
 

 
Abstract—Surface electromyogram (SEMG) decomposition 

provides a promising tool for decoding and understanding neural 
drive information non-invasively. In contrast to previous SEMG 
decomposition methods mainly developed in offline conditions, 
there are few studies on online SEMG decomposition. A novel 
method for online decomposition of SEMG data is presented using 
the progressive FastICA peel-off (PFP) algorithm. The online 
method consists of an offline prework stage and an online 
decomposition stage. More specifically, a series of separation 
vectors are first initialized by the originally offline version of the 
PFP algorithm from SEMG data recorded in advance. Then they 
are applied to online SEMG data to extract motor unit spike trains 
precisely. The performance of the proposed online SEMG 
decomposition method was evaluated by both simulation and 
experimental approaches. It achieved an online decomposition 
accuracy of 98.53% when processing simulated SEMG data. For 
decomposing experimental SEMG data, the proposed online 
method was able to extract an average of 12.00 ± 3.46 MUs per 
trial, with a matching rate of 90.38% compared with results from 
the expert-guided offline decomposition. Our study provides a 
valuable way of online decomposition of SEMG data with 
advanced applications in movement control and health. 
 

Index Terms—Surface electromyography, motor unit, online 
decomposition, progressive FastICA peel-off 
 

I. INTRODUCTION 
lectromyogram (EMG) is an electrophysiological signal 
generated by muscular activation, reflecting motor control 

commands of the neuromuscular system [1]. It can be used to 
analyze movement behaviors, intentions and health [2]-[4]. 
Surface EMG (SEMG) refers to the EMG signals recorded by 
electrodes placed on the skin surface. Due to its noninvasive 
manner, SEMG has been widely applied in human-machine 
interfaces [5]-[7], sports medicine [8]-[9] and rehabilitation 
[10]-[12]. Ideally, an EMG signal is composed of multiple 
action potentials generated by activated motor units (MUs), 
transmitted and superimposed temporally and spatially at a 
recording electrode [13]. Specifically, each MU consists of the 
cell body and dendrites of an alpha motor neuron, the multiple 
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branches of its axon, and the muscle fibers that are innervated 
[14]. The MU is regarded as the basic component of the 
peripheral neuromuscular system to describe the neural control 
of muscular contraction and movement formation [15]. 
Compared with the global features such as SEMG amplitude, 
the MU activities can reflect the information of neural drives to 
the muscle at a microscopic level. Therefore, it is valuable to 
examine the MU activities and properties. EMG decomposition 
enables resolving the composite EMG signal into its constituent 
MU spike trains (MUSTs) and MU action potential (MUAP) 
waveforms. The availability of these individual MU activities 
can provide a promising way of decoding motor neural 
commands of a neurophysiological nature [16]-[22].  

Many efforts have been made toward EMG decomposition, 
mainly relying on blind source separation (BSS) algorithms 
which are aimed to solve the difficult math problem of 
separating sources from observed signals without prior 
knowledge of the source signals [23]. Besides, it brings huge 
challenges to the SEMG decomposition due to its special 
characteristics such as low signal-to-noise ratio, high similarity 
and severe superposition of the MUAP waveforms, caused by 
the low-pass filtering effect of the subcutaneous skin and fat 
tissues. With the recent development of electronic and sensing 
technologies, the use of high-density SEMG (HD-SEMG) by 2-
dimensional flexible electrode arrays provides abundant spatial 
information simultaneously recorded from dozens or even 
hundreds of SEMG channels, facilitating implementing the 
BSS algorithms in general, and the SEMG decomposition in 
particular [24]. Convolution kernel compensation (CKC) [25] 
and progressive FastICA peel-off (PFP) [26] are both 
representative HD-SEMG decomposition methods, inspired by 
the advanced BSS techniques [23], [27]. The CKC estimates 
and updates cross-correlation vectors between the observed 
SEMG signals and MUSTs in an iterative way [23]. The PFP 
applies a classic FastICA algorithm [27] to the SEMG signals 
to calculate the separation vectors and introduces a “peel-off” 
procedure to progressively remove the separated MUAP 
waveforms from the original SEMG signals. Such a procedure 
mitigates the effect of the already identified MUs on the 
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FastICA convergence and effectively increase the number of 
obtained MUs. The performance of both CKC and PFP has been 
extensively validated [28]-[32]. Variations of both methods 
have been developed to extract a relatively large number of 
MUs at high muscle contraction levels, with successful 
applications mainly in offline conditions [33]-[37].  

Considering the application prospects of SEMG in many 
fields, there are substantial demands for robust online SEMG 
decomposition. Glaser et al. [38] conducted a pilot study on the 
real-time SEMG decomposition based on the CKC algorithm 
and demonstrated its feasibility. Afterwards, more relevant 
studies were reported [39]-[44]. The development of these 
online decomposition algorithms mainly relies on a basic 
assumption that SEMG signals are quasi-stationary, and the 
MU behaviors do not change in pattern over a short period of 
time. This assumption has served as a primary basis of 
conventional offline SEMG decomposition [25], [26]. On this 
basis, these online decomposition algorithms were always 
designed to use results from an offline decomposition as prior 
knowledge, thus saving computational resources and allowing 
the feasibility of online signal processing. Specifically, most 
previous studies conducted online SEMG decomposition using 
modified versions of the CKC method, whereas the online 
version of the PFP method has not been investigated yet. 
Considering the advantages of the PFP method in extracting a 
great many MUs with high precision, it is necessary and 
promising to develop its online version. 

