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Abstract

Objective: Exploit accelerometry data for an automatic, reliable, and prompt detection of spontaneous
circulation during cardiac arrest, as this is both vital for patient survival and practically challenging.
Methods: We developed a machine learning algorithm to automatically predict the circulatory state during
cardiopulmonary resuscitation from 4-second-long snippets of accelerometry and electrocardiogram (ECG)
data from pauses of chest compressions of real-world defibrillator records. The algorithm was trained based on
422 cases from the German Resuscitation Registry, for which ground truth labels were created by a manual
annotation of physicians. It uses a kernelized Support Vector Machine classifier based on 49 features, which
partially reflect the correlation between accelerometry and electrocardiogram data. Results: Evaluating 50
different test-training data splits, the proposed algorithm exhibits a balanced accuracy of 81.2%, a sensitivity
of 80.6%, and a specificity of 81.8%, whereas using only ECG leads to a balanced accuracy of 76.5%, a sensitivity
of 80.2%, and a specificity of 72.8%. Conclusion: The first method employing accelerometry for pulse/no-pulse
decision yields a significant increase in performance compared to single ECG-signal usage. Significance: This
shows that accelerometry provides relevant information for pulse/no-pulse decisions. In application, such an
algorithm may be used to simplify retrospective annotation for quality management and, moreover, to support
clinicians to assess circulatory state during cardiac arrest treatment.
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1 Introduction

Cardiac arrest is one of the leading causes of death
in the western world [1] with more than 400 000
resuscitation attempts by emergency medical services
(EMS) per year in Europe alone [1]. High-quality
cardiopulmonary resuscitation (CPR) - ensuring
minimal circulation - along with defibrillation is the
basic treatment EMS provide for patients with cardiac
arrest. The objective of the treatment is a restoration
of spontaneous circulation. However, recognizing
a return of spontaneous circulation (ROSC) during
brief rhythm checks is still a demanding task.
Currently, health-care providers check for mechanical
activity of the heart by manual palpation of central
pulses when the electrocardiogram (ECG) shows a
potential perfusing rhythm. Manual pulse palpation
has two big disadvantages: It often leads to
long interruptions of CPR [2] and is highly error-
prone [3]. Erroneous identification of spontaneous
circulation leads to inadequate treatment by delaying
chest compression and, consequently, decreases the
patient’s survival probability [4] due to prolonged no-
flow time. Physicians additionally employ endtidal
CO2-concentration levels and their trend as further
information to augment the assessment of the
circulatory state [5]. Hence, in the last two decades
various algorithms for organized ECG rhythms were
proposed to differentiate pulse generating perfusing
rhythms (PR) from pulseless electric activity (PEA).
These algorithms employ ECG [6, 7, 8], thoracic
impedance (TI) [9, 10], combinations of those [11,
12, 13], and additionally capnography (CO2) [14, 15]
or photoplethysmography [16] for classification, or
are based on Doppler ultrasound [17]. Some works
[15] subclassified PEA into pseudo-PEA, and true-
PEA, which differ in terms of cardiac output which
is insufficient for pseudo-PEA and lacking for true-
PEA, respectively. Even though, the performance of
this classifiers increased in recent years, the problem
of automatic PR/PEA classification is far from being
solved.
In cardiology, data from accelerometers placed on
the patient’s chest, called seismocardiography, are
investigated for many years (see e.g. [18] and
references therein) on healthy persons as well as on
patients with cardiovascular diseases allowing non-
invasive and continuous measurements. Due to the
more controllable setting, seismocardiography is used
to determine not only the circulatory state, but
detailed heart rates and cardiac time intervals. We
use the term ”seismocardiography” to describe these
detailed measurements throughout this paper.

Although accelerometers are placed on the patient’s
chest as feedback devices for the EMS delivering chest
compressions during CPR, these accelerometry data
were only recently investigated on their capability to
provide complimentary information about the patient’s
circulatory state. A proof of concept of this idea was
provided in porcine models [19] and with smartphone-
accelerometry in humans [20], where the latter one

focused only on the discrimination of the signals by
blinded observers, whereas [19] proposed a classifier
based only on a single feature. Since we are interested
only in pure detection of any mechanical cardiac
movement without further investigation, we use the
term ”accelerometry” (ACC) for this process.
This study proposes a comprehensive machine-learning
algorithm employing both real-world ECG and ACC
signals to predict the circulatory state during cardiac
arrest, thereby proving the usefulness of accelerometers
for circulatory state classification and potentially
supporting clinicians in decision making in the field.

