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Explainable Multimodal Deep Dictionary
Learning to Capture Developmental Differences

from Three fMRI Paradigms
Lan Yang, Chen Qiao, Huiyu Zhou, Vince D. Calhoun, Julia M. Stephen, Tony W. Wilson and Yuping Wang

Abstract— Objective: Multimodal-based methods show
great potential for neuroscience studies by integrating
complementary information. There has been less multi-
modal work focussed on brain developmental changes.
Methods: We propose an explainable multimodal deep dic-
tionary learning method to uncover both the commonality
and specificity of different modalities, which learns the
shared dictionary and the modality-specific sparse repre-
sentations based on the multimodal data and their encod-
ings of a sparse deep autoencoder. Results: By regarding
three fMRI paradigms collected during two tasks and rest-
ing state as modalities, we apply the proposed method on
multimodal data to identify the brain developmental differ-
ences. We found that both children and young adults prefer
to switch among states during two tasks while staying with-
in a particular state during rest, but the difference is that
children possess more diffuse functional connectivity pat-
terns while young adults have more focused functional con-
nectivity patterns. Conclusion and Significance: To uncover
the commonality and specificity of three fMRI paradigms
to developmental differences, multimodal data and their
encodings are used to train the shared dictionary and the
modality-specific sparse representations. Identifying brain
network differences helps to understand how the neural
circuits and brain networks form and develop with age.

Index Terms— Explainablity, Multimodal dictionary learn-
ing, Dynamic functional connectivity, Brain development
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NORMAL brain development is a complex process, from
the establishment of basic cognitive functions in child-

hood to the gradual maturity of more complex self-regulatory
functions throughout adolescence [1]–[3]. Functional magnetic
resonance imaging (fMRI) can capture hemodynamic respons-
es to neuronal activities by measuring the blood oxygenation
level-dependent (BOLD) signal, based on which the changes
in neural interaction and integration between functionally
interconnected regions with development can be revealed [4].
Compared with BOLD signals, dynamic functional connectiv-
ity (dFC) measured by a sliding window approach can reflect
time-varying dependencies between spatially separated brain
regions. It helps to quantify the changes of correlation strength
between functional activities of paired brain regions over time.
Thus, there has been growing interest in identification of the
recurring whole-brain functional connectivity patterns (i.e.,
states) based on dFC recently. These studies aim to divide the
whole-brain dFC profiles into distinct states observed reliably
across subjects throughout the fMRI scans [5]–[8]. It enables
us to investigate the differences of states related to brain
development, capture the transition mechanism among these
states, and provide insights into neural brain dynamics from
the perspective of functional connectivity [4], [5].

Compared with single modality methods for fMRI analysis,
multimodal-based methods can take advantage of complemen-
tary information provided by different modalities. Studies have
shown that integrating the multimodal prior or combining
the complementary information from diverse modalities can
promote model enhancement and diagnosis [9]–[11]. Many
methods have been extended for multimodal data integration
including multitask learning, linear regression, neural network,
support vector machine, and dictionary learning [9]–[14]. Due
to the ability to reduce dimensionality and identify the reoccur-
ring patterns of dFC [4], multimodal dictionary learning meth-
ods have attracted considerable attention. For example, Li et al.
[11] proposed a multimodal discriminative dictionary learning
(mSCDDL) method based on a weighted combination strategy,
and further applied it to fuse information from structural
magnetic resonance imaging and fluorodeoxyglucose positron
emission tomography for Alzheimer’s disease classification.
In [15], a ℓ1-norm regularized dictionary learning approach
was proposed to identify the epilepsy-related dFC states,
where the time courses representative of epileptic activity
extracted by electroencephalogram are incorporated into the
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fMRI for dFC state analysis. In [16], multimodal dictionary
learning was applied to the diagnosis of schizophrenia, which
embeds the correlation information of multimodal data into
the learning model. Additionally, to achieve the nonlinearity
or higher-level features of data, Li et al. [10] improved the
mSCDDL with the multi-feature kernel trick to obtain the
nonlinear representations of data. D’Souza et al. [17] proposed
a framework for Autism Spectrum Disorder’s diagnosis, which
couples a structurally-regularized dynamic dictionary learning
model (sr-DDL) with a deep network to predict behavioral
scores, where the dFCs of fMRI were decomposed by sr-DDL
while constraining the decomposition by the FCs of diffusion
tensor imaging.

Of particular note, the aforementioned methods either fail
to uncover both commonality and specificity of different
modalities, or overlook the nonlinear higher-level features
of data, or have difficulty in explainability (i.e., it fails to
identify the reoccurring patterns of dFC, or brain regions
and FCs related to development or disease). To address these
issues, we propose an explainable multimodal deep dictionary
learning (EMDDL) method, which connects the multimodal
dictionary learning in the original space and the encoding
space through a sparse deep autoencoder (sDAE). Within
this framework, all modalities share the same dictionary to
reveal the inherent commonality. To achieve the specificity
of each modality, Fisher cost is used to constrain the sparse
representations due to its ability to learn the modality-specific
features by avoiding the overlap of neighboring pairs between
different modalities. Moreover, the shared dictionary and the
modality-specific sparse representations are learned based on
the multimodal data and their encodings of the sDAE. In this
way, multimodal dictionary learning can attain the nonlinear
higher-level features while reconstructing the original data for
identifying the reoccurring patterns or functional connectivity
related to development. To maintain the complex relationships
among subjects, a hypergraph Laplacian regularization is used,
which helps to enhance the learning ability through prior
knowledge.

We apply EMDDL to the multimodal data from Philadelphia
Neurodevelopmental Cohort (PNC) to recognize the develop-
mental differences between children and young adults, where
the three fMRI paradigms collected during two tasks and
resting state are regarded as modalities. We found that both
children and young adults tend to switch frequently among
states during two tasks and stay within a particular state
during rest. The main difference is that children have more
diffuse functional connectivity patterns while young adults
possess more focused functional connectivity patterns under
three fMRI paradigms. Besides, the differences in functional
connectivity between children and young adults are mainly
related to information processing, cognition, emotion, and
working memory under three fMRI paradigms.

II. PRELIMINARY WORK

In this section, some preliminary work is presented includ-
ing hypergraph learning to preserve the higher-order relation-
ships among subjects and Fisher cost to extract modality-
specific features.

A. Hypergraph Learning
Given that the traditional graph learning loses information

inevitably by squeezing the complex relationships into pair-
wise ones, hypergraph has been widely applied to identify the
high-order relationships among subjects [18], [19]. Generally,
a hypergraph G = (V, E ,W) consists of three parts, namely,
the vertex set V = {Vi|i = 1, 2, · · · , Nv}, the hyperedge set
E = {Ei|i = 1, 2, · · · , Ne} and the hyperedge weight W =
{Wi|i = 1, 2, · · · , Ne}. To represent the relationships between
hyperedges and vertices, the incidence matrix H ∈ RNv×Ne

of hypergraph G is defined as

H(Vi, Ej) =
{

1 Vi ∈ Ej
0 otherwise

where the (i, j)-th entry of H denotes whether the i-th vertex
belong to the j-th hyperedge. Based on the incidence matrix
H, the degree of the i-th vertex dVi =

∑
Ej∈EWjH(Vi, Ej)

and the degree of the i-th hyperedge dEi =
∑

Vj∈V H(Vj , Ei)
can be obtained. Then the diagonal matrices Dv ∈ RNv×Nv

and De ∈ RNe×Ne are composed of the degree of all vertices
and hyperedges respectively. Specifically, the i-th diagonal
element of Dv and De are dVi and dEi respectively.