Accordingly, this paper presents an online SEMG 
decomposition method based on the PFP algorithm, evolving 
the key techniques of the PFP algorithm to meet the 
requirements for its real-time usability. To avoid the time-
consuming complexity from the offline decomposition methods, 
the proposed method utilized a two-stage approach consisting 
of an offline prework stage and an online decomposition stage. 
Furthermore, an adaptive threshold selection algorithm was 
developed to make it more suitable for precisely determining 
each MUST while processing in real time. The performance of 
the proposed online decomposition method was validated on 
both simulated and experimental SEMG datasets. 

II. RELATED WORK 

A. SEMG Observation 
Each MU has a unique and stable MUAP waveform 

distribution pattern in different channels of a 2-dimensional 
array, which can be used to distinguish and identify the MU. 
The SEMG signal can be observed by a convolutional mixing 
model expressed as [45]:  
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where � � ������������ ��� � ���� ��! , ������ is the � th 
SEMG channel and ����� represents the additive noise in the 
�th channel.�	�
��� denotes the waveform vector of length L, 
which represents the waveform of the "th MU in the �th channel. 
�
��� � �# $�� �!
�%��&  is the MUST expressed as a 0-1 
impulse sequence indicating every spike firing timing at !
�%� 

for the % th firing of the " th MU, whereas $ is Dirac Delta 
function. For each %, !
�% � �� �!
�%� ' ( can be assumed. 

Define the expansion vector of EMG signals and MUSTs as 
�)*��� � +������ ����  ��� � � �,���� � � �,��  - � ��.  and 
�/*��� � +������ ����  ��� � � �,���� � � �,��  - � ��.. 

Thus, the equation can be rewritten in matrix form: 
)*��� � �0*/1��� ���2*���� (2)

where 2*���  represents noise. 0*  is a matrix containing all 
waveform vectors 	�
. For the mixing model analyzed above, 
the task of EMG decomposition is to find a suitable separation 
matrix 3111 that consists of many separation vectors to extract the 
MU firing events. As a result, the source signals of all MUs can 
be estimated by /4��� � �3111)*���. 

 

B. Automatic PFP (APFP) 
The PFP algorithm has been automated, but it is suitable just 

for offline data processing. More details of the algorithm and 
the corresponding parameters can be found in [33] and the 
APFP method was used in this study with the same settings as 
reported in [33]. Below is a brief introduction to the APFP 
method. 

If a whitened observed signal � has been obtained and we 
need to find an independent component 5 � 67� from it using 
the ICA algorithm [23], [27], the following maximum negative 
entropy problem needs to be optimized:  
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where >  is a non-polynomial function, and @  is a random 
variable with standard normal distribution. 

The problem above can be solved using the procedure of the 
fix-point algorithm [46] to obtain a series of MU source signals 
and their corresponding separation vectors. The spike trains can 
be precisely extracted from these source signals using the initial 
threshold determined by the Otsu algorithm [47]. However, the 
spikes from one source signal often do not just belong to one 
MU due to heavy MUAP superimposition or high MU 
synchronization levels. Thus, a valley-seeking clustering 
approach [48] is used to distinguish the spikes from the same 
source signal based on their morphological features. On this 
basis, the spikes belonging to each cluster are most likely from 
the same MU [33]. After the valley-seeking clustering approach, 
the constrained FastICA algorithm [49] is performed using the 
extracted and clustered spike trains as constraints to converge. 
Therefore, the MU source signals can be effectively updated 
and meanwhile the possible firing errors are corrected. To 
assess the reliability of the constrained FastICA outputs and 
their corresponding MUSTs representing true MU activities, 
some metrics are employed from the perspective of the 
significance of correlation constrain [49], including the 
consistency of spike amplitudes and inter-spike intervals [50], 
and the physiologically reasonable firing rate [51]. In the APFP 
method, the correlation coefficient between the output of 
constrained FastICA and the testing spike trains (denoted as ξ), 
the coefficient of variation of spike amplitudes and inter-spike 
intervals (denoted as GHIJKL  and GHI�M� ), and the firing rate 



 

(denoted as FR) are employed. Moreover, a two-step criterion 
describing a reasonable range of the above four metrics is 
employed to judge the MU reliability comprehensively [33].  

