13.08 10.727.12−14.13 8.534.84−12.87

DiceWS LV

BBB .990.984−.994 .983.956−.993 .937.834−.982 .922.802−.970 .865.696−.950

MCD-0.5 .994.990−.997 .989.965−.996 .951.864−.991 .928.838−.980 .870.724−.937

MCD-0.1 .995.992−.997 .992.979−.997 .971.919−.995 .960.895−.989 .918.814−.968

Ensemble .993.987−.996 .987.968−.995 .960.900−.993 .947.877−.990 .899.737−.958

SSN .971.936−.984 .930.803−.974 .828.688−.925 .808.677−.909 .741.619−.851

ASSDWS LV

BBB 0.210.17−0.27 0.330.19−0.63 0.930.34−2.12 1.180.47−2.53 1.800.68−3.36

MCD-0.5 0.120.08−0.16 0.200.10−0.50 0.740.18−1.81 1.120.33−2.21 2.000.90−3.34

MCD-0.1 0.100.07−0.14 0.160.09−0.31 0.450.13−1.03 0.640.19−1.30 1.110.47−1.95

Ensemble 0.160.11−0.22 0.280.16−0.48 0.620.20−1.37 0.810.25−1.84 1.580.56−3.92

SSN 0.560.41−0.85 1.090.55−3.31 2.931.16−6.01 3.281.47−6.33 4.452.44−7.02
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TABLE S4
SEGMENTATION ACCURACY AND PROBABILITY CALIBRATION METRICS ON THE ACDC AND UKBB DATASETS USING MODELS TRAINED WITH UKBB

DATASET. FORMAT: MEDIAN25-75TH PERCENTILE

Pixelwise Accuracy ↑ Dice ↑ ASSD (mm) ↓ NLL ↓ BS ↓

LV Myo RV LV Myo RV (×10−2) (×10−3)

UKBB → UKBB
Plain U-net .9960.9944−.9973 .963.932−.981 .899.847−.929 .929.850−.964 0.770.46−1.15 0.820.58−1.12 1.120.74−1.79 0.940.66−1.32 1.430.99−2.01

BBB .9960.9944−.9973 .964.934−.982 .899.849−.930 .931.853−.966 0.760.45−1.14 0.820.57−1.12 1.100.72−1.76 0.950.67−1.31 1.431.00−2.00

MCD-0.1 .9960.9944−.9973 .964.934−.982 .899.847−.930 .931.850−.965 0.770.46−1.15 0.820.58−1.12 1.110.73−1.77 0.940.67−1.31 1.430.99−2.01

MCD-0.5 .9959.9942−.9972 .963.933−.981 .896.845−.927 .929.847−.964 0.780.47−1.16 0.840.60−1.15 1.130.74−1.82 0.970.69−1.35 1.471.02−2.06

Ensemble .9961.9945−.9974 .965.936−.983 .902.852−.933 .935.863−.967 0.740.43−1.13 0.800.55−1.10 1.070.69−1.71 0.920.65−1.28 1.400.97−1.96

SSN .9960.9943−.9973 .963.929−.981 .896.839−.928 .921.820−.961 0.780.47−1.17 0.840.59−1.16 1.190.79−2.02 0.970.69−1.39 1.461.02−2.10

UKBB → ACDC
Plain U-net .9880.9790−.9923 .927.781−.960 .833.728−.871 .870.600−.938 1.401.00−2.94 1.401.10−2.64 1.861.09−5.96 3.121.87−7.17 4.392.77−8.05

BBB .9888.9814−.9927 .938.856−.964 .843.769−.876 .884.615−.943 1.270.93−2.12 1.321.05−1.97 1.641.03−4.84 2.761.76−4.85 4.032.64−6.81

MCD-0.1 .9885.9803−.9927 .935.828−.962 .838.754−.873 .879.600−.943 1.330.95−2.36 1.361.07−2.21 1.691.05−5.27 2.871.78−5.42 4.152.67−7.22

MCD-0.5 .9876.9751−.9923 .930.808−.960 .819.669−.866 .862.508−.939 1.390.99−2.55 1.461.12−2.85 1.911.09−6.96 3.221.91−6.71 4.532.79−9.06

Ensemble .9892.9822−.9930 .941.859−.965 .847.773−.878 .907.716−.953 1.230.90−2.03 1.281.01−1.97 1.410.93−3.70 2.711.73−4.72 3.942.59−6.67

SSN .9882.9788−.9926 .934.807−.962 .837.736−.871 .860.533−.937 1.310.95−2.48 1.381.07−2.38 1.831.11−6.51 3.081.89−6.30 4.362.74−8.05

TABLE S5
P-VALUES FROM THE PAIRWISE WILCOXON SIGNED-RANK TEST COMPARING SEGMENTATION ACCURACY AND CALIBRATION OF

DIFFERENT MODELS TRAINED ON THE UKBB DATASET AND TESTED ON THE ACDC DATASET (NS = NOT SIGNIFICANT, P > 0.05).