2 Methods

2.1 Data collection and labeling

This study was approved by the ethics committee
of the University of Kiel (Ref. no.: D 421/21)
and the scientific advisory board of the German
Resuscitation Registry (Ref. no.: AZ 2021-03).
A sample of 871 cases with defibrillator records,
all ZOLL X-Series (ZOLL Medical Corporation,
Chelmsford, Massachusetts, United States), from the
years 2013 to 2021 was obtained from the German
Resuscitation Registry. All recordings were annotated
retrospectively by an experienced physician (SO),
utilizing an interactive, web-based plotting tool that we
developed for a previous study using jupyter notebooks
[21]. Cases recorded in the year 2020 were annotated
independently by two experienced physicians, and
dissenting annotations were resolved in consensus. The
annotation consists of the determination of the start
and the end of the resuscitation episode, including all
ROSCs and rearrests which occurred in this interval
[22]. The physicians used ECG, ACC and, if available,
capnography and non-invasive blood pressure for
the labeling. Ambiguous situations were annotated
assuming the treating physician followed the guidelines
faultlessly. Nevertheless, obtuse intervals could be
excluded from the subsequent analysis by a respective
label from the annotators. These annotations form the
ground truth in our data set.
After resampling ECG and ACC to fs = 250 Hz
for all cases, only the parts of the recordings with
simultaneously given ACC, ECG, and capnography
signals were used further. We require the presence
of capnography data since these provide at least
some hemodynamic information for the retrospective
annotation process. Furthermore, the signal after
the last recorded period of chest compressions was
excluded since it contains either mainly the patient’s
transport to the hospital with potentially large
artifacts or a low amplitude signal in ECG and
ACC after death pronouncement, where circulation
classification is clinically irrelevant. For the remaining
signal parts, the algorithm described in [23, 24]
was used to determine the periods where no chest
compressions are present. From these periods, we
extracted snippets with a length of 4 seconds, each
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one containing ACC and ECG signals and a label
(’Cardiac Arrest’ (AR) or ’Spontaneous Circulation’
(SC)). The snippets are extracted in an overlapping
way, cutting a 4-s-snippet every 2 seconds. These
snippets form the database of our algorithm. We used
the trained algorithm of [25] to determine the rhythm
of each snippet (either Asystole (ASY), Ventricular
Fibrillation (VF), Ventricular Tachycardia (VT), PEA
or PR). Since both PEA and PR exhibit an organized
looking rhythm differing only in cardiac output, we
merge these to ryththm classes to one Organized
Rhythm (ORG) class for most of our analysis.

2.2 Preprocessing

We denote the ACC and ECG signals of a snippet with
N sample points as a = (an)n and e = (en)n, where the
indices n are such that −N/2 ≤ n < N/2 respectively.

We use d to denote the mean d = (1/N)
∑N/2−1

n=−N/2 dn
of some signal d.
For all snippets we shift a and e so that they exhibit
a = e = 0. To improve data quality we aim to discard
snippets containing e.g. shocks, baseline changes in
the ACC signal and movement and transport artifacts
by imposing the following constraints in a prefiltering
step: Constraining max |an| < 20, max |en| < 2.5 mV
removes data with high amplitude noise, whereas
max(|an|)/|an| < 25 and max(|en|)/|en| < 35 allow
to identify and omit snippets with a sharply peaked
artifacts.

2.3 Feature extraction

We extract several features from the ECG-signal e and
acceleration signal a to use them as an input for the
machine learning classifier, which were partly taken
from the literature and partly developed by ourselves.
The latter ones are introduced subsequently. We use

the root mean square v1 =

√
a2
n and v2 =

√
e2
n as

features. To characterize the rhythmicity we employ
the autocorrelation zd of a real-valued signal d

zd(k) =

∑N/2−1
n=−N/2 dndn+k∑N/2−1

n=−N/2 d
2
n

,−N/2 ≤ k < N/2, (1)

where we zero-pad (dn)n outside the defined range
−N/2 ≤ n < N/2. As usual zd(0) = 1 holds,
which we call the trivial maximum. We search for the
largest nontrivial local maximum zd(ñd), ñd 6= 0. Its
value zd(ñd) describes the rhythmicity of the signal,
whereas ñd/fs gives the time shift inducing highest
self-similarity. We use the v3 = za(ña) and v4 = ze(ñe)
as further input features. In order to describe the
interdependence of a and e we use three different
approaches:

1) We compute the Fourier Transform of a and e
and take the absolute values of the coefficients in the
frequency band between 1 Hz and 20 Hz: (sa)mi=1 and
(se)

m
i=1. Then we take the correlation of these two

15

10

5

0

5

10

AC
C 

(A
rb

itr
ar

y 
Un

its
) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0Time (s)
1.5

1.0

0.5

0.0

0.5

1.0

EC
G 

(m
V)

ACC
ECG

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0Frequency (Hz)
0.0

0.2

0.4

0.6

No
rm

al
ize

d 
Ab

so
lu

te
 

 V
al

ue
 o

f F
ou

rie
r C

oe
ffi

cie
nt

FFT(ACC)
FFT(ECG)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time Shift (s)

0.5

0.0

0.5

1.0

No
rm

al
ize

d 
 A

ut
oc

or
re

la
tio

n ACC
ECG
ACC Autocorrelation @ Max ECG

Figure 1: Exemplary Snippet. ACC (blue) and ECG
(green) signals are shown in the first subplot, their
spectra in the second subplot. The autocorrelation
is shown in the lowermost subplot. Even though one
can see apparent acceleration excitation at the time
of the QRS-complexes in ECG, the spectra exhibit
different harmonics, leading to a small v5 = 0.0595.
In contrast, the features based on the autocorrelation
yield v6 = 0.631 and v7 = −2920 at the pronounced
maximum at 0.55 s time shift.

vectors as a feature

v5 =

m∑
i=1

sai
sei/

√√√√ m∑
i=1

s2
ai

m∑
i=1

s2
ei . (2)