A “peel-off” procedure is performed later to subtract the 
obtained MUAP waveforms from the original signals. The 
MUAP waveforms of the identified MUs were estimated by a 
straightforward approach following a least squares problem 
[26], [52] instead of the conventional high-resolution alignment 
algorithm [53]. More MUs can emerge when processing the 
residual signals again with the FastICA algorithm. The 
framework of the offline APFP method is summarized as 
follows: 
(1) Initialize the residual signal to the original EMG signal, 

and make the MUST set γ empty. 
(2) Apply the FastICA algorithm to the expanded residual 

signal and obtain a series of source signals. 
(3) Extract non-repetitive spike trains by Otsu algorithm and 

use valley-seeking clustering to distinguish these spikes to 
separate spike trains from different MUs. 

(4) Use MUSTs obtained in step (2) as a reference signal, and 
apply the constrained FastICA algorithm on the expanded 
original EMG signal to detect the reliability of the MUSTs 
and to correct possible erroneous or missing discharges.  

(5) Judge whether the MUs obtained are reliable through 
metrics calculation. Put reliable results in set γ. 

(6) Estimate the waveforms of the reliable MUs, subtract the 
estimated MUAP waveforms from the original signal and 
update the residual signal. 

(7) If no new reliable MU is found in the above steps, or the 
APFP method reaches the preset termination condition, 
the algorithm ends. Otherwise, go back to step (2). 

 

III. METHODOLOGY 

A. Experimental SEMG Data Collection and Preprocessing 

1) Subjects and Experiments 
Eight subjects (26.13±4.29 years) without any known history 

of muscular or neural disorder participated in this study. The 
study was approved by the Ethics Review Board of the 
University of Science and Technology of China (Hefei, China). 
All subjects signed consent prior to any procedure of the 
experiments. 

In this work, the HD-SEMG data were recorded from 
abductor pollicis brevis (APB) muscle due to its wide 
explorations and applications in SEMG studies [19]-[21]. Here, 
a home-made, multi-channel signal acquisition system with a 
force sensor and a set of 3D-printed apparatuses was used to 
collect data, as shown in Fig. 1a. The subject’s hand was placed 
on the fixed 3D-printed apparatus to prevent muscular 
movement interferences from the wrist and other fingers, and 
the muscle force was recorded by a load cell (LDST-V-HY, 
Luckly Inc., Beijing, China) connected to a ring around the 
thumb. Multiple electrodes were arranged in the form of 8 rows 
× 8 columns to form a 2-dimensional electrode array. Each 
electrode probe had a diameter of 2 mm, and the inter-electrode 
distance between consecutive electrodes was 4 mm. Each 
electrode was designed in a monopolar manner relative to a 
round common reference electrode placed on the back of the 
tested hand.  

During the experiments, subjects were asked to sit and place 
the tested hand in a relaxed and comfortable way. Before data 
collection, the maximum voluntary contraction (MVC) of the 
thumb abduction muscle was tested and recorded. Then, in each 
trial of the task performance, subjects were instructed to 
perform isometric muscle contractions with the muscle force 
gradually increasing from 0 to a targeted force level (quantified 
by MVC percentage) in 2s and then maintained at the targeted 
level for around 3s, as shown in Fig. 1b. According to this force 
generation pattern, the designed force curve was shown on the 
screen to facilitate the subject’s task performance in each trial. 
The targeted force level in this experiment was set to 30% MVC 
and the trial was repeated at least nine times to acquire a 
sufficient amount of data. The force and SEMG data were 
digitized via a 16-bit A/D converter (ADS1198, Texas 
Instruments, TX) at a sample rate of 2 kHz, and the data were 
stored into the hard disk of a computer and imported into the 
MATLAB software (version R2020a, MathWorks, Natick, MA, 
USA) for further analyses. 

 

2) Data Preprocessing 
All channels of the recorded HD-SEMG signals were 

inspected, and a few channels (3.75 ± 1.28 channels across all 
subjects in this study) with low quality were discarded (due to 
their excessive noise contamination resulting from motion 
artifacts, occasional electrode drop, or environmental 
interferences from surrounding electronic devices). The 
channel deletion remained consistent within the EMG signals 
of the same subject. The HD-SEMG signals within the 
remaining channels were filtered through a 10-order 
Butterworth band-pass filter to reduce possible low-frequency 
or high-frequency interference. The bandwidth of the filter was 
20-500Hz. Finally, the power line interference was removed 
through a 50Hz second-order notch filter. The deleted channels 
were not considered in the subsequent process of SEMG 

 
Fig. 1. The experimental setup and protocol. (a) Apparatuses for 
simultaneously recording thumb abduction force by a load cell and HD-
SEMG data by a piece of 2-dimensional electrode array arranged in an 8×8 
formation. (b) The illustration of the force generation pattern with both the 
designed force curve (blue line) and an actual recorded force curve (red 
line) in one trial of task performance. 



 

decomposition, but they were filled in by interpolation from 
neighboring channels and considered during the estimation of 
MUAP waveforms. In order to facilitate the data analysis, all of 
the SEMG data were divided into a series of non-overlapping 
data segments corresponding to the force generation task 
repetitions over time. Therefore, the length of every SEMG data 
segment was around 5 seconds. 