To construct a hypergraph, the k nearest neighbor strategy
is usually applied because the geometric structure relation-
ship among data can be approximately represented by the
nearest neighbor graph [18], [20]. Specifically, for a chosen
vertex, the distances between the chosen vertex and other
vertices are calculated, and then the k nearest vertices are
connected by a hyperedge. The weight of the i-th hyperedge
is Wi = 1

k(k−1)

∑
{Vj ,Vl}∈Ei

exp (− ||Vj−Vl||22
σi

), where σi =∑
{Vj ,Vl}∈Ei

||Vj−Vl||22
k(k−1) . To obtain the diagonal matrix Wh ∈

RNe×Ne , the hyperedge weight Wi is arrayed as the i-th
diagonal element of Wh. By analogizing the definition of
a simple graph Laplacian matrix [21], hypergraph Laplacian
matrix is defined as

Lh = Dv − S (1)

where S = HWhD−1
e HT is the similarity matrix to define the

similarity between each pair of vertices.
Compared with the traditional graph Laplacian regulariza-

tion, hypergraph Laplacian regularization has the character-
istics of preserving complex local geometric structure and
incorporating the higher-order relationships among subjects,
which are conducive to classification or clustering tasks in FC
or dFC analysis [19].

B. Fisher cost
The Fisher discrimination criterion is to cluster the samples

in the same modality and keep the samples in different modali-
ties as far away from each other as possible, which helps to ex-
tract features corresponding to the specific modality [22]–[24].
Assume that the multimodal data X = (x1, x2, · · · , xN ) ∈
Rp×N contains M modalities with Nm samples belonging
to the m-th modality Nm and

∑M
m=1 Nm = N , where p-

dimensional vector xn is the n-th sample of X . The within-
modality scatter matrix Sw and the between-modality scatter

Page 2 of 48

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



YANG et al.: EXPLAINABLE MULTIMODAL DEEP DICTIONARY LEARNING TO CAPTURE DEVELOPMENTAL DIFFERENCES FROM THREE FMRI PARADIGMS 3

matrix Sb of samples are defined as

Sw(X) =
M∑

m=1

∑
n∈Nm

(xn − µm)(xn − µm)T

Sb(X) =

M∑
m=1

Nm(µm − µ)(µm − µ)T

where µm = 1
Nm

∑
n∈Nm

xn and µ = 1
N

∑N
n=1 xn are the

modality mean and the overall mean respectively. Then, the
Fisher cost is as follows

F(X) = tr
(
Sw(X)

)
− tr

(
Sb(X)

)
+ ||X||2F

in which the Frobenius norm || · ||F is to ensure the convexity
of the cost function [24].

To get a more concise expression and facilitate calculation
[22], the Fisher cost F(X) can be rewritten as

F(X) = tr
(
XFXT

)
(2)

where F = 2I − 2F1 + F2 ∈ RN×N with I ∈ RN×N being
the identity matrix, F1 ∈ RN×N being defined as

F1(i, j) =

{
1

Nm
i, j ∈ Nm

0 otherwise

and F2 ∈ RN×N with each component of it being 1/N .

III. METHODOLOGY

The details of EMDDL and the corresponding optimization
algorithm are presented in this section, which can learn the
shared dictionary and modality-specific sparse representations
in both the original space and the encoding space.

A. Explainable Multimodal Deep Dictionary Learning
Multimodal dictionary learning methods can not only embed

the high-dimensional features into low-dimensional space,
but also boost learning performance with the combination
of multiple modalities [12]. However, most of the existing
methods either cannot simultaneously reveal the inherent com-
monality and specificity of different modalities, or overlook
the nonlinear higher-level features of data, or have difficulty
in explainability. To address these problems, we propose
EMDDL which couples multimodal dictionary learning with
sDAE. Specifically, by sharing the same dictionary through
all modalities to capture the inherent commonality and con-
straining sparse representations with Fisher cost to obtain the
specificity of each modality, the inherent commonality and the
specificity of different modalities can be concurrently achieved
in multimodal dictionary learning. Moreover, to achieve the
nonlinear higher-level features of data and reconstruct the
original data to identify the developmental differences in
reoccurring patterns or FCs, both the shared dictionary and
the modality-specific sparse representations are learned not
only in the original space, but also in the encoding space
of the sDAE at the same time. By alternating minimization
algorithms, the sDAE, dictionary, and sparse representations
can be sequentially obtained. The flowchart of EMDDL is
shown in Fig. 1.

Encoding Decoding

Multimodal Data   

Mode 1 Mode 2 ! Mode M

Encoding 

Space

!

Dictionary "

Mode 1 Mode 2 ! Mode M

Sparse Representations #

A    Multimodal Dictionary Learning in the Original Space

B The Encoding Space Learned based on sDAE

C        Multimodal Dictionary Learning in the Encoding Space 

Multimodal Data   ($)

Mode 1 Mode 2 ! Mode M !

Dictionary "($)

Mode 1 Mode 2 ! Mode M

Sparse Representations #

D   The Learning of #

Input  Input "

Output  ($) Output "($)

Original data structure

The structure of sparse representations

Input # based     on encoded data 

Input # based     on original data 

mode % mode &

Fig. 1: The flowchart of EMDDL.

Suppose that there are M modalities with Nm samples
belonging to the m-th modality Nm and the training data
X = (X(1), X(2), · · · , X(M)) ∈ Rp×N is composed of these
M modalities, where N =

∑M
m=1 Nm and the m-th modality

is X(m) = (x
(m)
1 , x

(m)
2 , · · · , x(m)

Nm
) ∈ Rp×Nm . Besides, the

sDAE contains 2L + 1 layers with r(l) neurons in the l-th
layer and r(2L−l) = r(l) holds for l = 0, 1, · · · , 2L.