With this feature we aim to identify similar
frequencies in both signals. However, as can be seen in
Fig. 1, there are situations where different harmonics
contribute to ECG and ACC spectra, leading to small
values of v5 even in case of clearly visible acceleration
excitations following the QRS-complexes. Thus, this
feature is insufficient to describe the interdependence.
2) We employ the autocorrelation of the two signals
(as shown in Fig. 1) to characterize the dependency
of both signals further. We determine the shift
ñe at which the nontrivial maximum of the ECG
autocorrelation occurs and evaluate v6 := za(ñe). If
the acceleration signal is influenced by the apex beat
against the chest wall, we will observe simultaneous,
rhythmic responses of the acceleration signal to
this excitation represented by the QRS-complexes
which correspond the electrical depolarization of the
ventricles, ideally leading to a mechanical contraction
with ejection of blood formatting a pulse wave. Thus za
should exhibit a maximum at this shift if mechanical
coupling is present, whereas we assume uncorrelated
signals and therefore vanishing autocorrelation else.
Furthermore, we also use the second derivative
z′′a (n), approximated with finite stepsize 1/fs, to
check the curvature of za at ñe. In case of
mechanical coupling the curvature of za at the expected
maximum ñe the should be negative. We use
v7 = z′′a := 1

5

∑2
i=−2 z

′′
a (n)|n=ñe+i to include also

neighboring curvature values. The highly generic
properties of these features and their independence
from any hyperparameters makes them very stable in
application.
3) In case of arrhythmic ECG rhythms (e.g. atrial
fibrillation, ventricular extrasystole), the methods
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relying on the autocorrelation fail, since there is no
unique shift, for which the whole snippet is highly
self-similar, even though characteristic acceleration
patterns can still be associated to QRS-complexes (see
Fig. 2). To address this problem, we localize the
QRS complexes similarly to the calculation of nP as
described in [26] by detecting their steep slopes: After
applying a broad 4-th order Butterworth bandpass
filter with limiting frequencies 0.5 and 30 Hz to en, we
take the a 0.1-second-rolling-mean of the square of first

difference (e
(filt)
n+1 − e

(filt)
n )2

0.1
, normalize it by dividing

it through its maximum and find the local maxima
which exceed 0.33. The resulting candidates are further
filtered by requiring different QRS-complexes to differ
by at least 0.2 s and taking the largest maximum for
local maxima closer than 0.2 s to each other as position
of the QRS complex. Afterward, we cut potentially
overlapping 0.48 s-windows centered around the QRS-
complexes from the ACC signal and compute a list
of correlation values between each window with each
other. If characteristic acceleration patterns can be
linked to the QRS-complexes, the correlation between
these windows should be large, whereas we expect them
to be small else. Taking the 75-th percentile of this
list gives us a correlation feature v8 for arrhythmic
rhythms. Employing the 75-th percentile instead of
the mean balances well between correlation values that
are high by coincidence and not taking windows with
artifacts in the acceleration signal into account. These
windowed correlation is identically computed for the
ECG signal which yields v9 and the ratio between the
two correlations v10 = v8/v9 is used as a feature too. In
the case of ECG signals with no QRS-complexes, the
algorithm still finds peaks with steep slopes and uses
them for further processing. Since physiologically no
accelerations by the apex beat should be detectable
for these rhythms, the acceleration signals of the
windows around those peaks should be uncorrelated
to each other regardless of what peak the algorithm
has detected.

For the ACC signal we further use features similar
to the ones proposed in [27]. We compute the ensemble
average for all windowed ACC signals from above
and take its root-mean-square, kurtosis, skewness,
median, peak-to-peak-amplitude and peak-to-peak to
root-mean-square ratio as time-domain features, as
well as its band power in the following frequency bands
(0-3Hz, 3-6Hz, 6-9Hz, 9-12Hz, 12-15Hz, 15-18Hz) and
mean, standard deviation, kurtosis, skewness of the
spectrogram, its maximum, the frequency, where the
maximum appears and the spectral entropy of the 4-
second ACC-signal [28] as frequency domain features
(v11, . . . v29).

For the ECG we further use the features
(v30, . . . v35) = (PLEA, Lmin, bS , nP , Pfib, Ph) which
were computed following [26] as well as the meanRR,
VarRR, MeanPP, StdPP, the mean and standard
deviation of the QRS-width, SlopeQRS, MSnorm,
StdSnorm from [15] and mean, and standard deviation
of the absolute of the first difference of the signal,
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Figure 2: Exemplary Snippet. ACC (blue) and ECG
(green) signals are shown in the first subplot, their
autocorrelation in the second subplot. Even though
one can see clear ACC excitations at the time of the
QRS-complexes in ECG, the autocorrelation maxima
remain small due to arrhythmia: v6 = 0.004 and
v7 = 214. Windows of fixed size localized around QRS-
complexes are shown alternatingly in different pale
shades of blue. The ACC and ECG signals during these
windows are superimposed in the lowermost subplots,
which reveal the high similarity. The features based
on the correlation of the windowed signals yield v8 =
0.770, v9 = 0.917 and v10 = 0.840. Furthermore, the
two extrasystoles are marked with a black arrow in
the uppermost subplot and their windowed signals are
shown with a different color in the overlaps below. The
different acceleration patterns are clearly visible.

kurtosis of the square of the first difference , AMSA

and HfP (following [6]) which are (v36, . . . v49). As
proposed in the literature, we applied a broad 4-
th order Butterworth bandpassfilter (0.8-30) Hz to
the ECG-signal before feature extraction. These 49
features and the label can be represented as (x, y) ∈
R49 × {−1, 1}, where y = +1 is related to SC and
y = −1 with its absence. We refer to v1, v3, v5 − v8

and v10−v29 as ’ACC-features’, and call the remaining
features ’ECG-features’. Note that ECG-features use
solely ECG data, whereas ACC-features employ ACC
data or a combination of ACC and ECG.