 

B. SEMG Data Simulation 
A data simulation approach was conducted to generate HD-

SEMG data with known MU activities, which were used as the 
ground-truth for validating the performance of the developed 
online SEMG decomposition method. In the current study, this 
approach was based on simulation models well described by 
previous studies, including the motoneuron pool model [54], 
the model describing the MUAP waveforms of different MUs, 
and a tripole model [55] considering the generation and 
extinction of the action potentials at the fiber end-plate and 
tendon. 

Here a cylindrical muscle with a radius of 8 mm was 
simulated and the fat and skin layers of the muscle were set to 
2.5 mm thickness. 120 MUs were set and distributed in parallel 
in the muscle fibers. Most of the MUs had low recruitment 
thresholds and a few had high thresholds. When the excitation 
exceeded the threshold, every MU discharged at 8 Hz and its 
firing rate increased as the excitation increased. All the relevant 
parameters are listed in Table I. 

The simulated SEMG signals were also set to be recorded by 
a 64-channel surface electrode array arranged in an 8×8 grid 
form. The inter-electrode distance was set at 4 mm for both 
horizontal and vertical directions. The electrode array was 
placed parallel to the muscle fiber direction and its center 
electrodes were set to approximately over the innervation zones.  

To be consistent with the force generation pattern of the 
actual experiments, the excitation was set to increase from 0 to 
a specific excitation level in the first 2 seconds, and maintained 
for another 3 seconds with several repetitions. The maximum 
excitation level was set to be 3%, corresponding to 33 active 
MUs. In addition, zero-mean Gaussian noises were added to the 
simulated EMG signals, generating three levels of SNR (signal-
to-noise ratio) at 10 dB, 20 dB and 30 dB, respectively. Thus, 
we considered four noise levels, three SNR levels and the level 
without any additional noise. For each noise level, 21 
repetitions were simulated to ensure data diversity, as shown in 
Fig. 2. Therefore, 84 data segments (4 noise levels × 21 
repetitions) were simulated in total.  

C. Online Decomposition 
The overall whole block diagram summarizing the proposed 

online decomposition method is described in Fig. 3. 

TABLE I 
PARAMETERS FOR SEMG SIMULATION 

 Distribution Mean SD Range 

Fiber number Uniform 70000  ±0.5 mean 
MU fiber endplate 

center position Uniform 0  ±8 mm 

Fiber endplate 
position variation Uniform 0  ±2 mm 

Half fiber length Gaussian 40mm 4mm ±2 SD 
Mean fiber 

diameter for a MU Gaussian 55μm 10μm ±2 SD 

Fiber diameter 
variation within a 

MU 
Gaussian 0 1μm ±2 SD 

ISI variation Gaussian 0 0.2*instant 
mean ISI ±2 SD 

 

 
Fig. 2. (a). The contraction condition of simulated signals. (b). Multi-
channel simulated SEMG signals. 

 

 
Fig. 3.  Block diagram of the proposed method for online SEMG decomposition 
 



 

With full consideration of the real-time usability of the 
proposed online method, a two-stage approach was designed to 
avoid considerable computational complexity caused by the 
repeated operation of the FastICA algorithm and the iterations 
of the constrained FastICA algorithm. More specifically, the 
reliable separation vectors were initialized in the offline 
prework stage and saved to accelerate the subsequent online 
data processing. In the online decomposition stage, the data 
stream of the input EMG signals was divided into a series of 
temporally overlapping windows with window length and 
increment set at 1 s and 0.2 s, respectively. Both settings helped 
to facilitate online processing. 

During the offline prework stage, several 5-s segments of 
EMG signals were separately decomposed offline using the 

APFP method and all of the resultant separation vectors were 
put into the set N. The quality of these vectors was evaluated by 
both criteria employed in the offline APFP method [33]: if the 
coefficient of variation of spike amplitudes GHIJKL was higher 
than 0.3, and the coefficient of variation of inter-spike intervals 
GHI�M� was higher than 0.4, the corresponding separation vector 
was considered to be low-quality and it was removed from the 
set N . Furthermore, any duplicated separation vector 
corresponding to the same MU was removed as well. 

In the online decomposition stage, every 0.2 s of data input 
was combined with 0.8 s of historical data to form a 1-s window 
for decomposition. The decomposed results from consecutive 
windows were connected, while their overlapping portion was 
used to align the obtained MUSTs. This ensured continuity of 

 
Fig. 4.  Illustration of the online SEMG decomposition process using the proposed method. 

 



 

the decomposition results along with the original SEMG data 
stream. The SEMG data in each window were first whitened 
and extended. Then, the multiplication procedure was directly 
applied to the extended EMG signals with separation vectors in 
set N  to estimate different MU source signals, from which 
individual MUSTs were consequently identified. 