EMDDL contains two parts including JsDAE and JMDL,
where JsDAE is to efficiently learn the nonlinear higher-level
features of data and JMDL is to train multimodal dictionary
learning in both the original space and the encoding space.
The objective function of EMDDL is defined as

min
{W̃ (l)}2L

l=1,D,V
Jobj = JsDAE + JMDL

s.t. ||dk||22 ≤ 1, ∀ k = 1, 2, · · · ,K (3)

where JsDAE and JMDL are defined as

JsDAE =Jrecon + λ1JKL + λ2JWF

=
1

2N
||X(2L) −X||2F + λ1

2L−1∑
l=1

r(l)∑
j=1

KL(ρ||ρ(l)j )

+
λ2

2

2L∑
l=1

||W̃ (l)||2F (4)

JMDL =JMDLO
+ JMDLE

+ λ3JFisher + λ4JhyperL

+ λ5JVF
+ λ6JVℓ1

=
1

2N
||X −DV ||2F +

1

2N
||X(L) −D(L)V ||2F

+
λ3

2
tr(V HV T ) +

λ4

2
tr(V LV T ) +

λ5

2
||V ||2F

+ λ6||V ||1 (5)

Page 3 of 48

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. XX, XXXX

where X(2L) ∈ Rr(2L)×N is the reconstruction of the input
data X by sDAE, D = (d1, d2, · · · , dK) ∈ Rp×K is the
dictionary with K atoms in the original space, X(L) ∈
Rr(L)×N and D(L) ∈ Rr(L)×K are the encoding of X and
D respectively (i.e., its outputs in the L-th layer), V =
(V(1), V(2), · · · , V(M)) ∈ RK×N consists of each V(m) =

(v
(m)
1 , v

(m)
2 , · · · , v(m)

Nm
) ∈ RK×Nm being the sparse repre-

sentation corresponding to the m-th modality in both the
original space and the encoding space. W̃ (l) = (W (l), b(l)) ,
{W̃ (l)

ij } ∈ Rr(l)×r(l−1)+1 for l = 1, 2, · · · , 2L, in which
W (l) ∈ Rr(l)×r(l−1)

and b(l) ∈ Rr(l) are the connection weight
matrix and bias of sDAE between l-th layer and (l−1)-th layer
respectively. As defined in Appendix I-A, Kullback-Leibler
divergence KL(ρ||ρ(l)j ) measures the difference between two
Bernoulli distributions with mean ρ and ρ

(l)
j , where ρ is a

sparsity hyperparameter and ρ
(l)
j is the average activation of

neuron j in the l-th layer of sDAE. Similar to the definition of
F in (2), H ∈ RN×N is given by H = I − 2H1 +H2, where
I ∈ RN×N is the identity matrix, H1 ∈ RN×N is defined as

H1(i, j) =

{
1

Nm
i, j ∈ Nm

0 otherwise

and the each component of H2 ∈ RN×N is 1/N . L ∈ RN×N

consists of hypergraph Laplacian matrix of all modalities,
which is defined as

L =


Lh
(1) 0 · · · 0

0 Lh
(2) · · · 0

...
...

. . .
...

0 0 · · · Lh
(M)


where Lh

(m) ∈ RNm×Nm , the hypergraph Laplacian ma-
trix of the m-th modality, is defined by (1). ||V ||1 =∑N

n=1

∑K
k=1 |Vnk| with Vnk being the k-th element of the

n-th column of the matrix V .
In (4), Jrecon is to train the sDAE by minimizing the

error between original data and its reconstruction. JKL is to
prevent overfitting of the sDAE by controlling the activation
of neurons. Compared with L1-norm and L2-norm, Kullback-
Leibler divergence has better sparsity ability, which helps to
improve model performance, and the details can be seen in
Appendix I-A. JWF

is to prevent overfitting of the sDAE
by controlling the weights. In (5), JMDLO

is to learn the
shared dictionary of all modalities and the modality-specific
sparse representations based on the original data. Meanwhile,
by encoding the original data and the shared dictionary through
the sDAE, JMDLE is to achieve the multimodal dictionary
learning in the encoding space for capturing the nonlinear
higher-level features of data. Inspired by [25], we use the same
sparse representations to synchronously characterize the local
geometric relationships between data and dictionary in the
original space as to characterize those between encoded data
and encoded dictionary in the encoding space. In other words,
our objective is to use the sparse representations to capture
the intrinsic local geometric relationships between data and
dictionary. It helps to learn the locality-sensitive dictionary,
resulting in improved generalization ability in reconstrcution

or classification. By clustering the samples within modalities
and separating the samples between the modalities, JFisher

helps to learn the modality-specific representations. JhyperL is
designed to retain the complex neighborhood relationships of
samples hidden in each modality. JVF

guarantees the convexity
of Fisher cost and JVℓ1

is to ensure the sparsity. The constraint
on dictionary atoms is to prevent sparse representation from
being too small due to the large dictionary. In addition, the
positive parameters λ1, λ2, λ3, λ4, λ5 and λ6 are used
to balance the network fitting, dictionary learning and the
complexity of model.

B. Optimization
The alternating minimization algorithm is applied to solve

the problem (3) to optimize the parameters {W̃ (l)}2Ll=1, D and
V , which contains three parts, i.e., the training of sDAE, the
learning of the dictionary, and sparse representations learning.

Denote
h̃
(l)
n = (h

(l)
n ; 1)

z
(l+1)
n = W̃ (l+1)h̃

(l)
n l = 0, 1, · · · , 2L− 1

h
(l+1)
n = φ(z

(l+1)
n )

g̃
(l)
k = (g

(l)
k ; 1)

q
(l+1)
k = W̃ (l+1)g̃

(l)
k l = 0, 1, · · · , L− 1

g
(l+1)
k = φ(q

(l+1)
k )

where φ is a differentiable activation function which is the
sigmoid function in this paper; h

(0)
n = Xn and g

(0)
k =

dk, where Xn is the n-th column of the multimodal data
X and dk is the k-th atom of the dictionary D. X(l) =

(h
(l)
1 , h

(l)
2 , · · · , h(l)

N ) ∈ Rr(l)×N , l = 1, 2, · · · , 2L and D(l) =

(g
(l)
1 , g

(l)
2 , · · · , g(l)K ) ∈ Rr(l)×K , l = 1, 2, · · · , L are the outputs

in the l-th layer when the input data are X and D respectively.
1) The Training of sDAE: To optimize the parameters of

sDAE {W̃ (l)}2Ll=1 with fixed D and V , problem (3) can be
rewritten as

min
{W̃ (l)}2L

l=1

1

2N

(
||X(2L) −X||2F + ||X(L) −D(L)V ||2F

)
+

λ1

2L−1∑
l=1

r(l)∑
j=1

KL(ρ||ρ(l)j ) +
λ2

2

2L∑
l=1

||W̃ (l)||2F (6)

To update the parameters of sDAE {W̃ (l)}2Ll=1, the back-
propagation algorithm with gradient descent method is applied.
Then, the gradient of W̃ (l) is given by

∇W̃ (l) =
1

N

N∑
n=1

(
∆H(l)

n h̃(l−1)T

n + I(L− l)∆T (l)
n

+ λ1I(2L− 1− l)∆S(l)
n h̃(l−1)T

n

)
+ λ2W̃

(l) (7)

in which ∆H
(l)
n is defined as

∆H(l)
n =


(h

(l)
n − xn)⊙ φ′(z

(l)
n ) l = 2L

(W (l+1)T∆H
(l+1)
n )⊙ φ′(z

(l)
n )

l = 2L− 1, · · · , 2, 1
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where the operation ⊙ denotes the element-wise multiplica-
tion. I(·) is an indicator function defined by

I(s) =

{
1 s ≥ 0
0 otherwise

∆T
(l)
n = ∆T

(l)
n (0)h̃

(l−1)T

n −
∑K

k=1 ∆T
(l)
n (k)g̃

(l−1)T

k with
∆T

(l)
n (0) and ∆T

(l)
n (k) being defined as

∆T (l)
n (0) =


(
h
(l)
n −D(l)Vn

)
⊙ φ′(z

(l)
n ) l = L(

W (l+1)T∆T
(l+1)
n (0)