2.4 Learning/Training

The total data set (x, y) was randomly split into a
training set (xtrain, ytrain) and a test set (xtest, ytest).
The split was performed patient-wise so that all
snippets from one patient belong entirely either to
the training set or to the test set. The set sizes
follow a roughly ratio of 3 : 1, depending of the
number of snippets per case in training and test
set. The training data were shifted to median 0
and scaled to interquartile range (IQR) 1, and the
same transformation was applied to the test set. The
training set was used to train a Gaussian kernel
(rbf) Support Vector Machine (SVM) classification
model with l2-regularization using the package SciKit-
Learn [29] which employs LIBSVM package [30]. The
optimal hyperparameters (kernel parameter γ and
regularization C) were chosen to maximize balanced
accuracy on the following grid during 20-fold cross-
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validation: γ ∈ {10k|k ∈ −5 + n
4 , n = 0, . . . , 14}

and C ∈ {10k|k ∈ −3 + n
3 , n = 0, . . . , 15}. The

performance of the model was assessed using balanced
accuracy, sensitivity, specificity, Mathew’s correlation
coefficient (MCC), F1-score of the ’SC’-class and the
Area under the receiver-operator-characteristic-curve
(AUC) on the test set.
Since the results on the test set vary significantly
depending on the chosen data-split the procedure
above of splitting the data, training the algorithm in
the training set (with cross-validation), and evaluating
on the test set was repeated 50 times and evaluated by
reporting mean and 95%-confidence interval (CI) of the
distribution of performance measures for the different
data splits.
We trained models using only ECG-features too, to
compare with our proposed classifier and other existing
ones.
The code for the classifier and the scaler using all
features together with 5 exemplary cases from the test
set is made publicly available in [31].

3 Results

3.1 Data base

From the total sample of 871 cases, 55 recordings
were excluded from further analysis since the files
were corrupted, for 92 cases no conclusive annotation
was feasible or the annotation did not agree with the
registry entries regarding the occurrence of at least
one ROSC, and in 158 cases no simultaneous ECG,
ACC, and capnography signals were available. 127 of
the remaining cases lack interruptions in CPR with
appropriate length or lack signal overlap before the
end of the last chest compression period. So a total
of 439 cases were included, yielding 34903 snippets.
During prefiltering as described in 2.2, 9579 (189
ASY, 626 VF, 1561 VT, 7203 ORG) snippets got
omitted, so that the final data base consists of 25324
Snippets from 422 cases. These cases cover 250.3
h of defibrillator recordings and 173.6 h of cardiac
arrest. Chest compressions were interrupted 7528
times covering 133.6 h with a median (IQR) length
of 5.35 (2.80, 14.3)s. 6099 of those interuptions were
pauses without spontaneous circulation covering 14.3
h, their median (IQR) length was 4.52 (2.43, 10.2) s.
The 1429 interruptions with spontaneous circulation
present covered a period of 119.3 h in total, their
median (IQR) length was 96.6 (11.6, 418) s. Further
information about the data set can be found in Table
1 and an Utstein-style data sheet is provided in the
supplemental material.

3.2 Performance

On 50 different data splits the classifier exhibits
a balanced accuracy of 0.812 (0.749, 0.875), a
sensitivity of 0.806 (0.68, 0.932), a specificity of
0.818 (0.735, 0.901) and a MCC of 0.614 (0.479, 0.748).
The performance using only ECG features, and the

Table 1: Overview over total data set. Number of
snippets per circulatory state and ECG rhythm.

Total number of Cases 422
Cases with ROSC 199
Snippets 25324
Circulatory state
Spontaneous circulation (SC) 14993
Cardiac Arrest (AR) 10331
Rhythm
Asystole (ASY) 945
Ventricular Fibrillation (VF) 1953
Ventricular Tachycardia (VT) 1834
Organized Rhythm (ORG) 20592

Balanced 
Accuracy

Sensitivity Specifictiy MCC F1(SC)-
Score

Area under 
ROC-Curve

0.4
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0.7

0.8

0.9
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rm
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All Features
ECG Features

Figure 3: Performance of models using all features
or only ECG features evaluated for different data
splittings.

mean (95%-CI) gain in performance per data split
are given in Table 2. The distribution of different
performance measures on the data splits are given in
Fig. 3. While sensitivity does not change significantly
by adding accelerometer data, specifictiy increases by
around 9%. Thus, snippets which would have been
classified as ’SC’ by ECG only are now correctly
classified as ’AR’.

Mean and 95%-CI of the receiver-operator-
characteristic (ROC)-curve are shown in Fig. 4.

We further aim to compare our algorithm directly
to the rhythm classifier by Rad et al [25]. This
can be achieved by summarizing the rhythms ASY,
PEA and VF to our AR-class whereas PR belongs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1 - Specifictiy
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Figure 4: Mean and 95%-confidence interval of the
ROC-curve for both models with all features and ECG
features only respectively.
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Table 2: Mean (95%-confidence interval) values of performance and performance gain per data split when adding
ACC-features.