For extracting MUSTs from the MU source signals, the 
original offline APFP method employs repeated iterations of 
the constrained FastICA algorithm, involving complex 
computations as described above. This process was unsuitable 
for online processing and therefore it was removed to avoid 
heavy computational burden. To maintain high-precision 
MUST extraction, the simple amplitude-thresholding process 
by the Otsu algorithm had to be updated. A new algorithm was 
designed for our online PFP method. First, this algorithm needs 
to determine an initial threshold that is applied to each source 
signal, using the Otsu algorithm in the same way as conducted 
in the offline APFP method. Then, a group of spikes beyond 
this threshold is detected and the corresponding amplitudes can 

be ranked from small to large. Next, a series of successively 
increasing thresholds that are a little higher than these 
amplitudes are adopted to estimate a series of different spike 
trains. Each resultant spike train can be further evaluated by 
both GHIJKL  and GHI�M�  metrics, and the spike train with the 
minimal summation of both metrics is finally considered the 
most appropriate MUST. This algorithm for adaptive threshold 
selection was termed the successive multi-threshold Otsu 
algorithm.  

A k-means clustering algorithm was usually used in some 
offline decomposition methods [36]-[37] for extracting MUSTs 
from the source signals. It was also implemented in this study 
as an alternative threshold selection algorithm, in comparison 
to the successive multi-threshold Otsu algorithm used in our 
method. By applying the k-means clustering algorithm, all 
sample amplitudes of the source signal time series can be 
classified into 2-4 groups (2 in this work), so that the group with 
the largest amplitudes of samples is selected as the extracted 
MUST. 

After the spike trains of all MUs were appropriately detected, 
they were connected over windows to form the resultant MUST 
for each MU, and its MUAP waveforms that spanned over all 
channels were correspondingly estimated. Fig. 4 illustrates an 
example of the online decomposition results. The pseudocode 
of the proposed online decomposition method is shown in 
Algorithm 1. 

 

D. Performance Evaluation 
For processing the experimental SEMG data, the proposed 

online decomposition method was conducted in a user-specific 
manner. Four segments were used in the offline prework stage 
and the remaining 4 segments were processed in the online 
decomposition stage. For processing the simulated SEMG data, 
the first segment was used in the offline prework stage and the 
remaining 20 segments were processed in the online 
decomposition stage. All SEMG segments tested in the online 
decomposition stage were sequentially arranged in the form of 
a data stream to be processed continuously using our proposed 
method. For comparison purposes, all of the SEMG segments 
to be processed online was also decomposed by the offline 
APFP method as well. 

To evaluate the performance of online decomposition and 
assess the decomposition results more comprehensively, we 

Algorithm 1 The proposed online decomposition 
method 
1: Decompose the SEMG signals offline. Extract 

the MUSTs and calculate the corresponding 
separation vectors. 

2: Remove the duplicated separation vectors and 
vectors that are not well-decomposed. 

3: Save all the separation vectors O�, OA, OP…O� 
for the online decomposition stage. 

4: while Acquiring SEMG signals do 
5:        Load and extend the EMG signals (51). 
6:        for j = 1; j < N + 1; j ++ do 
7:              Calculate the source signal, �
 � O
751. 
8:              Estimate the initial threshold through the 

Otsu algorithm and extract the spike train. 
9:              Successively increase the threshold and 

extract a series of spike trains Q!
�, Q!
A, Q!
P… 
10:              Find the spike train with the lowest  

GHIJKL and GHI�M� as the �"th MUST Q!
. 
11:         end for 
12:         Connect the MUSTs over the sliding 

windows. 
13: end while 

 
Fig. 5. The results for decomposing simulated SEMG data in terms of MR(a), FDR(b) and FNR(c) averaged over all data segments using the offline APFP 
method, the proposed online PFP method and the online PFP method with k-means clustering at four noise levels, respectively. The error bar represents 
standard deviations. N in the horizontal axis denotes the condition without any additional noise. 



 

used a series of metrics: matching rate (MR) can be calculated 
as [33]: 

�R ��
� S TUVKKVW

TVWX�WY �� TZY[YZYWUY
 (4)

where TVWX�WY denotes the number of firing events of the online 
decomposition results, and TZY[YZYWUY  denotes the number of 
the reference spike trains. In the simulated data, the reference 
spike train indicates the ground-truth firing events. However, 
the actual MUSTs are not known a priori in the experimental 
data. Therefore, the decomposition results of the experimental 
data processed by the offline APFP method were used to define 
TZY[YZYWUY . TUVKKVW  indicates the number of common 
discharges appearing in both the online decomposition result 
and the reference. The MR measures the matching degree and 
it is able to quantify the precision of an online decomposition 
method.  

 
Fig. 6.  A representative example of validating the decomposition results from the online PFP method in terms of all decomposed MUSTs (in blue) with 
respect to the reference (in red) derived from summarized offline decomposition results, using a data segment from one subject. The position of the black 
dot indicates the missing or fault discharges and MR values are computed and shown on the right side of these spike trains. 

 
Fig. 7. Two MUAPs of matched MUs with time-varying waveform shapes. Here we illustrate 64 electrode channels arranged in an 8×8 grid form. Blue and 
red lines indicate the MUAP shapes from online PFP and the reference of offline decomposition, respectively. 
 

 
Fig. 8. The relationship between the matching rate and the composite 
decomposability index. 