)
⊙ φ′(z

(l)
n )

l = L− 1, · · · , 2, 1

∆T (l)
n (k) =



Vnk

(
h
(l)
n −D(l)Vn

)
⊙ φ′(q

(l)
k ) l = L

k = 1, 2, · · · ,K(
W (l+1)T∆T

(l+1)
n (k)

)
⊙ φ′(q

(l)
k )

l = L− 1, · · · , 2, 1
k = 1, 2, · · · ,K

in which Vn is the n-th column of V . ∆S
(l)
n (t) is defined as

∆S(l)
n (t) =



R(l) ⊙ φ′(z
(l)
n ) t = 2L− l

l = 2L− 1, · · · , 2, 1(
W (l+1)T∆S

(l+1)
n (t)

)
⊙ φ′(z

(l)
n )

t = 1, 2, · · · , 2L− 1− l
l = 2L− 2, · · · , 2, 1

where R(l) is a r(l)-dimensional column vector with i-th
element being ( −ρ

ρ
(l)
i

+ 1−ρ

1−ρ
(l)
i

), and ∆S
(l)
n =

∑2L−l
t=1 ∆S

(l)
n (t).

The update formula for W̃ (l) is

W̃ (l) = W̃ (l) − η1∇W̃ (l)

where η1 is the learning rate.
2) The Learning of Dictionary: To update dictionary D with

fixed {W̃ (l)}2Ll=1 and V , problem (3) can be rewritten as

min
D

1

2N

(
||X −DV ||2F + ||X(L) −D(L)V ||2F

)
s.t. ||dk||22 ≤ 1, ∀ k = 1, 2, · · · ,K (8)

The gradient descent method is used to optimize the above
problem and the gradient of D is given by

∇D =
1

N

(
(DV −X)V T +∆R

)
(9)

in which the k-th column of ∆R is computed by∑N
n=1 ∆R

(1)
n (k) and ∆R

(l)
n (k) is defined as

∆R(l)
n (k) =



W (l)T
(
Vnk

(
D(l)Vn − h

(l)
n

)
⊙ φ′(q

(l)
k )

)
l = L

k = 1, 2, · · · ,K

W (l)T
(
∆R

(l+1)
n (k)⊙ φ′(q

(l)
k )

)
l = L− 1, · · · , 2, 1

k = 1, 2, · · · ,K

The update formula for D is

D = D − η2∇D

where η2 is the learning rate. Considering the constraint on
the dictionary, each column of the updated dictionary D is
normalized to unit length by

dk =
1

||dk||2
dk (10)

3) Sparse Representations Learning: With the fixed
{W̃ (l)}2Ll=1 and D, the sparse representations can be obtained
by solving the following optimization problem

min
V

f(V ) + g(V ) (11)

where f(V ) and g(V ) are

f(V ) =
1

2N

(
||X −DV ||2F + ||X(L) −D(L)V ||2F

)
+

λ3

2
tr(V HV T ) +

λ4

2
tr(V LV T ) +

λ5

2
||V ||2F

g(V ) =λ6||V ||1

To ensure the convexity of f(V ), λ5 > λ3 ≥ 0 holds and
the details can be seen in Appendix I-B. In problem (11),
f(V ) is convex and differentiable, while g(V ) is convex but
nondifferentiable. Thus, the Fast Iterative Shrinkage Thresh-
olding Algorithm (FISTA) [26] is adopted to optimize V . The
gradient of f(V ) with respect to V is

∇V =
1

N

(
DT(DV −X) +D(L)T(D(L)V −X(L))

)
+ V S

(12)

in which S = λ3H+λ4L+λ5I . The Lipschitz constant of the
gradient ∇V is given by (13) in Appendix I-C. Besides, the
soft thresholding function in FISTA is defined as ST λ6

Lf

(·) =

sign(·)max{0, | · | − λ6

Lf
} with | · | representing absolute

value function. The total optimization process is described in
Algorithm 1.

IV. RESULTS AND ANALYSIS

In this section, EMDDL is utilized to explore the dynamic
functional connectivity changes of brain during two tasks and
resting state.

A. Data Acquisition and Preprocessing
PNC is a large scale collaborative project between the

Brain Behaviour Laboratory at the University of Pennsylvania
and the Children’s Hospital of Philadelphia, which contains
data collected using three fMRI paradigms from nearly 900
youth aged from 8 to 22, i.e., two tasks including emotion
identification (Emoid fMRI) and working memory (Nback
fMRI), and resting-state (Rest fMRI) [27]. All fMRI scans
were collected on a single 3T Siemens TIM Trio whole-body
scanner using a single-shot, interleaved multi-slice, gradient-
echo, echo planar imaging sequence. The Emoid fMRI, Nback
fMRI and Rest fMRI scan durations were 10.5 minutes (210
TR), 11.6 minutes (231 TR) and 6.2 minutes (124 TR) respec-
tively. During Emoid task, subjects were asked to identify 60
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Algorithm 1: EMDDL
Input: Training data: X = (X(1), X(2), · · · , X(M)); The

parameters of sDAE: 2L, {r(l)}2Ll=0 and ρ;
Regularization coefficients: λ1, λ2, λ3, λ4, λ5 and
λ6; Size of the dictionary: K; Learning rate: η1
and η2; Initialize {W̃ (l)

(0)}
2L
l=1, D(0) and V(0)

randomly and set i = 0

Output: {W̃ (l)
(i) }

2L
l=1, D(i) and V(i)

1 while not converged do
2 Update sDAE:
3 for l = 2L, 2L− 1, · · · , 1 do
4 Compute the gradient ∇W̃ (l)

(i) via (7)

5 W̃
(l)
(i+1) ← W̃

(l)
(i) − η1∇W̃ (l)

(i)

6 end
7 Update dictionary:
8 Compute the gradient ∇D(i) via (9)
9 D(i+1) ← D(i) − η2∇D(i)

10 Normalize the dictionary D(i+1) via (10)
11 Update sparse representations:
12 Set j = 0, t(0) = 1, V(i,j) = V(i) and Z(i,j) = V(i)

13 Compute L(i) via (13)
14 while not converged do
15 Compute the gradient ∇V(i,j) via (12)

16 Z(i,j+1) ← ST λ6
L(i)

(
V(i,j) − 1

L(i)
∇V(i,j)

)
17 t(j+1) ←

1+
√

1+4t2
(j)

2

18 V(i,j+1) ← Z(i,j+1) +
t(j)−1

t(j+1)
(Z(i,j+1) − Z(i,j))

19 j ← j + 1
20 end
21 V(i+1) ← V(i,j)

22 i← i+ 1
23 end

faces with neutral, happy, sad, angry, or fearful expressions.
During Nback task to probe working memory, subjects were
required to respond only when a presented fractal was the
same as the one presented in the previous trial. During the
resting-state scan, subjects were instructed to stay awake,
keep eyes open, fixate on the displayed crosshair, and remain
still. Of these, 123 children and 146 young adults completed
all three paradigms. By using Statistical Parametric Mapping
12, motion correction, co-registration, spatial normalization
to standard Montreal Neurological Institute space (spatial
resolution of 3×3×3 mm), and spatial smoothing with a 3 mm
full width half maximum Gaussian kernel were implemented.
Then, a regression procedure was used to remove the influence
of motion and the functional time series were band-pass
filtered using a 0.01 Hz to 0.1 Hz frequency range. According
to the Power coordinates with a sphere radius parameter of
5 mm [28], 264 regions of interest (ROIs) containing 21384
voxels were extracted. The details of the 264 ROIs are shown
in Table 1 of Supplementary material. Every subject file can
be reduced to a 264× T matrix by averaging the time series
of all voxels in the same brain region, where the time point

T is 210, 231, and 124 for Emoid, Nback, and Rest fMRIs
respectively.