Performance All Features ECG Features Performance gain
Balanced Accuracy 0.812 0.765 0.047

(0.749, 0.875) (0.705, 0.826) (−0.006, 0.0998)
Sensitivity 0.806 0.802 0.004

(0.68, 0.932) (0.661, 0.944) (−0.117, 0.125)
Specificity 0.818 0.728 0.090

(0.735, 0.901) (0.632, 0.824) (0.022, 0.157)
MCC 0.614 0.528 0.085

(0.479, 0.748) (0.394, 0.663) (−0.027, 0.197)
F1 0.835 0.806 0.028

(0.758, 0.911) (0.72, 0.893) (−0.043, 0.100)
Area under Receiver- 0.896 0.846 0.050

operator-characteristic (0.843, 0.948) (0.782, 0.911) (0.003, 0.096)
curve (AUC)

to our SC-class. For VT rhythms, one can not
decide without further knowledge, whether this rhythm
generates pulse. Thus, we omit VT rhythms in the
test sets, and evaluate on the remaining test sets. The
results, shown in Table 3, exhibit similar balanced
accuracy for our ECG-feature-employing algorithm
and the algorithm by Rad et al [25]. The larger
deviations in sensitivity and specificity might be caused
by a different proportion of ’SC’ and ’AR’-snippets in
the training set of the algorithm by [25], leading to a
different best operating point on the ROC-curve.

Moreover, we are interested in the performance of
our algorithm on organized rhythms, since for these
the circulatory state can not inferred easily by ECG
only, and this case is also widely discussed on the
literature (e.g. [15]). The results are shown in Table 4.
Compared to the performance on the entire data set,
specificity drops about 4.6% when using all features,
but around 7.2% when using ECG features, whereas
sensitivities sligthly increase. This indicates improved
PEA detection when employing ACC data.

3.3 Feature importance

To analyze the importance of the newly developed
features, we further trained three classifiers based on
algorithms where feature importance is explicit (Lasso-
regularized logistic regression, Decision Tree, Random
Forests) on the 50 data splits, and analyzed their
mean feature importance. The results in Fig. 5 show
that the most important features are ACC-features,
illustrating the significance of the ACC signal for an
improved pulse/no-pulse decision. A detailed list with
all features and their importances can be found in
the supplemental material. Training an exemplary
kernelized SVM with only the 10 best-ranked features
yields a classifier with further improved performance:
(balanced accuracy: 0.820, (0.760, 0.878), sensitivity:
0.821, (0.700, 0.943), specificity: 0.820, (0.750, 0.885),
MCC: 0.631, (0.510, 0.756), F1: 0.844, (0.770, 0.917)).
This indicates that a tailored optimal feature selection
would probably even further increase the performance
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Figure 5: Features importance of Lasso-regularized
Logistic Regression, Decision Trees and Random
Forests and their mean. ACC/ECG-features are shown
in blue/green font color respectively.

and could be the content of future research. The
feature importance analysis using only ECG features
and the performance of a classifier with only the best
10 ECG features can be found in the supplemental
material.

3.4 Case Studies

The performance of the algorithm can be illustrated
by plotting the predictions and their probability of
successive snippets over time. In Fig. 6, two exemplary
situations are shown. In Fig. 6a, the algorithm
predicts the probability of spontaneous circulation to
be below 50% at approximately 25 s earlier than
retrospectively annotated, although the ECG rhythm
shows no significant change there. Only the peaks
of the acceleration signal decrease. In Fig. 6b the
arrest time can be defined unambiguously by the
abrupt rhythm change in ECG. Correspondingly, the
algorithm predicts AR subsequently. After the shock,
the organized rhythm starts again, and the algorithm
predicts SC with high probability.
The performance of the classifier on 5 different cases is
furthermore illustrated in [31].
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Table 3: Comparison to Algorithm by Rad et al [25] on test set without Ventricular Tachycardia (VT) rhythms.

Performance All Features ECG Features Rad et al [25]
Balanced Accuracy 0.822 0.775 0.761

(0.761, 0.883) (0.709, 0.840) (0.687, 0.835)
Sensitivity 0.814 0.806 0.746

(0.687, 0.942) (0.656, 0.955) (0.605, 0.887)
Specificity 0.830 0.744 0.777

(0.747, 0.912) (0.645, 0.842) (0.706, 0.847)
MCC 0.635 0.548 0.513

(0.504, 0.766) (0.403, 0.692) (0.363, 0.662)
F1 0.841 0.810 0.782

(0.766, 0.917) (0.721, 0.899) (0.684, 0.881)

Table 4: Mean (95%-confidence interval) values of performance of different algorithms for pure Pulsative rhythms
(PR) vs. Pulseless electric activity (PEA) discrimination.

Performance All Features ECG Features Rad et al [25]
Balanced Accuracy 0.793 0.732 0.729

(0.731, 0.855) (0.669, 0.796) (0.656, 0.802)
Sensitivity 0.814 0.809 0.761

(0.685, 0.943) (0.661, 0.956) (0.629, 0.894)
Specificity 0.772 0.656 0.696

(0.661, 0.884) (0.53, 0.783) (0.601, 0.791)
MCC 0.572 0.465 0.443

(0.434, 0.709) (0.318, 0.611) (0.292, 0.595)
F1 0.841 0.811 0.791

(0.765, 0.917) (0.723, 0.9) (0.696, 0.886)
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(a) Ambigous Arrest annotation.
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Figure 6: Two exemplary situations with predicted spontaneous circulation probabilities over time. Acceleration
data (blue), ECG data (green) and probabilities (purple scatters), and a sliding mean of probabilities (purple
solid line) are given. Additionally, the labels by the manual, retrospective annotation and the time of the shock
(yellow diamonds) are shown. Both cases are taken from the test set.
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4 Discussion