 



 

Besides MR, both false negative rate (FNR) and false 
discovery rate (FDR) were used to reveal the cause of the error 
discharges. They are defined as 

���������������������\TR � �
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TZY[YZYWUY
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They count the proportion of the number of unmatched 
discharges to the total number of their respective discharges. 
Specifically, the FNR measures the rate of “missing” discharges 
with respect to the reference, and the FDR quantifies the rate of 
“faulty” discharges appearing in the online decomposition 
results. Generally speaking, the MR of a reliable MUST is close 
to 1 but the FNR and FDR are close to 0. 

For a more comprehensive view of the decomposition results, 
we also calculated the mean discharge rate (MDR) and the 
coefficient of variation (CoV) of the online identified MUSTs 
with respect to the reference spike trains. It should be noted that 
the CoV refers to the coefficient of variation of the inter-spike 
intervals GHI�M� to better understand the MU firing behaviors. 

In addition, we calculated the decomposability index (DI) for 
each common MU of experimental EMG data to precisely 
quantify the proposed method’s performance [56]: 

�]^ �
8_��=`a&�`� `a&�  a&b�`?

I�c,d  
 

(6)
 

where a&� is the MUAP of the %th MU in the �th channel and 
a&b�  is the MUAP most similar to a&�  among the other 
MUAPs in the � th channel. I�c,d  is the root mean square 
amplitude (RMS) of the � th channel and the operator `S` 
denotes the Euclidean norm. The DI measures the separation 
between a&�  and the template of MUAP nearest to it (or the 
baseline), normalized by the standard deviation of the noise 
component (interference plus baseline noise) projected along 
their vector difference. The overall decomposability of the %th 
MU was measured by the composite DI (CDI), defined as the 
norm of the individual DIs [56].  

For developing a real-time decomposition method, it is 
necessary to evaluate the processing time delay which is 
expected to be as short as possible. The time delay for 
processing one single time window was recorded, and all these 
time delay values were averaged across all windows and all 
subjects to indicate the computational complexity. All of the 
algorithms were implemented on a desktop computer with an 
Intel Core i5-10400 processor (2.90 GHz) and 16 GB of 
memory.  

IV. RESULTS 

A. Results of Simulated Data 
As an offline decomposition method for validation, 21 MUs 

were identified using offline APFP and the number was 22 
using online PFP when no additional noise was added. Further, 
the number of MUs correctly decomposed using online PFP 
decreased to 11, 7, and 6 when noise was added at 30 dB, 20 dB 
and 10 dB SNR, respectively.  

The results for decomposing simulated SEMG data are 
reported in Fig. 5. As compared with the offline APFP method, 
the proposed online PFP method achieved comparable 
performance in terms of a high MR over 90%, and a low FNR 
below 0.05. The proposed online PFP method had a fluctuated 
and relatively higher FDR than the offline APFP method under 
three SNR levels. Specifically, a decreasing trend of the MR 
was found from 99.29% to 94.13% for the offline APFP method 
and from 98.53% to 92.79% for the online PFP method, 
respectively, when the noise was successively added to generate 
four noise levels. The ANOVAs revealed no significant 
difference in either MR, FDR or FNR, between the offline 
APFP method and the proposed online PFP method (p > 0.05).  

When both threshold selection algorithms were compared, it 
was evidently found that the successive multi-threshold Otsu 
algorithm in the proposed online PFP method significantly 
outperformed the K-means clustering algorithm in terms of 
higher MR (p = 0.025) and lower FNR (p =0.022). Both 
algorithms did not exhibit a significant difference in the FDR 
metrics (p = 0.273).  

Table II reports both MDR and CoV values calculated for all 
common MUs between the decomposition results achieved by 
the proposed online method and the ground truth. The ANOVA 
revealed no difference in MDR (p = 0.217) or CoV (p = 0.105) 
at no presence of noise. However, the MDR and CoV of online 
decomposition results became significantly different from those 
of the ground-truth (p < 0.05) when the noises were added. 

B. Results of Experimental Data 
When implementing online decomposition of experimental 

data, the offline decomposition method was applied to establish 
the reference for validation, and 10.31±1.79 MUs were 
obtained, averaged across all subjects. 

Fig. 6 is an example of an online decomposition result using 
the proposed method, showing the decomposed MUSTs with 
respect to the reference. It can be observed that almost all the 
MU discharges derived from the online PFP method are well 
matched with those in the reference, with sporadic missing or 
erroneous ones. Fig. 7 illustrates the MUAP waveforms of two 
matched MUs derived from both the online PFP method and the 
reference, which demonstrate a very consistent waveform shape 
in each channel and almost the same distribution pattern across 
the electrode array. Fig. 8 plots the relationship between the 
matching rate and composite decomposability index (CDI), 
which displays the overall trend of the matching rates varying 

TABLE II 
COMPARISON OF MDR AND COV OF THE SIMULATED EMG SIGNALS 

 
SNR 10dB 
Online PFP/  
Ground-truth 

SNR 10dB 
Online PFP/ 
Ground-truth 

SNR 30dB 
Online PFP/ 
Ground-truth  

No adding noise 
Online PFP/ 
Ground-truth 

MDR 9.86±1.99 
8.77±0.18 

9.55±1.54 
8.75±0.23 

10.47±1.81 
8.74±0.22 

8.77±0.51 
8.70±0.18 

CoV 0.245±0.053 
0.199±0.003 

0.257±0.032 
0.202±0.005 

0.231±0.044 
0.201±0.005 

0.211±0.024 
0.199±0.007 

 



 

with the CDIs. It contains the common MUs of all of the 
collected SEMG segments.  