We divided 264 ROIs into 13 functional networks to facili-
tate the understanding of functional connectivity relationships
between the ROIs [28]. Among them, 12 functional network-
s including sensory/somatomotor network (SSN), cingulo-
opercular task control network (COTCN), auditory network
(AN), default mode network (DMN), memory retrieval net-
work (MRN), visual network (VN), frontoparietal task control
network (FPTCN), salience network (SN), subcortical network
(SCN), ventral attention network (VAN), dorsal attention net-
work (DAN), and cerebellar network (CN), are mainly asso-
ciated with the perception of movement, memory, language,
vision, cognition and other functions of the brain, while there
are 28 ROIs unrelated to any of the above functional networks
which belong to the uncertain network (UN).

To capture the dynamic characteristics of the brain, dFC is
obtained by calculating the Pearson correlation between the
time-courses of the BOLD signals of pair regions within a
window [29]–[31]. The details of obtaining the multimodal
data can be seen in Appendix I-D. By grid search, we choose
window length wl being 14, 17, and 33 for Emoid, Nback,
and Rest fMRIs respectively, and scan length sl is 1 for all
three modalities. Thus, each subject provides a dFC matrix
MdFC ∈ RC2

264×Sl corresponding to Emoid, Nback, and
Rest fMRIs, where C2

264 = 34716. To reduce the complexity
of computation, systematic sampling is used to select 20
sub-sequences from the dFC matrix corresponding to each
modality of each subject [4]. Training data contains 80% of
the subjects and the remaining subjects are test data.

B. Experimental Results

To evaluate the performance of the algorithm, the signal-to-
noise ratio (SNR) [32] is used as evaluation index which is
defined as

SNR = 10log10

( ||X||2F
||X −DV ||2F

)
Given that the grid search method can simply make a complete
search over a given hyperparameters space, easily be paral-
lelized to find more stable optimal hyperparameter [33], [34],
it is used to select appropriate hyperparameters. Specifically,
one of the hyperparameters is selected by the grid search
method when other hyperparameters are fixed. By repeating
the above process, all hyperparameters are optimized, and the
results are shown in Figure 1 of the Supplementary material.
There are 7 layers of sDAE with 34716, 10000, 6000, 1000,
6000, 10000, 34716 units respectively. The number of atoms
K is 300, the sparsity parameter ρ is 0.1, the regularization
coefficients λ1, λ2, λ3, λ4, λ5, and λ6 are 0.0001, 0.0005,
0.0003, 0.0001, 0.0005, and 0.001 respectively, the k nearest
neighbor of hypergraph is 9. Because problem (6) and (8) are
nonconvex, RMSProp algorithm is used to update {W̃ (l)}2Ll=1

and D due to the better generalization ability and it is less
prone to overfitting [35]. For RMSProp algorithm, the learning
rates η1 and η2 are 0.00005 and 0.00008 respectively, and the
square gradient decay rates ξ1 and ξ2 are both 0.9.
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Based on the optimal hyperparameters, we apply EMDDL
to the training data to obtain the dictionary and sparse repre-
sentations. The learning curves of loss functions and the SNR
evaluation on both training data and testing data are shown
in Fig. 2. The results testify that the sparse representations
can characterize the local geometric relationships between
data and dictionary in the two spaces. The SNR of EMDDL,
multimodal dictionary learning (MDL) [36] and sparse deep
dictionary learning (SDDL) [4] on testing data are shown in
Table I. It shows that the multimodal-based methods have
better reconstruction ability compared with the single modality
methods, and the generalization ability in reconstruction of
EMDDL are better than the other two methods. It testifies
that integrating the multimodal prior or combining the com-
plementary information from diverse modalities can promote
model enhancement.
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Fig. 2: The learning curves of loss functions and the SNR
evaluation on both training data and testing data of EMDDL.
The curve is formed by the average of 10 repetitions, and
the gray shadow is formed by the standard deviation of 10
repetitions.

C. States Analysis of Multimodal Data
To find the differences in reoccurring patterns of dFC (i.e.,

states) between children and young adults, k-means clustering
method with the cityblock distance metric is used to obtain
the reoccurring patterns of each group in each modality [37].

TABLE I: The SNR on testing data of various methods.

Multimodal
based methods

Single modality
based methods

Paradigm SNR

Method
EMDDL MDL SDDL

Emoid 3.2577 2.6416 0.9338
Nback 3.8650 3.2029 1.2219
Rest 4.8046 4.1108 1.0622

Specifically, sparse representations of each group in each
modality are clustered, and then states can be obtained by
multiplying the dictionary and the cluster centroid. We use the
elbow criterion defined as within-cluster sums of distances to
estimate the optimal number of dFC states, and the optimal
number of dFC states for Emoid, Nback, and Rest fMRIs
are 5, 5, and 4 respectively. To test whether the clustering
results are consistent in multiple subgroups, we use the kappa
coefficient as the indicator [38], and the details can be seen
in Appendix I-E. The results indicate that the clustering
results obtained from two different subgroups are substantial
agreement or perfect agreement in a large probability. For
Emoid task, the proportions of each state for children are
14.07%, 22.28%, 17.52%, 25.53%, and 20.61% respectively,
while the proportions of each state for young adults are 9.08%,
21.06%, 14.55%, 27.29%, and 28.01% respectively. For Nback
task, the proportions in these states for children are 11.14%,
19.19%, 24.23%, 22.97%, and 22.48% respectively, while the
proportions in these states for young adults are 7.5%, 14.28%,
22.53%, 25.58%, and 30.1% respectively. For Rest fMRI, the
proportions of these states for children are 31.14%, 29.35%,
34.15%, and 5.37% respectively, while the proportions of these
states for young adults are 21.64%, 13.87%, 27.43%, and
37.05% respectively.