To the best of our knowledge, this study is the first to
employ accelerometry data to classify the circulatory
state in cases of out-of-hospital cardiac arrest
treatment. In contrast to other studies investigating
seismocardiography in porcine models [19] or under
lab conditions [20], this work employs retrospective
analysis of prospectively collected real-world data
from defibrillator recordings, leading to conceptual
advantages on the one hand, but causing difficulties
on the other hand too.
Using real-world recordings demonstrates the
applicability of accelerometry to assess the circulatory
state also on noisy signals from the field. Although the
main purpose of the defibrillator models’ accelerometer
used in this study is the assessment of CPR quality
delivered by the EMS, the apex beat is still detectable
by these devices. However, since acceleration
amplitudes by the apex beat are comparatively small,
discretization artifacts are already visible in the
recordings, inevitable noise and artifacts from the
transport or medical treatment cover the signal easily
and the signal quality is highly dependent on the exact
placement of the sensor on the patient’s chest [18],
analysis is complicated considerably. Furthermore, the
defibrillator recordings from cardiac arrest patients
contain data from ischemic hearts where inotropy
might be reduced, wall motion abnormalities may be
present and subsequently signal quality might be worse
than for healthy patients. Moreover, the measuring
range of the accelerometer is adjusted to accelerations
occurring in CPR. Using devices with measuring
ranges adapted to the expected signal strength and
optimizing the position of the accelerometer on the
chest could improve signal quality considerably.
Even though the best configuration requires further
investigation, the respectable performance of the
algorithm demonstrates its applicability in the current
configuration too. It is also worth noting that, as
alternative to feature-based classifiers, we have also
experimented with neural-network-based methods
operating directly on the snippets, but in all of our
experiments, feature-based classifiers performed best.
Moreover, the best performance of our algorithm was
obtained with rather high regularization parameters
(geometric mean over all data splits: γ = 0.00072,
C = 2.09), which indicates that, in the presence
of many features, the proposed regularization is
important to prevent overfitting.
One key difficulty of our data collection is the
determination of a reliable ground truth. Retrospective
annotation of the circulatory state is inevitably
imprecise for several reasons. First, the annotators
have to assess the circulatory state based on limited
information provided by recordings and documentation
so that a concluding annotation might not be feasible.
We tried to encounter this problem by assuming
faultless treatment by the EMS and exclusion of
obtuse intervals during the annotation process.
Second, the dichotomous annotation design does not

take account of periarrest situations like pseudo-PEA,
where cardiac contraction is present but insufficient.
These situations can not be classified unambiguously
within this framework. Since the heart is also palpating
in pseudo-PEAs our algorithm could still be capable
of detecting the apex beat, even if cardiac output is
insufficient. A better assessment of periarrest rhythms
requires more intricate measurements of cardiac
output like echocardiography or invasive arterial blood
pressure measurement, which are not present in our
data set. Employing such measurements could further
investigate the question of whether accelerometry is
capable of assessing the circulatory state not only
qualitatively but also quantifying cardiac contractility
which has to remain unanswered due to a lack of
appropriate data.
Finally, only one year was annotated by two
independent physicians, where dissenting annotations
were resolved in consensus. The rest of the data were
labeled by a single physician. In addition, all data
were collected from one model (ZOLL X-Series) in this
study. However, as long as the accelerometer records
with at least similar resolution and appropriate sample
rate and its position is adequate to record the apex
beat, the same working principle should be applicable
to other models too.
In contrast to other circulation classification
algorithms proposed in the literature, this algorithm
operates on a more general data set containing not
only organized (PR and PEA), but also any other
ECG rhythms where mechanical decoupling can
be assessed directly from ECG data (e.g. VF or
ASY). Nevertheless, adding information from the
accelerometer increases classification performance
considerably, enhancing specificity around 9% on
average for all data splits. This means that snippets
were classified as AR correctly, which would have
been classified as SC from ECG only. Furthermore,
the acceptance of any ECG and acceleration signal
pair as input allows for an application in more general
situations with pulse generating arrythmias present.
However, using the rhythm classifier by Rad et al
[25], allows for a comparison of our results to the
literature by evaluating our algorithm on certain
rhythm types on the test sets only, although direct
comparison has to be carried out with caution,
since evaluating on different data sets can cause a
large variation in performance. Nevertheless, using
accelerometry data increases specificity on average
around 11.5% for PR/PEA detection, emphasizing
the significant role of accelerometry for PR/PEA
classification, which is superior to the specificity gain
of 9% found by Elola et al. [15] when adding thoracic
impedance data to ECG data. Moreover, compared
to the usage of thoracic impedance acclerometry
exhibits a big advantage: Whereas ventilation
and respiration induce large amplitude signals in
thoracic impedance [10], requiring advanced filtering
techniques and potentially complicating circulatory
state assessment, the slow movement of the chest wall
during ventilation or respiration is hardly detectable
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in the acceleration signal and no filtering techniques
are required. Furthermore, combining ECG, ACC,
thoracic impedance and potentially CO2 data could
enhance performance further.
Due to high variability in the data set, performance
varies a lot from one data split to another, leading
to broad confidence intervals for the performance
measures. It is worth noting, however, that AUC
and specificity increases at every data split by adding
ACC-features whereas in 48 from 50 data splits,
balanced accuracy and MCC are increasing too. The
decrease in the two remaining data splits is very small,
about 1% and 0.4% in balanced accuracy. Thus, we
interpret the gain in performance as relevant despite
the broad confidence intervals, since performance
increases in 96% of all data splits.
The porcine model by Wei et al. [19] employing
accelerometry exhibited a sensitivity of 93.6% and
a specificity of 97.5% to discriminate PEA from PR
under lab conditions, which hardly can be compared
to real world human data. They proposed the usage
of a single feature in their work which was not used as
an input due to inevitable noise in our data.
Regarding applicability in real-world cardiac arrest
treatment, one could additionally exploit the
chronological order of the snippets. So far, the
algorithm does not include the snippets’ temporal
information. The prediction of a circulatory state of a
single snippet does not take the state of the previous
or next snippet into account. However, in real-world,
consecutive snippets will mostly be related to each
other since circulatory state transitions do not take
place every few seconds normally, allowing for an
identification of single misclassifications.
Employing temporal information is also relevant to
assess the medical practicality of this algorithm in
the field. During cardiac arrest treatment, a quick
and reliable recognition of circulatory state changes
is necessary to reduce no-flow time. The capability
of the algorithm to detect ROSC and rearrest events
within a short time interval on unknown cases needs
further investigation in order to evaluate its usefulness
as a support tool.
Besides the usage of the algorithm in the field during
cardiac arrest treatment, another potential application
regards retrospective analysis. Currently, manual
annotation is necessary to evaluate key CPR quality
metrics like chest compression fraction. While recent
works [22, 23, 24, 32] proposed methods how to
compute the time with ongoing chest compressions
automatically, the length of the cardiac arrest
intervals still needs manual annotation. Our proposed
algorithm could facilitate manual annotation by
suggesting appropriate intervals, which physicians
only need to approve instead of single-handed
analyzing the whole case in detail. This assistance
could allow for broader application of CPR quality
metrics in general registries [33].