Table III reports both the number of MUs decomposed by the 
online PFP method and the number of common MUs matched 
those in the reference (offline decomposition) for 8 subjects, 
respectively. An average of 12.00±3.46 MUs were successfully 
identified by the online PFP method, with an average of 
6.69±1.84 MUs correctly matched. Besides, three metrics are 
also computed from those common MUs and reported in Table 
III. Averaged over all data segments to be decomposed and all 
subjects, the MR was (90.38±2.80) %, the FDR was 
0.091±0.022, and the FNR was 0.089±0.041. The estimated 
MDR (p = 0.872) and CoV (p = 0.503) of online decomposition 
results were not significantly different from the offline 
decomposition reference. 

 

C. Time Delay 
The time delay for decomposing a 1-s window of SEMG data 

using the proposed method in the online decomposition stage 
was 0.084±0.028 s, averaged over all data segments and all 
subjects; it was less than a 0.2-s time increment. For 
comparison purposes, the offline APFP method costs 60.07 ± 
9.82 s to decompose SEMG data in a single time window, much 
longer than that of the proposed online decomposition method.   

V. DISCUSSION 
As a promising SEMG decomposition method, the PFP 

algorithm has been reported recently and, therefore, it is 
necessary and promising to develop an online version. This 
study sought to propose an online SEMG decomposition 
method based on the PFP algorithm. The results of both 
simulated and experimental SEMG data analyses demonstrated 
the feasibility of the proposed online PFP method in 
decomposing a large number of MUs with high precision in the 
context of isometric muscle contractions. Our study offers a 
valuable tool for online SEMG decomposition with great 
applications in biomechanics and rehabilitation. 

In the results of processing simulated data, the proposed 
online PFP method decomposed a similar number of MUs as 

the offline APFP method, illustrating comparable performance. 
Due to the use of initial separation vectors provided by the 
APFP method in the offline prework stage, the proposed online 
PFP method is expected to inherit a good capability of 
decomposing a great number of MUs from its original offline 
version. In terms of MR, the proposed online PFP method got a 
slightly lower value compared with the offline APFP method. 
This can be explained by the fact that the source signals were 
calculated by directly multiplying previously initialized 
separation vectors with the SEMG signals for the purpose of 
real-time processing. In addition, the MUSTs were estimated 
without the examination of iterative constrained FastICA, thus 
increasing the negative influence of noise. The result 
demonstrates that online decomposition was speeded up at the 
cost of a little bit of decrease in precision. This is the main and 
common difficulty in generalizing an offline decomposition 
method to its online version [38]-[43]. However, it has been 
found that the MDR and CoV of online decomposition were 
significantly different from those of the ground-truth when the 
noise was added. This can be partly explained by the limitations 
of the online decomposition method such as MU 
synchronization [26] and firing events drift [33] that previous 
studies have faced. 

When some noises were successively added to EMG signals 
to be decomposed, both the number of correctly identified MUs 
and the precision of determining their firing timings were 
reported to decrease substantially. This could partly explain that 
the decrease of SNR resulted in more serious noise interference 
to some small MUs and thus caused a negative influence on the 
calculation of separation vectors as well as the performance of 
the online decomposition method. On the other hand, it became 
much harder to precisely extract MUSTs from source signals in 
the online decomposition stage at a low SNR level, reflecting 
the decline of the MR. As a consequence, it can be inferred that 
the quality of SEMG signals significantly influenced the 
performance of the decomposition method, as reported in [33], 
[40]. 

It is worth mentioning that the proposed online PFP method 
introduced a progressive multi-thresholding process for 
extracting MUSTs. The successive multi-threshold Otsu 

TABLE III 
SUMMARY OF DECOMPOSITION RESULTS FOR EXPERIMENTAL EMG SIGNALS. 