To further investigate the time occupied divergence of each
state, dwell time (DT) and fraction of time (FT) are estimated
from the state transition vector [7]. DT represents how long
an individual spends in a given state on average, and FT is to
describe the total time spent in a given state. For a subject i,
DT and FT of k-th state are defined by

DT state(k) = mean(TRend − TRstart)

FT state(k) =
sum(state vector(i) == k)

Total number of window

where TRstart and TRend are computed by

TRstart = count(difference(state vector(i), k) == 1)

TRend = count(difference(state vector(i), k) == −1)

in which ”1” and ”-1” mean that the specific window of i-th
subject belongs to a certain state k or not; state vector(i)
is the states of the i-th subject in all window. Moreover,
the reoccurring patterns and time occupied divergence of
Emoid, Nback, and Rest fMRIs for children and young adults
are shown in Figures 2-4 of the Supplementary material.
We visualize the top 100 significant functional connectivity
related to age in each state (i.e., the functional connectivity
corresponding to the 100 smallest FDR-corrected p-values of
two-sample t-test performed across subject’s mean dFC by
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state) under Emoid, Nback, and Rest, which are shown in
Figures 5-7 of the Supplementary material.

To study the changes in reoccurring patterns over time
under two tasks and resting state, we define the transition
probabilities Pij from time t to time t+ 1 as follows

Pij =
sum{I(Sn

t =i,Sn
t+1=j) == 1}Nn=1

sum{I(Sn
t =i) == 1}Nn=1

i, j = 1, 2, · · · , s

where Sn = (Sn
1 , S

n
2 , · · · , Sn

T ) ∈ R1×T is the state vector for
n-th subject, and Sn

t = i for i = 1, 2, · · · , s (s is 5, 5, and 4
for Emoid, Nback, and Rest respectively) represents that the
n-th subject is in state i at time t. I(·) is an indicative function,
which is 1 when the condition is true, otherwise it is 0. The
probability of each state at the initial time is defined as

Pi =
sum{I(Sn

1 =i) == 1}Nn=1

N
i = 1, 2, · · · , s

Specifically, for a given state it at time t, we can calculate
the transition probabilities Pitj for j = 1, 2, · · · , s from time
t to time t + 1. Then we record the maximum transition
probability and the corresponding state at time t+1, and denote
them as Pitit+1 and it+1 respectively. By repeating the above
steps, we can obtain the state transition curve with maximum
state transition probability, which is shown in Figures 8-10
A of the Supplementary material. To further explore how
the strength of functional connectivity changes over time,
we count the proportion of enhancement and decrease of
functional connections within or between functional networks
during state transition, which is shown in Figures 8-10 B
of the Supplementary material. To contrast the functional
connectivity matrices between two adjacent states at the state
transition point, we visualized the differences of the functional
connectivity matrices between two adjacent states at the state
transition point for each group under Emoid task and Nback
task, which are shown in Figure 11 of the Supplementary
material.

V. DISCUSSION

1) The Common Developmental Differences of Three fMRI
Paradigms: Figures 2-4 A of the supplementary material show
the reoccurring patterns of three paradigms for both children
and young adults. For the child group, we found that states
1, 2, and 3 in the resting state are similar to the Emoid
states 2, 3, and 4 (Pearson correlation coefficient is 0.9687,
0.9631, and 0.9631 respectively) and the Nback states 5, 2,
and 3 (Pearson correlation coefficient is 0.9744, 0.9856, and
0.9602 respectively). The analogous conclusions also can be
found in the young adult group, where all reoccurring patterns
in resting state are similar to Emoid states 2, 3, 4, and 5
(Pearson correlation coefficient is 0.9379, 0.9561, 0.9191, and
0.9588 respectively) and Nback states 3, 2, 5, and 4 (Pearson
correlation coefficient is 0.9552, 0.9612, 0.9566, and 0.9696
respectively). It indicates that the reoccurring patterns of three
paradigms are similar for a subject. The same conclusion
also can be found in previous research [39], which reveals
that no matter in resting state or task, the basic structure
of the brain functional network remains relatively consistent.

The finding testifies that the brain has a shared functional
architecture during resting and many directed tasks, and the
shared functional architecture of the brain can only modulate
the connectivity pattern in response to task demands. In
other words, the overlapping functional connectivity patterns
between Rest fMRI and two task fMRIs suggest a shared
functional architecture underlying and even shaping brain
function, and a potential explanation of overlap is that the
functional connectivity during resting constrains the activation
of brain regions in response to task demands [40].

Although the brain shares the basic functional architecture
during task and resting state, the basic functional organization
between children and young adults are different. The number
of within or between functional networks that children exist
high-strength functional connections is 43 in state 1 and 2
in state 3 under Emoid task, 55 in state 1 and 10 in state
2 under Nback task, and 13 in state 2 under resting state.
The number of within or between functional networks that
young adults exist high-strength functional connections is 9
in state 1 under Emoid task, 20 in state 1 under Nback
task, and 2 in state 2 under resting state. For all three fMRI
paradigms, we found that children have many high-strength
functional connections distributed widely among 13 functional
networks, young adults have high-strength functional connec-
tions only within and between some functional networks. It is
consistent with the previous studies that children show more
diffuse functional connectivity patterns while young adults
show more focused functional connectivity patterns, and the
changes in functional connectivity patterns between children
and young adults explain how brain function changes from
an undifferentiated system to a specialized system as one
grows up [3], [4]. The brain organization of distinct and
stronger within-network communication can promote precise
modulation efficiently because it can transfer more information
in a short time [41]. Thus, compared with children with more
diffuse functional connectivity patterns, the brain organization
of young adults with more focused functional connectivity
patterns can transmit information more efficiently and facilitate
precise modulation during resting and two tasks.

Additionally, the functional connectivity among DMN, SC-
N, MRN, CN, AN, FPTCN, and SN is decreased in most
reoccurring patterns for Emoid, Nback, and Rest fMRIs during
development. DMN, so-called task-negative network, is broad-
ly inactivated across tasks, which are closely related to numer-
ous key brain functions such as integration of autobiographic
information, self-monitoring, and social cognition [28]. It is
reported that the functional activity in DMN never stops but
regulates during the resting state [42]. SCN participates in
memory, attention, perception, and consciousness, and dom-
inates the motivation and emotion state independent control
of cortical functions [43]. MRN is reported to be engaged
during autobiographical memory retrieval that involves strate-
gic search processes guided by self-knowledge and current
goals, memory recovery associated with a rich sense of re-
experience, monitoring, and other control processes [44]. CN
is not just considered as the domain of motor control that
receives information from widespread regions to affect the
generation and control of movement, but also is thought to
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be involved in cognition and visuospatial reasoning [45]. AN
innervated by autonomic nerves, involves activities related
to sound information including collection, conduction, and
processing [46], [47]. FPTCN involving working memory
maintenance, predictive perceptual coding, and cognitive task,
is thought to play an important part in mediating the allocation
of attentional resources to compete for auditory information
under varying degrees of perceptual demand [48]. SN is
thought to regulate attention and behavior adaptively through
the physical characteristics and the relevant information of the
task, and also is considered to be a key interface for cognitive,
homeostatic, motivational, and affective systems [49]. Both
resting and task fMRIs suggest that the functions of the brain
in processing information, working memory, and cognition are
not mature in children compared with young adults [3].