5 Conclusion

This study presented a machine learning algorithm
using ECG and ACC data to determine the circulatory
state of cardiac arrest patients. We explained
the development of new features assessing the
interdependence of ACC and ECG signals, and
the medical rational for them. We showed that
accelerometry provides a highly relevant input for
a circulation detection algorithm in cardiac arrest
patient and an accelerometry-based algorithms could
serve as a valuable medical decision tool to provide
optimal treatment for cardiac arrest patients.

Acknowledgment

We thank the Reviewers for their valuable remarks and
we thank the authors of [25], in particular A.B. Rad
and T. Eftestøl, for providing us with a pretrained
version of their algorithm for rhythm analysis.

9



References

[1] Jan-Thorsten Gräsner, Johan Herlitz, Ingvild B.M. Tjelmeland, Jan Wnent, Siobhan Masterson, Gisela
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Jose F. Veintemillas, Jose M. Bastida, and Daniel Alonso. Circulation assessment by automated external
defibrillators during cardiopulmonary resuscitation. Resuscitation, 128:158–163, 2018.

[14] Andoni Elola, Elisabete Aramendi, Unai Irusta, Erik Alonso, Yuanzheng Lu, Mary P Chang, Pamela
Owens, and Ahamed H Idris. Capnography: A support tool for the detection of return of spontaneous
circulation in out-of-hospital cardiac arrest. Resuscitation, 142:153–161, 2019.

[15] Andoni Elola, Elisabete Aramendi, Unai Irusta, Per Olav Berve, and Lars Wik. Multimodal algorithms
for the classification of circulation states during out-of-hospital cardiac arrest. IEEE Transactions on
Biomedical Engineering, 68(6):1913–1922, 2021.

10



[16] Ralph W. C. G. R. Wijshoff, Antoine M. T. M. van Asten, Wouter H. Peeters, Rick Bezemer, Gerrit Jan
Noordergraaf, Massimo Mischi, and Ronald M. Aarts. Photoplethysmography-based algorithm for
detection of cardiogenic output during cardiopulmonary resuscitation. IEEE Transactions on Biomedical
Engineering, 62(3):909–921, 2015.

[17] Allison L. Cohen, Timmy Li, Lance B. Becker, Casey Owens, Neha Singh, Allen Gold, Mathew J. Nelson,
Daniel Jafari, Ghania Haddad, Alexander V. Nello, Daniel M. Rolston, Cristina Sison, and Martin L.
Lesser. Femoral artery doppler ultrasound is more accurate than manual palpation for pulse detection in
cardiac arrest. Resuscitation, 173:156–165, 2022.
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Appendix

Tab. 1. Utstein-style data sheet for data base

Absence of signs of circulation and/or considered for resuscitation
n = 871

Resuscitation not attempted
All cases n = 2 (0.2%)

Location of Arrest
Home / Home for the aged n = 619 (71.1%)
Public place n = 161 (18.5%)
Other n = 90 (10.3%)
Unknown n = 1 (0.1%)

Arrest witnessed/monitored
By layperson/bystander n = 424 (48.7%)
By healthcare personnel n = 85 (9.8%)
Arrest not witnessed n = 361 (41.4%)
Unknown n = 1 (0.1%)

CPR before EMS
arrival

n = 402 (46.2%)

Etiology
Presumed cardiac n = 593 (68.1%)
Trauma n = 19 (2.2%)
Submersion n = 5 (0.6%)
Respiratory n = 124 (14.2%)
Other noncardiac n = 73 (8.4%)
Unknown n = 57 (6.5%)

Resuscitation attempted
All cases n = 869 (99.8%)
Any defibrillation

Yes n = 377 (43.3%)
No n = 274 (31.4%)
Unknown n = 220 (25.2%)

Chest compressions n = 869 (99.8%)
Assisted ventilation

Yes n = 834 (95.8%)
No n = 4 (0.5%)
Unknown n = 33 (3.8%)

First monitored rhythm
Shockable n = 258 (29.6%)