Subject 

Number of motor units  MDR (Hz)  CoV (%) 

MR (%) FDR FNR The 
reference 

Online PFP   
The 

reference 
Online 

PFP  
 The 

reference 
Online 

PFP  All Matched  

1 12.75±1.50 19 9.00±1.41  19.76±5.08 19.71±4.43  22.92±7.71 24.31±8.53 92.06±5.91 0.084±0.082 0.051±0.057 

2 9.50±1.29 8 4.50±0.58  22.00±4.76 20.63±4.00  27.44±6.59 22.46±5.95 89.92±7.21 0.093±0.075 0.106±0.086 

3 9.00±0.82 14 6.00±0.81  15.79±3.22 14.65±3.30  23.44±3.78 25.44±4.59 93.20±6.02 0.065±0.068 0.067±0.074 

4 11.00±1.41 13 8.75±1.71  20.15±3.93 21.28±3.84  24.08±6.98 24.67±6.25 91.17±3.35 0.076±0.033 0.056±0.029 

5 8.50±0.57 9 5.50±0.58  20.29±3.99 20.62±3.00  26.09±4.19 28.48±4.70 85.18±4.04 0.116±0.051 0.175±0.068 

6 9.50±1.29 10 6.25±1.71  20.35±4.25 19.67±4.30  23.87±3.05 24.18±3.73 91.51±6.45 0.084±0.071 0.082±0.076 

7 11.75±1.71 11 7.00±0.82  23.03±3.60 24.66±3.94  24.46±3.54 24.82±2.78 87.26±5.47 0.131±0.073 0.108±0.028 

8 10.50±1.29 12 6.50±1.73  18.57±2.72 18.73±1.86  18.74±2.96 19.41±1.66 92.70±4.26 0.080±0.058 0.064±0.040 

Average 10.31±1.79 12.00±3.46 6.69±1.84  19.99±2.18 19.99±2.79  23.88±2.55 24.22±2.56 90.38±2.80 0.091±0.022 0.089±0.041 

 



 

algorithm outperformed the conventional k-means clustering 
algorithm especially in the condition of noise interference, 
proving the potential to extract more precise discharges at low 
SNR levels. The successive multi-threshold algorithm based on 
the Otsu algorithm was inspired from the common Otsu 
algorithm [48] used in the offline APFP method [33]. It was 
able to successively increase multiple thresholds to overcome 
the effect of noise interferences and find the most appropriate 
one to extract MUSTs that followed the physiological 
properties of MUs. The successive multi-threshold Otsu 
algorithm takes consideration into the interval and waveform 
information to ensure the result to be much more reliable, 
depending on GHIJKL  and GHI�M� . By contrast, the k-means 
clustering algorithm only focuses on the amplitude information 
of EMG source signals. As a result, it makes it much more 
difficult to remove the noise interferences and leads to 
decomposition performance degradation. The proposed online 
PFP method replaced the complex iterative calculation of 
constrained FastICA with the successive multi-threshold Otsu 
algorithm to extract MUSTs, showing a significant 
improvement in reducing the calculation complexity while 
maintaining its high precision. 

To evaluate the real-time performance, this study recorded 
the processing time of online decomposition. The time delay 
was effectively reduced from 60 seconds for the offline APFP 
method to less than 0.08 seconds for the online decomposition. 
The acceleration of data processing is attributed to reasons in 
two respects. The first is that the repeated iteration of FastICA 
was put in the offline prework stage, which initialized the 
separation vectors for online decomposition. On the other hand, 
some complex calculation procedures were adaptively 
simplified. For example, the constrained FastICA algorithm in 
the APFP method was replaced with the successive multi-
threshold algorithm, as discussed above. 

In the experimental SEMG data, a large number of MUs 
decomposed by offline PFP can be correctly identified with 
high precision in the online decomposition process, 
demonstrating that the separation vectors used in the online 
decomposition process were comprehensive and precise. In 
addition, the MDR and CoV of online decomposition showed 
no significant difference with the offline reference. These 
findings indicate that the performance of the online 
decomposition method is very close to that of the original 
offline method, proving the feasibility and effectiveness of the 
proposed online PFP method. In addition, it illustrates that the 
advantages of the offline APFP method were still maintained in 
the proposed online decomposition method. 

There are still some limitations in this work. First, the online 
decomposition process relied too much on the separation 
vectors provided by the offline prework, proving the feasibility 
that the separation vectors obtained from offline decomposition 
can be used for online decomposition. However, the conditions 
of muscle contraction change over time and the initialization 
process needs to update the separation vectors, which has not 
been validated in this work. In other words, the online process 
was verifying whether the MUs corresponding to the separate 
vectors were activated and the newly recruited MUs couldn’t be 

captured. Moreover, the initial MU information and spike drift 
needs to be corrected over time. Second, the experimental EMG 
data were collected only from isometric contraction and most 
muscle contractions in daily life are non-isometric and dynamic. 
More contraction patterns will be added to the experimental 
data for analysis. Third, the peel-off procedure needs to be 
adopted in a real-time way to find more MUs and fully take 
advantage of the offline PFP method. Further research will be 
devoted to overcoming the limitations above. 

VI. CONCLUSION 
A new online SEMG decomposition method based on the 

Progressive FastICA Peel-off procedure was proposed in this 
paper, including offline prework and online decomposition 
process. The proposed decomposition method took advantage 
of offline PFP algorithms and demonstrated high precision with 
the most identified MUs both on simulated and experimental 
EMG signals. These results offer a new tool for precisely 
identifying individual MU activities in a real-time way with the 
potential applications of high-density EMG as a neural interface 
in the fields of biomechanics, sports and rehabilitation. 
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