The functional connectivity between SSN, COTCN, DAN,
and some other functional networks is increased in some
reoccurring patterns for resting and task fMRIs during devel-
opment. SSN participates in the process of emotional feeling
and cognitive activities [50]. COTCN is the key to coordi-
nate information transmission and involves many complex
cognitive tasks [51]. DAN controls external and attention-
demanding cognitive functions [52]. Three fMRI paradigms
indicate that brain functions related to emotional feelings,
cognition, and information transmission are still growing with
age.

2) The Developmental Differences of Each fMRI Paradigm:
Figures 2-4 B of the supplementary material show the time
occupied divergence of children and young adults during task
and resting state. Both children and young adults have lower
DT and FT in each state for two tasks while having higher
DT and FT in each state during rest. It indicates that subjects
including children and young adults tend to switch frequently
among states in tasks and prefer to stay in a particular state
while resting. It reveals that the spontaneous functional activity
is stable during resting state, and then the functional activity
corresponding to task demands changes quickly when the
participant is required to perform a task [53].

For Emoid fMRI, both children and young adults stay in
states 2, 3, and 4 for about the same time, but children stay
longer in state 1 while young adults stay longer in state 5.
Under the Emoid task, whether the initial state is 2, 3, 4, or 5,
the children group will eventually switch to state 4 at time 9,
and then they will switch back and forth between state 2 and
state 4. When the initial state is 1, children group will stay in
state 1 for the most time and then switch to state 3. No matter
which the initial state is, the young adult group will eventually
switch to state 5 at time 5 and stay at state 5 for a long while,
and then they will switch to state 4 at time 18. The result
of the Emoid task indicates that children have more frequent
state transitions between state 2 and state 4, and the strength of
functional connections within or between functional networks
changes over time. Compared with children, the strength of
functional connectivity within or between functional networks
decreases at the early stage for young adults, and then they
prefer to stay in state 5.

For Nback fMRI, both children and young adults stay in
states 2, 3, and 4 for about the same time, but children stay

longer in state 1 while young adults stay longer in state 5.
Under the Nback task, no matter which the initial state is, the
children group will eventually switch to state 4 at time 9, and
then they will stay at state 4 until they switch to state 3 at
time 18. The young adult group switch between state 4 and
state 5 after time 7 in any initial state. The result of the Nback
task indicates that the strength of functional connectivity for
children changes over time during the frequent state transition
at an early time, and then they will stay at state 4 for a while
and finally switch to state 3. Unlike children, young adults
prefer to stay for a while after switching to state 4 or state 5,
and the strength of functional connectivity within or between
functional networks decreases first, then increases, and then
decreases during state transition between state 4 and state 5.

For Rest fMRI, both children and young adults stay in state
3 for about the same time. Children stay longer in state 1
and state 2, whereas young adults prefer to stay in state 4.
Under the resting state, both children and young adults prefer
to stay in a specified state with no change in the strength of
functional connectivity within or between functional networks.
We found that children prefer to switch among states with
diffuse functional connectivity patterns during the two tasks
and stay in states with diffuse functional connectivity patterns
during rest. On the other hand, young adults switch among
states with focused functional connectivity patterns in two task
fMRIs and stay in states with focused functional connectivity
patterns during rest.

For Emoid fMRI, along with the enhanced functional con-
nectivity among SSN, COTCN, and DAN with age in states
4 and 5, the functional connectivity in the rest states declines
to various degrees. For Nback fMRI, there exists enhanced
functional connections within and between 13 functional net-
works in state 3 during development. Also, the functional
connectivity decreases in the rest states with age. For Rest
fMRI, in states 1, 2, and 4, there are not only lessened func-
tional connections which mainly exist among SCN, MRN, CN,
DMN, AN, FPTCN, and SN, but also exist strengthen func-
tional connections which are mainly among SSN, COTCN,
and DAN. In state 3 of Rest fMRI, the functional connections
within and between 13 functional networks enhance during
development. We found that compared with children, the
functional connectivity of young adults increases or reduces
with time for resting fMRI while generally decreasing for
the two tasks. It indicates that the changes of functional
connectivity with age are more complex in resting, and the
brain functions related to emotion and working memory are
more mature and efficient during development [4], [41].

VI. CONCLUSION

In this paper, we present an explainable multimodal deep
dictionary learning method to capture the developmental d-
ifferences between children and young adults from three
fMRI paradigms. Specifically, the shared dictionary and the
modality-specific sparse representations are learned based on
the multimodal data and their encodings of the sDAE to
simultaneously reveal the commonality and specificity of d-
ifferent paradigms. By applying the proposed method to the
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three fMRI paradigms from PNC, we found that children
share a diffuse functional connectivity pattern while young
adults share a focused functional connectivity pattern during
both resting and two tasks. Three fMRI paradigms reveal that
compared with children, young adults possess more mature
and efficient functional networks for processing information.
Children and young adults rarely transit from one state to other
states during resting and prefer to switch among states over
time during a task.
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APPENDIX I
A. The Comparison of Sparsity of Activations Among
L1-norm, L2-norm, and Kullback-Leibler Divergence

Let ρ be a small positive constant between 0 and 1, and
ρ
(l)
j = 1

N

∑N
n=1 h

(l)
nj with h

(l)
nj being the j-th element of h

(l)
n

is the average activation of neural j in the l-th layer, then the
Kullback-Leibler divergence is defined as

KL(ρ||ρ(l)j ) = ρ log
ρ

ρ
(l)
j

+ (1− ρ) log
1− ρ

1− ρ
(l)
j

The penalty functions based on L1-norm and L2-norm are
defined as

fL1 =

2L−1∑
l=1

r(l)∑
j=1

∣∣∣ρ(l)j

∣∣∣
fL2 =

2L−1∑
l=1

r(l)∑
j=1

(
ρ
(l)
j

)2

The sparsity and SNR with L1-norm, L2-norm and Kullback-
Leibler divergence have been compared and the results are
shown in Figure 12 of the Supplementary material. The results
show that the sparsity of Kullback-Leibler divergence is better
than that of L1-norm in most hidden layers, and the sparsity of
L2-norm is the worst among the above three penalty functions.
The SNR evaluation of EMDDL on the multimodal data in
both the original space and the encoding space show that,
EMDDL based on Kullback-Leibler divergence has better
reconstruction ability compared with L1-norm and L2-norm.

B. The Proof of the Convexity of f(V)
The convexity of f(V ) depends on whether its Hessian

matrix ∇2f(V ) is positive definite or not. Thus, as long as
∇2f(V ) is positive definite, the convexity of f(V ) can be
guaranteed. The Hessian matrix ∇2f(V ) is

∇2f(V ) =
1

N

(
DTD +D(L)TD(L)

)
+ S

According to the Weyl’s inequality [54], we have

λmin(∇2f(V )) =λmin

( 1

N

(
DTD +D(L)TD(L)

)
+ S

)
≥λmin

( 1

N
DTD

)
+ λmin

( 1

N
D(L)TD(L)

)
+ λmin(λ3H2) + λmin(−2λ3H1)

+ λmin(λ4L) + λmin

(
(λ3 + λ5)I

)
=(λ3 + λ5)− 2λ3

=λ5 − λ3

where λmin(·) denotes the smallest eigenvalue of a matrix.
To ensure the positive definite of the Hessian matrix ∇2f(V ),
λmin(∇2f(V )) should be greater than 0. Thus, f(V ) is
convex when λ3 < λ5 holds.