VF n = 258 (29.6%)
VT n = 0 (0.0%)

Non-Shockable n = 611 (70.1%)
Asystole n = 427 (49.0%)
PEA n = 182 (20.9%)
Unknown n = 2 (0.2%)

Outcome (recorded for all categories)
Any ROSC

Yes n = 473 (54.3%)
No n = 397 (45.6%)
Unknown n = 1 (0.1%)

13



Table 5: List of all features including their mean normalized importance from three different classifiers
(Decision Tree, Random Forest and Lasso-regularized Logistic Regresssion). (StdDev . . . standard deviation,
PSD . . . Power spectral density, ACC-ensemble-avg. . . . ACC-ensemble-average

No. Feature description Signal Input Reference Importance
v15 Peak-to-Peak amplitude of ACC-ensemble-avg. ACC Ashouri et al, 2017 0.711
v8 Windowed ACC Correlation ACC & ECG this work 0.629
v1 Root Mean Square value of ACC ACC this work 0.432
v48 AMSA ECG Elola et al, 2019 0.383
v11 Root Mean Square value of ACC-ensemble-avg. ACC Ashouri et al, 2017 0.339
v7 Second derivative of ACC-correlation ACC & ECG this work 0.319
v36 meanRR ECG Elola et al, 2020 0.273
v49 HfP ECG Elola et al, 2019 0.262
v35 Ph ECG Ayala et al, 2014 0.208
v30 PLEA ECG Ayala et al, 2014 0.183
v9 Windowed-ECG Correlation ECG this work 0.176
v45 Mean of the absolute first difference of ECG ECG Elola et al, 2019 0.167
v44 StdSnorm ECG Elola et al, 2020 0.167
v31 Lmin ECG Ayala et al, 2014 0.146
v46 StdDev of the absolute first difference of ECG ECG Elola et al, 2019 0.146
v32 bS ECG Ayala et al, 2014 0.138
v6 ACC-correlation at ECG maximum ACC & ECG this work 0.130
v4 ECG-correlation maximum ECG this work 0.124
v42 SlopeQRS ECG Elola et al, 2020 0.114
v43 MSnorm ECG Elola et al, 2020 0.110
v17 PSD of ACC in 0-3Hz band ACC Ashouri et al, 2017 0.100
v2 Root Mean Square value of ECG ECG this work 0.098
v38 MeanPP ECG Elola et al, 2020 0.088
v10 Quotient of windowed correlation ACC & ECG this work 0.086
v3 ACC-correlation maximum ACC this work 0.063
v29 Spectral Entropy of ACC ACC Solar et al, 2017 0.059
v34 Pfib ECG Ayala et al, 2014 0.059
v40 Mean QRS-width ECG Elola et al, 2020 0.054
v13 Skewness of ACC-ensemble-avg. ACC Ashouri et al, 2017 0.054
v37 VarRR ECG Elola et al, 2020 0.053
v16 Peak-to-peak / power ratio of ACC-ensemble-avg. ACC Ashouri et al, 2017 0.049
v33 nP ECG Ayala et al, 2014 0.047
v39 StdPP ECG Elola et al, 2020 0.041
v19 PSD of ACC in 6-9Hz band ACC Ashouri et al, 2017 0.039
v47 Kurtosis of ECG slope ECG Elola et al, 2019 0.034
v21 PSD of ACC in 12-15Hz band ACC Ashouri et al, 2017 0.033
v41 StdDev QRS-width ECG Elola et al, 2020 0.033
v5 Spectral overlap ACC & ECG this work 0.032
v12 Kurtosis of ACC-ensemble-avg. ACC Ashouri et al, 2017 0.030
v23 Mean PSD of ACC ACC Ashouri et al, 2017 0.025
v20 PSD of ACC in 9-12Hz band ACC Ashouri et al, 2017 0.021
v22 PSD of ACC in 15-18Hz band ACC Ashouri et al, 2017 0.018
v18 PSD of ACC in 3-6Hz band ACC Ashouri et al, 2017 0.016
v26 Skewness of PSD of ACC ACC Ashouri et al, 2017 0.008
v24 StdDev of PSD of ACC ACC Ashouri et al, 2017 0.007
v27 Maximum of PSD of ACC ACC Ashouri et al, 2017 0.006
v25 Kurtosis of PSD of ACC ACC Ashouri et al, 2017 0.005
v14 Median of ACC-ensemble-avg. ACC Ashouri et al, 2017 0.005
v28 Frequency of maximum of PSD of ACC ACC Ashouri et al, 2017 0.003
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Supplemental material: Feature importance of pure ECG-features

We have also performed the feature importance analysis from subsection III.C using only ECG-features. The
results in Fig. 7 show that the most important features are similar as in the ACC+ECG-feature case,

illustrating the importance of certain ECG features for classification signal. Training an exemplary kernelized
SVM with only the 10 best-ranked ECG-features yields a classifier with the follwing performance: (balanced

accuracy: 0.769, (0.720, 0.822), sensitivity: 0.838, (0.710, 0.961), specificity: 0.700, (0.580, 0.822), MCC:
0.544, (0.430, 0.656), F1: 0.820, (0.750, 0.893)). Compared to the classifier with the 10 best-ranked ACC- and

ECG-features, the ECG-only classifier exhibits a slightly higher sensitivity, but a considerably lower
specificity, resulting in an inferior overall performance.
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Figure 7: Features importance of Lasso-regularized Logistic Regression, Decision Trees and Random Forests
trained purely on ECG-features and their mean.
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