Pixelwise Accuracy ↑ Dice ↑ ASSD (mm) ↓ NLL ↓ BS ↓
LV Myo RV LV Myo RV (×10−2) (×10−3)

UKBB → ACDC
Plain U-net vs BBB <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Plain U-net vs MCD-0.1 <0.0001 <0.0001 <0.0001 0.0027 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Plain U-net vs MCD-0.5 <0.0001 ns <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 ns <0.0001
Plain U-net vs Ensemble <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Plain U-net vs SSN ns <0.0001 0.0006 0.0006 <0.0001 <0.0001 ns 0.0002 ns
BBB vs MCD-0.1 <0.0001 <0.0001 <0.0001 0.0003 <0.0001 <0.0001 0.0002 <0.0001 <0.0001
BBB vs MCD-0.5 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
BBB vs Ensemble <0.0001 ns ns <0.0001 ns ns <0.0001 <0.0001 <0.0001
BBB vs SSN <0.0001 0.0074 <0.0001 <0.0001 0.0037 <0.0001 <0.0001 <0.0001 <0.0001
MCD-0.1 vs MCD-0.5 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MCD-0.1 vs Ensemble <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MCD-0.1 vs SSN <0.0001 ns ns <0.0001 ns ns <0.0001 <0.0001 <0.0001
MCD-0.5 vs Ensemble <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MCD-0.5 vs SSN <0.0001 <0.0001 <0.0001 0.0009 <0.0001 <0.0001 <0.0001 ns <0.0001
Ensemble vs SSN <0.0001 ns <0.0001 <0.0001 ns <0.0001 <0.0001 <0.0001 <0.0001

TABLE S6
PREDICTIVE UNCERTAINTY MEASURES ON THE ACDC AND UKBB DATASETS USING MODEL TRAINED WITH UKBB DATASET. FORMAT:

MEDIAN25-75TH PERCENTILE

Pred Entropy MI DiceWS ASSDWS

(×10−2) (×10−3) LV Myo RV LV Myo RV

UKBB → UKBB
Plain U-net 1.030.77−1.33 N/A N/A N/A N/A N/A N/A N/A
BBB 1.110.83−1.43 0.320.24−0.43 .990.984−.994 .974.964−.979 .982.964−.991 0.2140.167−0.273 0.2220.187−0.270 0.2860.200−0.432

MCD-0.1 1.060.79−1.37 0.090.06−0.13 .995.992−.997 .987.982−.989 .991.981−.996 0.0990.071−0.137 0.1110.088−0.142 0.1420.091−0.238

MCD-0.5 1.100.82−1.43 0.160.11−0.29 .994.990−.997 .985.979−.988 .988.970−.994 0.1160.083−0.162 0.1270.099−0.166 0.1880.117−0.372

Ensemble 1.060.79−1.36 0.220.16−0.34 .993.988−.996 .980.971−.985 .985.967−.993 0.1590.113−0.219 0.1700.134−0.222 0.2450.155−0.404

SSN 1.140.87−1.53 2.892.11−5.24 .971.936−.984 .935.895−.947 .914.794−.959 0.5540.408−0.851 0.5640.430−0.827 1.1130.725−2.826

UKBB → ACDC
Plain U-net 2.021.32−2.82 N/A N/A N/A N/A N/A N/A N/A
BBB 2.351.55−3.55 1.610.80−3.83 .985.964−.991 .961.923−.971 .960.840−.984 0.3270.230−0.646 0.3530.254−0.668 0.5670.281−1.741

MCD-0.1 2.151.42−3.18 0.790.32−2.60 .991.974−.995 .975.944−.983 .974.876−.991 0.2010.124−0.478 0.2310.146−0.514 0.3560.159−1.228

MCD-0.5 2.531.60−4.15 2.400.84−8.19 .983.925−.993 .956.868−.977 .940.755−.984 0.3500.161−1.473 0.3960.192−1.549 0.8450.269−2.986

Ensemble 2.301.50−3.63 2.080.86−6.94 .985.948−.992 .957.900−.971 .958.814−.986 0.3430.214−0.819 0.3900.242−0.938 0.5700.268−2.257

SSN 2.361.53−3.61 6.893.98−14.30 .961.878−.981 .917.830−.938 .876.731−.947 0.7800.513−1.791 0.7440.536−1.654 1.7740.811−3.671