C. The Lipschitz Constant of the Gradient ∇V
For every V 1, V 2 ∈ RK×N , we have

||∇V 1 −∇V 2||2 =|| 1
N

(
DTD +D(L)TD(L)

)(
V 1 − V 2

)
+

(
V 1 − V 2

)
S||2

≤|| 1
N

(
DTD +D(L)TD(L)

)
||2

||V 1 − V 2||2 + ||V 1 − V 2||2||S||2

≤
( 1

N

(
||DTD||2 + ||D(L)TD(L)||2

)
+ ||S||2

)
||V 1 − V 2||2

=
(λmax(D

TD) + λmax(D
(L)TD(L))

N

+
√
λmax(STS)

)
||V 1 − V 2||2

Thus, the Lipschitz constant of the gradient ∇V is

Lf =
1

N

(
λmax(D

TD) + λmax(D
(L)TD(L))

)
+

√
λmax(STS) (13)

where λmax(·) denotes the largest eigenvalue of a matrix.

D. The Details of Obtaining Multimodal Data
There are 264 BOLD signals with Tm time points for the

m-th modality of the n-th subject. fc(m)
nk (i, j), the functional

connectivity between the i-th ROI and the j-th ROI within
the k-th window for the m-th modality of the n-th subject, is
calculated based on the Pearson correlation coefficient, which
is defined as follows
fc

(m)
nk (i, j) =∑wl

t=1 (B
(m)
nk (i, t)− B̄

(m)
nk (i))(B

(m)
nk (j, t)− B̄

(m)
nk (j))√∑wl

t=1 (B
(m)
nk (i, t)− B̄

(m)
nk (i))

2
√∑wl

t=1 (B
(m)
nk (j, t)− B̄

(m)
nk (j))

2

where B
(m)
nk (i, t) is the t-th BOLD signal value of the i-th

ROI within the k-th window for the m-th modality of the
n-th subject. B̄

(m)
nk (i) = 1

wl

∑wl

t=1 B
(m)
nk (i, t) is the sample

mean of the BOLD signals of the i-th ROI within the k-
th window for the m-th modality of the n-th subject. By
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calculating the functional connectivity between any two ROIs
within the k-th window for the m-th modality of the n-th
subject, C2

264 = 34716 functional connections can be obtained
within the k-th window for the m-th modality of the n-th
subject. For a BOLD signals with T time points, we can
obtain Sl =

T−wl

sl
+ 1 windows with window length wl and

scan length sl. Thus, a dynamic functional connection matrix
fc(m)

n ∈ R34716×Sl can be obtained for the m-th modality
of the n-th subject. Let X(m) = (fc

(m)
1 , fc

(m)
2 , · · · , fc(m)

Ns
) ∈

Rp×Nm be the data of the m-th modality, and multimodal
data X = (X(1), X(2), · · · , X(M)) ∈ Rp×N is composed of
M modalities. In which, p = C2

264 = 34716, Nm = Sl ×Ns

with Ns being the number of subjects, and N =
∑M

m=1 Nm.
The flowchart of calculating fc(m)

n is shown in Figure 13 of
the Supplementary material.

E. The Consistency of Clustering Results

Firstly, we can obtain two subgroups X(1) and X(2) by
sampling 80% of items from the sparse representations without
replacement. Then, we can obtain two clustering results M (1)

and M (2) based on the two subgroups using the k-means
clustering method with the cityblock distance metric, where
M (i, j) = 1 if item i and item j belong to the same cluster,
otherwise it is 0. If both item i and item j are present in
the subgroups X(1) and X(2), the corresponding element in
M (1) and M (2) is retained. By vectorizing the upper triangle
of M , we can obtain two vectors h(1) and h(2) which are used
to obtain the confusion matrix. And the confusion matrix is
shown in Table II.

TABLE II: The confusion matrix of clustering results based on
h(1) and h(2).

Items i and j
belong to the
same cluster

based on h(1)

Items i and j
belong to the

different clusters
based on h(1)

Items i and j belong to the
same cluster based on h(2) N1 N2

Items i and j belong to the
different clusters based on h(2) N3 N4

Then, the kappa coefficient is defined as

kappa =
po − pe
1− pe

where po = N1+N4

N is the proportion of units that the
judges agreed and pe = (N1+N3)(N1+N2)+(N2+N4)(N3+N4)

N2

is the proportion of units for which agreement is expected
by chance, and N = N1 + N2 + N3 + N4. In which N1

and N4 represent the number of consistent clustering results
based on two different subgroups, and N2 and N3 represent
the number of inconsistent clustering results based on two
different subgroups. To test the significance of the kappa
coefficient (i.e., the null hypothesis H0 : kappa = 0 and the
alternative hypothesis H1 : kappa > 0), the significance p-
value can be performed by evaluating the normal curve deviate

which is defined as

z =
kappa√
po(1−po)

N(1−pe)
2

(14)

The permutation test is also used to test the significance of the
kappa coefficient. Specifically, for the giving clustering results
h(1) and h(2), the corresponding statistic z can be obtained
based on (14), and we denote it as z0. Then, we randomly
change the clustering results of one subgroup and obtain the
corresponding statistic z based on (14), and we denote it as
ziperm. Namely, we generate a random integer Ni ≤ N and
also generate Ni different integers {I1, I2, · · · , INi} which are
less than or equal to N . And then the elements corresponding
to the index {I1, I2, · · · , INi} in h(1) are reversed (i.e., the
reversed value is 1 if the original element is 0, and the
reversed value is 0 if the original element is 1), and we
denote it as h̃(1). The corresponding statistic z can be obtained
based on h̃(1) and h(2) according to (14), and we denote
it as ziperm. Finally, zperm = {z1perm, z2perm, · · · , zNperm

perm }
can be obtained by repeating the process Nperm times. And
zperm = {z1perm, z2perm, · · · , zNperm

perm } is used to estimate
the distribution of statistic z, and then the p-value can be
calculated by

p =
count(zperm ≥ z0)

Nperm + 1

where Nperm is 1000 by considering the tradeoff between the
time complexity and the estimation accuracy of distribution of
statistic.

To ensure the reliability of the results, 1000 repeated ex-
periments are implemented for each group of each modality.
For each group of each modality, 1000 kappa values, and
1000 corresponding values of statistic z, and 1000 corre-
sponding p-values based on the normal curve deviate, and
1000 corresponding p-values based on the permutation test
can be obtained. The results are shown in Figure 14 of the
Supplementary material. For each group of each modality, all
the obtained 1000 p-values based on the normal curve deviate
and all the obtained 1000 p-values based on the permutation
test are nearly 0, which are much less than 0.05, indicating that
all the observed agreement is not accidental in 1000 repeated
experiments. Most kappa values are larger than 0.6, which
indicates that the clustering results obtained from two different
subgroups are substantial agreement or perfect agreement in a
large probability. Besides, it shows that the clustering analysis
results from one subgroup are basically consistent with the
result from another subgroup.
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